Files
wasmtime/cranelift/codegen/src/ir/dfg.rs
Ujjwal Sharma ea919489ee [codegen] add encodings for iadd carry variants (#961)
* [codegen] add encodings for iadd carry variants

Add encodings for iadd carry variants (iadd_cout, iadd_cin, iadd_carry)
for x86_32, enabling the legalization for iadd.i64 to work.

* [codegen] remove support for iadd carry variants on riscv

Previously, the carry variants of iadd (iadd_cin, iadd_cout and
iadd_carry) were being legalized for isa/riscv since RISC architectures
lack a flags register.

This forced us to return and accept booleans for these operations, which
proved to be problematic and inconvenient, especially for x86.

This commit removes support for said statements and all dependent
statements for isa/riscv so that we can work on a better legalization
strategy in the future.

* [codegen] change operand type from bool to iflag for iadd carry variants

The type of the carry operands for the carry variants of the iadd
instruction (iadd_cin, iadd_cout, iadd_carry) was bool for compatibility
reasons for isa/riscv. Since support for these instructions on RISC
architectures has been temporarily suspended, we can safely change the
type to iflags.
2019-09-05 15:03:13 +02:00

1280 lines
44 KiB
Rust

//! Data flow graph tracking Instructions, Values, and EBBs.
use crate::entity::{self, PrimaryMap, SecondaryMap};
use crate::ir;
use crate::ir::builder::ReplaceBuilder;
use crate::ir::extfunc::ExtFuncData;
use crate::ir::instructions::{BranchInfo, CallInfo, InstructionData};
use crate::ir::{types, ConstantPool};
use crate::ir::{
Ebb, FuncRef, Inst, SigRef, Signature, Type, Value, ValueLabelAssignments, ValueList,
ValueListPool,
};
use crate::isa::TargetIsa;
use crate::packed_option::ReservedValue;
use crate::write::write_operands;
use core::fmt;
use core::iter;
use core::mem;
use core::ops::{Index, IndexMut};
use core::u16;
use std::collections::HashMap;
/// A data flow graph defines all instructions and extended basic blocks in a function as well as
/// the data flow dependencies between them. The DFG also tracks values which can be either
/// instruction results or EBB parameters.
///
/// The layout of EBBs in the function and of instructions in each EBB is recorded by the
/// `Layout` data structure which forms the other half of the function representation.
///
#[derive(Clone)]
pub struct DataFlowGraph {
/// Data about all of the instructions in the function, including opcodes and operands.
/// The instructions in this map are not in program order. That is tracked by `Layout`, along
/// with the EBB containing each instruction.
insts: PrimaryMap<Inst, InstructionData>,
/// List of result values for each instruction.
///
/// This map gets resized automatically by `make_inst()` so it is always in sync with the
/// primary `insts` map.
results: SecondaryMap<Inst, ValueList>,
/// Extended basic blocks in the function and their parameters.
///
/// This map is not in program order. That is handled by `Layout`, and so is the sequence of
/// instructions contained in each EBB.
ebbs: PrimaryMap<Ebb, EbbData>,
/// Memory pool of value lists.
///
/// The `ValueList` references into this pool appear in many places:
///
/// - Instructions in `insts` that don't have room for their entire argument list inline.
/// - Instruction result values in `results`.
/// - EBB parameters in `ebbs`.
pub value_lists: ValueListPool,
/// Primary value table with entries for all values.
values: PrimaryMap<Value, ValueData>,
/// Function signature table. These signatures are referenced by indirect call instructions as
/// well as the external function references.
pub signatures: PrimaryMap<SigRef, Signature>,
/// External function references. These are functions that can be called directly.
pub ext_funcs: PrimaryMap<FuncRef, ExtFuncData>,
/// Saves Value labels.
pub values_labels: Option<HashMap<Value, ValueLabelAssignments>>,
/// Constants used within the function
pub constants: ConstantPool,
}
impl DataFlowGraph {
/// Create a new empty `DataFlowGraph`.
pub fn new() -> Self {
Self {
insts: PrimaryMap::new(),
results: SecondaryMap::new(),
ebbs: PrimaryMap::new(),
value_lists: ValueListPool::new(),
values: PrimaryMap::new(),
signatures: PrimaryMap::new(),
ext_funcs: PrimaryMap::new(),
values_labels: None,
constants: ConstantPool::new(),
}
}
/// Clear everything.
pub fn clear(&mut self) {
self.insts.clear();
self.results.clear();
self.ebbs.clear();
self.value_lists.clear();
self.values.clear();
self.signatures.clear();
self.ext_funcs.clear();
self.values_labels = None;
self.constants.clear()
}
/// Get the total number of instructions created in this function, whether they are currently
/// inserted in the layout or not.
///
/// This is intended for use with `SecondaryMap::with_capacity`.
pub fn num_insts(&self) -> usize {
self.insts.len()
}
/// Returns `true` if the given instruction reference is valid.
pub fn inst_is_valid(&self, inst: Inst) -> bool {
self.insts.is_valid(inst)
}
/// Get the total number of extended basic blocks created in this function, whether they are
/// currently inserted in the layout or not.
