Files
wasmtime/cranelift/interpreter/src/interpreter.rs
Afonso Bordado e91f493ff5 cranelift: Add heap support to the interpreter (#3302)
* cranelift: Add heaps to interpreter

* cranelift: Add RunTest Environment mechanism to  test interpret

* cranelift: Remove unused `MemoryError`

* cranelift: Add docs for `State::resolve_global_value`

* cranelift: Rename heap tests

* cranelift: Refactor heap address resolution

* Fix typos and clarify docs (thanks @cfallin)
2022-07-05 09:05:26 -07:00

1016 lines
35 KiB
Rust

//! Cranelift IR interpreter.
//!
//! This module partially contains the logic for interpreting Cranelift IR.
use crate::address::{Address, AddressRegion, AddressSize};
use crate::environment::{FuncIndex, FunctionStore};
use crate::frame::Frame;
use crate::instruction::DfgInstructionContext;
use crate::state::{MemoryError, State};
use crate::step::{step, ControlFlow, StepError};
use crate::value::{Value, ValueError};
use cranelift_codegen::data_value::DataValue;
use cranelift_codegen::ir::condcodes::{FloatCC, IntCC};
use cranelift_codegen::ir::{
ArgumentPurpose, Block, FuncRef, Function, GlobalValue, GlobalValueData, Heap, StackSlot, Type,
Value as ValueRef,
};
use log::trace;
use std::collections::HashSet;
use std::convert::{TryFrom, TryInto};
use std::fmt::Debug;
use std::iter;
use thiserror::Error;
/// The Cranelift interpreter; this contains some high-level functions to control the interpreter's
/// flow. The interpreter state is defined separately (