///
/// This is intended for use with `SecondaryMap::with_capacity`.
pub fn num_ebbs(&self) -> usize {
self.ebbs.len()
}
/// Returns `true` if the given ebb reference is valid.
pub fn ebb_is_valid(&self, ebb: Ebb) -> bool {
self.ebbs.is_valid(ebb)
}
/// Get the total number of values.
pub fn num_values(&self) -> usize {
self.values.len()
}
/// Starts collection of debug information.
pub fn collect_debug_info(&mut self) {
if self.values_labels.is_none() {
self.values_labels = Some(HashMap::new());
}
}
}
/// Resolve value aliases.
///
/// Find the original SSA value that `value` aliases, or None if an
/// alias cycle is detected.
fn maybe_resolve_aliases(values: &PrimaryMap<Value, ValueData>, value: Value) -> Option<Value> {
let mut v = value;
// Note that values may be empty here.
for _ in 0..=values.len() {
if let ValueData::Alias { original, .. } = values[v] {
v = original;
} else {
return Some(v);
}
}
None
}
/// Resolve value aliases.
///
/// Find the original SSA value that `value` aliases.
fn resolve_aliases(values: &PrimaryMap<Value, ValueData>, value: Value) -> Value {
if let Some(v) = maybe_resolve_aliases(values, value) {
v
} else {
panic!("Value alias loop detected for {}", value);
}
}
/// Iterator over all Values in a DFG
pub struct Values<'a> {
inner: entity::Iter<'a, Value, ValueData>,
}
/// Check for non-values
fn valid_valuedata(data: &ValueData) -> bool {
if let ValueData::Alias {
ty: types::INVALID,
original,
} = *data
{
if original == Value::reserved_value() {
return false;
}
}
true
}
impl<'a> Iterator for Values<'a> {
type Item = Value;
fn next(&mut self) -> Option<Self::Item> {
self.inner
.by_ref()
.find(|kv| valid_valuedata(kv.1))
.map(|kv| kv.0)
}
}
/// Handling values.
///
/// Values are either EBB parameters or instruction results.
impl DataFlowGraph {
/// Allocate an extended value entry.
fn make_value(&mut self, data: ValueData) -> Value {
self.values.push(data)
}
/// Get an iterator over all values.
pub fn values<'a>(&'a self) -> Values {
Values {
inner: self.values.iter(),
}
}
/// Check if a value reference is valid.
pub fn value_is_valid(&self, v: Value) -> bool {
self.values.is_valid(v)
}
/// Get the type of a value.
pub fn value_type(&self, v: Value) -> Type {
match self.values[v] {
ValueData::Inst { ty, .. }
| ValueData::Param { ty, .. }
| ValueData::Alias { ty, .. } => ty,
}
}
/// Get the definition of a value.
///
/// This is either the instruction that defined it or the Ebb that has the value as an
/// parameter.
pub fn value_def(&self, v: Value) -> ValueDef {
match self.values[v] {
ValueData::Inst { inst, num, .. } => ValueDef::Result(inst, num as usize),
ValueData::Param { ebb, num, .. } => ValueDef::Param(ebb, num as usize),
ValueData::Alias { original, .. } => {
// Make sure we only recurse one level. `resolve_aliases` has safeguards to
// detect alias loops without overrunning the stack.
self.value_def(self.resolve_aliases(original))
}
}
}
/// Determine if `v` is an attached instruction result / EBB parameter.
///
/// An attached value can't be attached to something else without first being detached.
///
/// Value aliases are not considered to be attached to anything. Use `resolve_aliases()` to
/// determine if the original aliased value is attached.
pub fn value_is_attached(&self, v: Value) -> bool {
use self::ValueData::*;
match self.values[v] {
Inst { inst, num, .. } => Some(&v) == self.inst_results(inst).get(num as usize),
Param { ebb, num, .. } => Some(&v) == self.ebb_params(ebb).get(num as usize),
Alias { .. } => false,
}
}
/// Resolve value aliases.
///
/// Find the original SSA value that `value` aliases.
pub fn resolve_aliases(&self, value: Value) -> Value {
resolve_aliases(&self.values, value)
}
/// Resolve all aliases among inst's arguments.
///
/// For each argument of inst which is defined by an alias, replace the
/// alias with the aliased value.
pub fn resolve_aliases_in_arguments(&mut self, inst: Inst) {
for arg in self.insts[inst].arguments_mut(&mut self.value_lists) {
let resolved = resolve_aliases(&self.values, *arg);
if resolved != *arg {
*arg = resolved;
}
}
}
/// Turn a value into an alias of another.
///
/// Change the `dest` value to behave as an alias of `src`. This means that all uses of `dest`
/// will behave as if they used that value `src`.
///
/// The `dest` value can't be attached to an instruction or EBB.
pub fn change_to_alias(&mut self, dest: Value, src: Value) {
debug_assert!(!self.value_is_attached(dest));
// Try to create short alias chains by finding the original source value.
// This also avoids the creation of loops.
let original = self.resolve_aliases(src);
debug_assert_ne!(
dest, original,
"Aliasing {} to {} would create a loop",
dest, src
);
let ty = self.value_type(original);
debug_assert_eq!(
self.value_type(dest),
ty,
"Aliasing {} to {} would change its type {} to {}",
dest,
src,
self.value_type(dest),
ty
);
debug_assert_ne!(ty, types::INVALID);
self.values[dest] = ValueData::Alias { ty, original };
}
/// Replace the results of one instruction with aliases to the results of another.
///
/// Change all the results of `dest_inst` to behave as aliases of
/// corresponding results of `src_inst`, as if calling change_to_alias for
/// each.
///
/// After calling this instruction, `dest_inst` will have had its results
/// cleared, so it likely needs to be removed from the graph.
///
pub fn replace_with_aliases(&mut self, dest_inst: Inst, src_inst: Inst) {
debug_assert_ne!(
dest_inst, src_inst,
"Replacing {} with itself would create a loop",
dest_inst
);
debug_assert_eq!(
self.results[dest_inst].len(&self.value_lists),
self.results[src_inst].len(&self.value_lists),
"Replacing {} with {} would produce a different number of results.",
dest_inst,
src_inst
);
for (&dest, &src) in self.results[dest_inst]
.as_slice(&self.value_lists)
.iter()
.zip(self.results[src_inst].as_slice(&self.value_lists))
{
let original = src;
let ty = self.value_type(original);
debug_assert_eq!(
self.value_type(dest),
ty,
"Aliasing {} to {} would change its type {} to {}",
dest,
src,
self.value_type(dest),
ty
);
debug_assert_ne!(ty, types::INVALID);
self.values[dest] = ValueData::Alias { ty, original };
}
self.clear_results(dest_inst);
}
}
/// Where did a value come from?
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ValueDef {
/// Value is the n'th result of an instruction.
Result(Inst, usize),
/// Value is the n'th parameter to an EBB.
Param(Ebb, usize),
}
impl ValueDef {
/// Unwrap the instruction where the value was defined, or panic.
pub fn unwrap_inst(&self) -> Inst {
match *self {
ValueDef::Result(inst, _) => inst,
_ => panic!("Value is not an instruction result"),
}
}
/// Unwrap the EBB there the parameter is defined, or panic.
pub fn unwrap_ebb(&self) -> Ebb {
match *self {
ValueDef::Param(ebb, _) => ebb,
_ => panic!("Value is not an EBB parameter"),
}
}
/// Get the program point where the value was defined.
pub fn pp(self) -> ir::ExpandedProgramPoint {
self.into()
}
/// Get the number component of this definition.
///
/// When multiple values are defined at the same program point, this indicates the index of
/// this value.
pub fn num(self) -> usize {
match self {
ValueDef::Result(_, n) | ValueDef::Param(_, n) => n,
}
}
}
/// Internal table storage for extended values.
#[derive(Clone, Debug)]
enum ValueData {
/// Value is defined by an instruction.
Inst { ty: Type, num: u16, inst: Inst },
/// Value is an EBB parameter.
Param { ty: Type, num: u16, ebb: Ebb },
/// Value is an alias of another value.
/// An alias value can't be linked as an instruction result or EBB parameter. It is used as a
/// placeholder when the original instruction or EBB has been rewritten or modified.
Alias { ty: Type, original: Value },
}
/// Instructions.
///
impl DataFlowGraph {
/// Create a new instruction.
///
/// The type of the first result is indicated by `data.ty`. If the instruction produces
/// multiple results, also call `make_inst_results` to allocate value table entries.
pub fn make_inst(&mut self, data: InstructionData) -> Inst {
let n = self.num_insts() + 1;
self.results.resize(n);
self.insts.push(data)
}
/// Returns an object that displays `inst`.
pub fn display_inst<'a, I: Into<Option<&'a dyn TargetIsa>>>(
&'a self,
inst: Inst,
isa: I,
) -> DisplayInst<'a> {
DisplayInst(self, isa.into(), inst)
}
/// Get all value arguments on `inst` as a slice.
pub fn inst_args(&self, inst: Inst) -> &[Value] {
self.insts[inst].arguments(&self.value_lists)
}
/// Get all value arguments on `inst` as a mutable slice.
pub fn inst_args_mut(&mut self, inst: Inst) -> &mut [Value] {
self.insts[inst].arguments_mut(&mut self.value_lists)
}
/// Get the fixed value arguments on `inst` as a slice.
pub fn inst_fixed_args(&self, inst: Inst) -> &[Value] {
let num_fixed_args = self[inst]
.opcode()
.constraints()
.num_fixed_value_arguments();
&self.inst_args(inst)[..num_fixed_args]
}
/// Get the fixed value arguments on `inst` as a mutable slice.
pub fn inst_fixed_args_mut(&mut self, inst: Inst) -> &mut [Value] {
let num_fixed_args = self[inst]
.opcode()
.constraints()
.num_fixed_value_arguments();
&mut self.inst_args_mut(inst)[..num_fixed_args]
}
/// Get the variable value arguments on `inst` as a slice.
pub fn inst_variable_args(&self, inst: Inst) -> &[Value] {
let num_fixed_args = self[inst]
.opcode()
.constraints()
.num_fixed_value_arguments();
&self.inst_args(inst)[num_fixed_args..]
}
/// Get the variable value arguments on `inst` as a mutable slice.
pub fn inst_variable_args_mut(&mut self, inst: Inst) -> &mut [Value] {
let num_fixed_args = self[inst]
.opcode()
.constraints()
.num_fixed_value_arguments();
&mut self.inst_args_mut(inst)[num_fixed_args..]
}
/// Create result values for an instruction that produces multiple results.
///
/// Instructions that produce no result values only need to be created with `make_inst`,
/// otherwise call `make_inst_results` to allocate value table entries for the results.
///
/// The result value types are determined from the instruction's value type constraints and the
/// provided `ctrl_typevar` type for polymorphic instructions. For non-polymorphic
/// instructions, `ctrl_typevar` is ignored, and `INVALID` can be used.
///
/// The type of the first result value is also set, even if it was already set in the
/// `InstructionData` passed to `make_inst`. If this function is called with a single-result
/// instruction, that is the only effect.
pub fn make_inst_results(&mut self, inst: Inst, ctrl_typevar: Type) -> usize {
self.make_inst_results_reusing(inst, ctrl_typevar, iter::empty())
}
/// Create result values for `inst`, reusing the provided detached values.
///
/// Create a new set of result values for `inst` using `ctrl_typevar` to determine the result
/// types. Any values provided by `reuse` will be reused. When `reuse` is exhausted or when it
/// produces `None`, a new value is created.
pub fn make_inst_results_reusing<I>(
&mut self,
inst: Inst,
ctrl_typevar: Type,
reuse: I,
) -> usize
where
I: Iterator<Item = Option<Value>>,
{
let mut reuse = reuse.fuse();
self.results[inst].clear(&mut self.value_lists);
// Get the call signature if this is a function call.
if let Some(sig) = self.call_signature(inst) {
// Create result values corresponding to the call return types.
debug_assert_eq!(
self.insts[inst].opcode().constraints().num_fixed_results(),
0
);
let num_results = self.signatures[sig].returns.len();
for res_idx in 0..num_results {
let ty = self.signatures[sig].returns[res_idx].value_type;
if let Some(Some(v)) = reuse.next() {
debug_assert_eq!(self.value_type(v), ty, "Reused {} is wrong type", ty);
self.attach_result(inst, v);
} else {
self.append_result(inst, ty);
}
}
num_results
} else {
// Create result values corresponding to the opcode's constraints.
let constraints = self.insts[inst].opcode().constraints();
let num_results = constraints.num_fixed_results();
for res_idx in 0..num_results {
let ty = constraints.result_type(res_idx, ctrl_typevar);
if let Some(Some(v)) = reuse.next() {
debug_assert_eq!(self.value_type(v), ty, "Reused {} is wrong type", ty);
self.attach_result(inst, v);
} else {
self.append_result(inst, ty);
}
}
num_results
}
}
/// Create a `ReplaceBuilder` that will replace `inst` with a new instruction in place.
pub fn replace(&mut self, inst: Inst) -> ReplaceBuilder {
ReplaceBuilder::new(self, inst)
}
/// Detach the list of result values from `inst` and return it.
///
/// This leaves `inst` without any result values. New result values can be created by calling
/// `make_inst_results` or by using a `replace(inst)` builder.
pub fn detach_results(&mut self, inst: Inst) -> ValueList {
self.results[inst].take()
}
/// Clear the list of result values from `inst`.
///
/// This leaves `inst` without any result values. New result values can be created by calling
/// `make_inst_results` or by using a `replace(inst)` builder.
pub fn clear_results(&mut self, inst: Inst) {
self.results[inst].clear(&mut self.value_lists)
}
/// Attach an existing value to the result value list for `inst`.
///
/// The `res` value is appended to the end of the result list.
///
/// This is a very low-level operation. Usually, instruction results with the correct types are
/// created automatically. The `res` value must not be attached to anything else.
pub fn attach_result(&mut self, inst: Inst, res: Value) {
debug_assert!(!self.value_is_attached(res));
let num = self.results[inst].push(res, &mut self.value_lists);
debug_assert!(num <= u16::MAX as usize, "Too many result values");
let ty = self.value_type(res);
self.values[res] = ValueData::Inst {
ty,
num: num as u16,
inst,
};
}
/// Replace an instruction result with a new value of type `new_type`.
///
/// The `old_value` must be an attached instruction result.
///
/// The old value is left detached, so it should probably be changed into something else.
///
/// Returns the new value.
pub fn replace_result(&mut self, old_value: Value, new_type: Type) -> Value {
let (num, inst) = match self.values[old_value] {
ValueData::Inst { num, inst, .. } => (num, inst),
_ => panic!("{} is not an instruction result value", old_value),
};
let new_value = self.make_value(ValueData::Inst {
ty: new_type,
num,
inst,
});
let num = num as usize;
let attached = mem::replace(
self.results[inst]
.get_mut(num, &mut self.value_lists)
.expect("Replacing detached result"),
new_value,
);
debug_assert_eq!(
attached,
old_value,
"{} wasn't detached from {}",
old_value,
self.display_inst(inst, None)
);
new_value
}
/// Append a new instruction result value to `inst`.
pub fn append_result(&mut self, inst: Inst, ty: Type) -> Value {
let res = self.values.next_key();
let num = self.results[inst].push(res, &mut self.value_lists);
debug_assert!(num <= u16::MAX as usize, "Too many result values");
self.make_value(ValueData::Inst {
ty,
inst,
num: num as u16,
})
}
/// Append a new value argument to an instruction.
///
/// Panics if the instruction doesn't support arguments.
pub fn append_inst_arg(&mut self, inst: Inst, new_arg: Value) {
let mut branch_values = self.insts[inst]
.take_value_list()
.expect("the instruction doesn't have value arguments");
branch_values.push(new_arg, &mut self.value_lists);
self.insts[inst].put_value_list(branch_values)
}
/// Get the first result of an instruction.
///
/// This function panics if the instruction doesn't have any result.
pub fn first_result(&self, inst: Inst) -> Value {
self.results[inst]
.first(&self.value_lists)
.expect("Instruction has no results")
}
/// Test if `inst` has any result values currently.
pub fn has_results(&self, inst: Inst) -> bool {
!self.results[inst].is_empty()
}
/// Return all the results of an instruction.
pub fn inst_results(&self, inst: Inst) -> &[Value] {
self.results[inst].as_slice(&self.value_lists)
}
/// Get the call signature of a direct or indirect call instruction.
/// Returns `None` if `inst` is not a call instruction.
pub fn call_signature(&self, inst: Inst) -> Option<SigRef> {
match self.insts[inst].analyze_call(&self.value_lists) {
CallInfo::NotACall => None,
CallInfo::Direct(f, _) => Some(self.ext_funcs[f].signature),
CallInfo::Indirect(s, _) => Some(s),
}
}
/// Check if `inst` is a branch.
pub fn analyze_branch(&self, inst: Inst) -> BranchInfo {
self.insts[inst].analyze_branch(&self.value_lists)
}
/// Compute the type of an instruction result from opcode constraints and call signatures.
///
/// This computes the same sequence of result types that `make_inst_results()` above would
/// assign to the created result values, but it does not depend on `make_inst_results()` being
/// called first.
///
/// Returns `None` if asked about a result index that is too large.
pub fn compute_result_type(
&self,
inst: Inst,
result_idx: usize,
ctrl_typevar: Type,
) -> Option<Type> {
let constraints = self.insts[inst].opcode().constraints();
let num_fixed_results = constraints.num_fixed_results();
if result_idx < num_fixed_results {
return Some(constraints.result_type(result_idx, ctrl_typevar));
}
// Not a fixed result, try to extract a return type from the call signature.
self.call_signature(inst).and_then(|sigref| {
self.signatures[sigref]
.returns
.get(result_idx - num_fixed_results)
.map(|&arg| arg.value_type)
})
}
/// Get the controlling type variable, or `INVALID` if `inst` isn't polymorphic.
pub fn ctrl_typevar(&self, inst: Inst) -> Type {
let constraints = self[inst].opcode().constraints();
if !constraints.is_polymorphic() {
types::INVALID
} else if constraints.requires_typevar_operand() {
// Not all instruction formats have a designated operand, but in that case
// `requires_typevar_operand()` should never be true.
self.value_type(
self[inst]
.typevar_operand(&self.value_lists)
.expect("Instruction format doesn't have a designated operand, bad opcode."),
)
} else {
self.value_type(self.first_result(inst))
}
}
}
/// Allow immutable access to instructions via indexing.
impl Index<Inst> for DataFlowGraph {
type Output = InstructionData;
fn index(&self, inst: Inst) -> &InstructionData {
&self.insts[inst]
}
}
/// Allow mutable access to instructions via indexing.
impl IndexMut<Inst> for DataFlowGraph {
fn index_mut(&mut self, inst: Inst) -> &mut InstructionData {
&mut self.insts[inst]
}
}
/// Extended basic blocks.
impl DataFlowGraph {
/// Create a new basic block.
pub fn make_ebb(&mut self) -> Ebb {
self.ebbs.push(EbbData::new())
}
/// Get the number of parameters on `ebb`.
pub fn num_ebb_params(&self, ebb: Ebb) -> usize {
self.ebbs[ebb].params.len(&self.value_lists)
}
/// Get the parameters on `ebb`.
pub fn ebb_params(&self, ebb: Ebb) -> &[Value] {
self.ebbs[ebb].params.as_slice(&self.value_lists)
}
/// Append a parameter with type `ty` to `ebb`.
pub fn append_ebb_param(&mut self, ebb: Ebb, ty: Type) -> Value {
let param = self.values.next_key();
let num = self.ebbs[ebb].params.push(param, &mut self.value_lists);
debug_assert!(num <= u16::MAX as usize, "Too many parameters on EBB");
self.make_value(ValueData::Param {
ty,
num: num as u16,
ebb,
})
}
/// Removes `val` from `ebb`'s parameters by swapping it with the last parameter on `ebb`.
/// Returns the position of `val` before removal.
///
/// *Important*: to ensure O(1) deletion, this method swaps the removed parameter with the
/// last `ebb` parameter. This can disrupt all the branch instructions jumping to this
/// `ebb` for which you have to change the branch argument order if necessary.
///
/// Panics if `val` is not an EBB parameter.
pub fn swap_remove_ebb_param(&mut self, val: Value) -> usize {
let (ebb, num) = if let ValueData::Param { num, ebb, .. } = self.values[val] {
(ebb, num)
} else {
panic!("{} must be an EBB parameter", val);
};
self.ebbs[ebb]
.params
.swap_remove(num as usize, &mut self.value_lists);
if let Some(last_arg_val) = self.ebbs[ebb].params.get(num as usize, &self.value_lists) {
// We update the position of the old last arg.
if let ValueData::Param {
num: ref mut old_num,
..
} = self.values[last_arg_val]
{
*old_num = num;
} else {
panic!("{} should be an Ebb parameter", last_arg_val);
}
}
num as usize
}
/// Removes `val` from `ebb`'s parameters by a standard linear time list removal which
/// preserves ordering. Also updates the values' data.
pub fn remove_ebb_param(&mut self, val: Value) {
let (ebb, num) = if let ValueData::Param { num, ebb, .. } = self.values[val] {
(ebb, num)
} else {
panic!("{} must be an EBB parameter", val);
};
self.ebbs[ebb]
.params
.remove(num as usize, &mut self.value_lists);
for index in num..(self.num_ebb_params(ebb) as u16) {
match self.values[self.ebbs[ebb]
.params
.get(index as usize, &self.value_lists)
.unwrap()]
{
ValueData::Param { ref mut num, .. } => {
*num -= 1;
}
_ => panic!(
"{} must be an EBB parameter",
self.ebbs[ebb]
.params
.get(index as usize, &self.value_lists)
.unwrap()
),
}
}
}
/// Append an existing value to `ebb`'s parameters.
///
/// The appended value can't already be attached to something else.
///
/// In almost all cases, you should be using `append_ebb_param()` instead of this method.
pub fn attach_ebb_param(&mut self, ebb: Ebb, param: Value) {
debug_assert!(!self.value_is_attached(param));
let num = self.ebbs[ebb].params.push(param, &mut self.value_lists);
debug_assert!(num <= u16::MAX as usize, "Too many parameters on EBB");
let ty = self.value_type(param);
self.values[param] = ValueData::Param {
ty,
num: num as u16,
ebb,
};
}
/// Replace an EBB parameter with a new value of type `ty`.
///
/// The `old_value` must be an attached EBB parameter. It is removed from its place in the list
/// of parameters and replaced by a new value of type `new_type`. The new value gets the same
/// position in the list, and other parameters are not disturbed.
///
/// The old value is left detached, so it should probably be changed into something else.
///
/// Returns the new value.
pub fn replace_ebb_param(&mut self, old_value: Value, new_type: Type) -> Value {
// Create new value identical to the old one except for the type.
let (ebb, num) = if let ValueData::Param { num, ebb, .. } = self.values[old_value] {
(ebb, num)
} else {
panic!("{} must be an EBB parameter", old_value);
};
let new_arg = self.make_value(ValueData::Param {
ty: new_type,
num,
ebb,
});
self.ebbs[ebb].params.as_mut_slice(&mut self.value_lists)[num as usize] = new_arg;
new_arg
}
/// Detach all the parameters from `ebb` and return them as a `ValueList`.
///
/// This is a quite low-level operation. Sensible things to do with the detached EBB parameters
/// is to put them back on the same EBB with `attach_ebb_param()` or change them into aliases
/// with `change_to_alias()`.
pub fn detach_ebb_params(&mut self, ebb: Ebb) -> ValueList {
self.ebbs[ebb].params.take()
}
}
/// Contents of an extended basic block.
///
/// Parameters on an extended basic block are values that dominate everything in the EBB. All
/// branches to this EBB must provide matching arguments, and the arguments to the entry EBB must
/// match the function arguments.
#[derive(Clone)]
struct EbbData {
/// List of parameters to this EBB.
params: ValueList,
}
impl EbbData {
fn new() -> Self {
Self {
params: ValueList::new(),
}
}
}
/// Object that can display an instruction.
pub struct DisplayInst<'a>(&'a DataFlowGraph, Option<&'a dyn TargetIsa>, Inst);
impl<'a> fmt::Display for DisplayInst<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let dfg = self.0;
let isa = self.1;
let inst = self.2;
if let Some((first, rest)) = dfg.inst_results(inst).split_first() {
write!(f, "{}", first)?;
for v in rest {
write!(f, ", {}", v)?;
}
write!(f, " = ")?;
}
let typevar = dfg.ctrl_typevar(inst);
if typevar.is_invalid() {
write!(f, "{}", dfg[inst].opcode())?;
} else {
write!(f, "{}.{}", dfg[inst].opcode(), typevar)?;
}
write_operands(f, dfg, isa, inst)
}
}
/// Parser routines. These routines should not be used outside the parser.
impl DataFlowGraph {
/// Set the type of a value. This is only for use in the parser, which needs
/// to create invalid values for index padding which may be reassigned later.
#[cold]
fn set_value_type_for_parser(&mut self, v: Value, t: Type) {
assert_eq!(
self.value_type(v),
types::INVALID,
"this function is only for assigning types to previously invalid values"
);
match self.values[v] {
ValueData::Inst { ref mut ty, .. }
| ValueData::Param { ref mut ty, .. }
| ValueData::Alias { ref mut ty, .. } => *ty = t,
}
}
/// Create result values for `inst`, reusing the provided detached values.
/// This is similar to `make_inst_results_reusing` except it's only for use
/// in the parser, which needs to reuse previously invalid values.
#[cold]
pub fn make_inst_results_for_parser(
&mut self,
inst: Inst,
ctrl_typevar: Type,
reuse: &[Value],
) -> usize {
// Get the call signature if this is a function call.
if let Some(sig) = self.call_signature(inst) {
assert_eq!(
self.insts[inst].opcode().constraints().num_fixed_results(),
0
);
for res_idx in 0..self.signatures[sig].returns.len() {
let ty = self.signatures[sig].returns[res_idx].value_type;
if let Some(v) = reuse.get(res_idx) {
self.set_value_type_for_parser(*v, ty);
}
}
} else {
let constraints = self.insts[inst].opcode().constraints();
for res_idx in 0..constraints.num_fixed_results() {
let ty = constraints.result_type(res_idx, ctrl_typevar);
if let Some(v) = reuse.get(res_idx) {
self.set_value_type_for_parser(*v, ty);
}
}
}
self.make_inst_results_reusing(inst, ctrl_typevar, reuse.iter().map(|x| Some(*x)))
}
/// Similar to `append_ebb_param`, append a parameter with type `ty` to
/// `ebb`, but using value `val`. This is only for use by the parser to
/// create parameters with specific values.
#[cold]
pub fn append_ebb_param_for_parser(&mut self, ebb: Ebb, ty: Type, val: Value) {
let num = self.ebbs[ebb].params.push(val, &mut self.value_lists);
assert!(num <= u16::MAX as usize, "Too many parameters on EBB");
self.values[val] = ValueData::Param {
ty,
num: num as u16,
ebb,
};
}
/// Create a new value alias. This is only for use by the parser to create
/// aliases with specific values, and the printer for testing.
#[cold]
pub fn make_value_alias_for_serialization(&mut self, src: Value, dest: Value) {
assert_ne!(src, Value::reserved_value());
assert_ne!(dest, Value::reserved_value());
let ty = if self.values.is_valid(src) {
self.value_type(src)
} else {
// As a special case, if we can't resolve the aliasee yet, use INVALID
// temporarily. It will be resolved later in parsing.
types::INVALID
};
let data = ValueData::Alias { ty, original: src };
self.values[dest] = data;
}
/// If `v` is already defined as an alias, return its destination value.
/// Otherwise return None. This allows the parser to coalesce identical
/// alias definitions, and the printer to identify an alias's immediate target.
#[cold]
pub fn value_alias_dest_for_serialization(&self, v: Value) -> Option<Value> {
if let ValueData::Alias { original, .. } = self.values[v] {
Some(original)
} else {
None
}
}
/// Compute the type of an alias. This is only for use in the parser.
/// Returns false if an alias cycle was encountered.
#[cold]
pub fn set_alias_type_for_parser(&mut self, v: Value) -> bool {
if let Some(resolved) = maybe_resolve_aliases(&self.values, v) {
let old_ty = self.value_type(v);
let new_ty = self.value_type(resolved);
if old_ty == types::INVALID {
self.set_value_type_for_parser(v, new_ty);
} else {
assert_eq!(old_ty, new_ty);
}
true
} else {
false
}
}
/// Create an invalid value, to pad the index space. This is only for use by
/// the parser to pad out the value index space.
#[cold]
pub fn make_invalid_value_for_parser(&mut self) {
let data = ValueData::Alias {
ty: types::INVALID,
original: Value::reserved_value(),
};
self.make_value(data);
}
/// Check if a value reference is valid, while being aware of aliases which
/// may be unresolved while parsing.
#[cold]
pub fn value_is_valid_for_parser(&self, v: Value) -> bool {
if !self.value_is_valid(v) {
return false;
}
if let ValueData::Alias { ty, .. } = self.values[v] {
ty != types::INVALID
} else {
true
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::cursor::{Cursor, FuncCursor};
use crate::ir::types;
use crate::ir::{Function, InstructionData, Opcode, TrapCode};
use std::string::ToString;
#[test]
fn make_inst() {
let mut dfg = DataFlowGraph::new();
let idata = InstructionData::UnaryImm {
opcode: Opcode::Iconst,
imm: 0.into(),
};
let inst = dfg.make_inst(idata);
dfg.make_inst_results(inst, types::I32);
assert_eq!(inst.to_string(), "inst0");
assert_eq!(
dfg.display_inst(inst, None).to_string(),
"v0 = iconst.i32 0"
);
// Immutable reference resolution.
{
let immdfg = &dfg;
let ins = &immdfg[inst];
assert_eq!(ins.opcode(), Opcode::Iconst);
}
// Results.
let val = dfg.first_result(inst);
assert_eq!(dfg.inst_results(inst), &[val]);
assert_eq!(dfg.value_def(val), ValueDef::Result(inst, 0));
assert_eq!(dfg.value_type(val), types::I32);
// Replacing results.
assert!(dfg.value_is_attached(val));
let v2 = dfg.replace_result(val, types::F64);
assert!(!dfg.value_is_attached(val));
assert!(dfg.value_is_attached(v2));
assert_eq!(dfg.inst_results(inst), &[v2]);
assert_eq!(dfg.value_def(v2), ValueDef::Result(inst, 0));
assert_eq!(dfg.value_type(v2), types::F64);
}
#[test]
fn no_results() {
let mut dfg = DataFlowGraph::new();
let idata = InstructionData::Trap {
opcode: Opcode::Trap,
code: TrapCode::User(0),
};
let inst = dfg.make_inst(idata);
assert_eq!(dfg.display_inst(inst, None).to_string(), "trap user0");
// Result slice should be empty.
assert_eq!(dfg.inst_results(inst), &[]);
}
#[test]
fn ebb() {
let mut dfg = DataFlowGraph::new();
let ebb = dfg.make_ebb();
assert_eq!(ebb.to_string(), "ebb0");
assert_eq!(dfg.num_ebb_params(ebb), 0);
assert_eq!(dfg.ebb_params(ebb), &[]);
assert!(dfg.detach_ebb_params(ebb).is_empty());
assert_eq!(dfg.num_ebb_params(ebb), 0);
assert_eq!(dfg.ebb_params(ebb), &[]);
let arg1 = dfg.append_ebb_param(ebb, types::F32);
assert_eq!(arg1.to_string(), "v0");
assert_eq!(dfg.num_ebb_params(ebb), 1);
assert_eq!(dfg.ebb_params(ebb), &[arg1]);
let arg2 = dfg.append_ebb_param(ebb, types::I16);
assert_eq!(arg2.to_string(), "v1");
assert_eq!(dfg.num_ebb_params(ebb), 2);
assert_eq!(dfg.ebb_params(ebb), &[arg1, arg2]);
assert_eq!(dfg.value_def(arg1), ValueDef::Param(ebb, 0));
assert_eq!(dfg.value_def(arg2), ValueDef::Param(ebb, 1));
assert_eq!(dfg.value_type(arg1), types::F32);
assert_eq!(dfg.value_type(arg2), types::I16);
// Swap the two EBB parameters.
let vlist = dfg.detach_ebb_params(ebb);
assert_eq!(dfg.num_ebb_params(ebb), 0);
assert_eq!(dfg.ebb_params(ebb), &[]);
assert_eq!(vlist.as_slice(&dfg.value_lists), &[arg1, arg2]);
dfg.attach_ebb_param(ebb, arg2);
let arg3 = dfg.append_ebb_param(ebb, types::I32);
dfg.attach_ebb_param(ebb, arg1);
assert_eq!(dfg.ebb_params(ebb), &[arg2, arg3, arg1]);
}
#[test]
fn replace_ebb_params() {
let mut dfg = DataFlowGraph::new();
let ebb = dfg.make_ebb();
let arg1 = dfg.append_ebb_param(ebb, types::F32);
let new1 = dfg.replace_ebb_param(arg1, types::I64);
assert_eq!(dfg.value_type(arg1), types::F32);
assert_eq!(dfg.value_type(new1), types::I64);
assert_eq!(dfg.ebb_params(ebb), &[new1]);
dfg.attach_ebb_param(ebb, arg1);
assert_eq!(dfg.ebb_params(ebb), &[new1, arg1]);
let new2 = dfg.replace_ebb_param(arg1, types::I8);
assert_eq!(dfg.value_type(arg1), types::F32);
assert_eq!(dfg.value_type(new2), types::I8);
assert_eq!(dfg.ebb_params(ebb), &[new1, new2]);
dfg.attach_ebb_param(ebb, arg1);
assert_eq!(dfg.ebb_params(ebb), &[new1, new2, arg1]);
let new3 = dfg.replace_ebb_param(new2, types::I16);
assert_eq!(dfg.value_type(new1), types::I64);
assert_eq!(dfg.value_type(new2), types::I8);
assert_eq!(dfg.value_type(new3), types::I16);
assert_eq!(dfg.ebb_params(ebb), &[new1, new3, arg1]);
}
#[test]
fn swap_remove_ebb_params() {
let mut dfg = DataFlowGraph::new();
let ebb = dfg.make_ebb();
let arg1 = dfg.append_ebb_param(ebb, types::F32);
let arg2 = dfg.append_ebb_param(ebb, types::F32);
let arg3 = dfg.append_ebb_param(ebb, types::F32);
assert_eq!(dfg.ebb_params(ebb), &[arg1, arg2, arg3]);
dfg.swap_remove_ebb_param(arg1);
assert_eq!(dfg.value_is_attached(arg1), false);
assert_eq!(dfg.value_is_attached(arg2), true);
assert_eq!(dfg.value_is_attached(arg3), true);
assert_eq!(dfg.ebb_params(ebb), &[arg3, arg2]);
dfg.swap_remove_ebb_param(arg2);
assert_eq!(dfg.value_is_attached(arg2), false);
assert_eq!(dfg.value_is_attached(arg3), true);
assert_eq!(dfg.ebb_params(ebb), &[arg3]);
dfg.swap_remove_ebb_param(arg3);
assert_eq!(dfg.value_is_attached(arg3), false);
assert_eq!(dfg.ebb_params(ebb), &[]);
}
#[test]
fn aliases() {
use crate::ir::InstBuilder;
let mut func = Function::new();
let ebb0 = func.dfg.make_ebb();
let mut pos = FuncCursor::new(&mut func);
pos.insert_ebb(ebb0);
// Build a little test program.
let v1 = pos.ins().iconst(types::I32, 42);
// Make sure we can resolve value aliases even when values is empty.
assert_eq!(pos.func.dfg.resolve_aliases(v1), v1);
let arg0 = pos.func.dfg.append_ebb_param(ebb0, types::I32);
let (s, c) = pos.ins().iadd_cout(v1, arg0);
let iadd = match pos.func.dfg.value_def(s) {
ValueDef::Result(i, 0) => i,
_ => panic!(),
};
// Remove `c` from the result list.
pos.func.dfg.clear_results(iadd);
pos.func.dfg.attach_result(iadd, s);
// Replace `iadd_cout` with a normal `iadd` and an `ifcmp`.
pos.func.dfg.replace(iadd).iadd(v1, arg0);
let c2 = pos.ins().ifcmp(s, v1);
pos.func.dfg.change_to_alias(c, c2);
assert_eq!(pos.func.dfg.resolve_aliases(c2), c2);
assert_eq!(pos.func.dfg.resolve_aliases(c), c2);
// Make a copy of the alias.
let c3 = pos.ins().copy(c);
// This does not see through copies.
assert_eq!(pos.func.dfg.resolve_aliases(c3), c3);
}
}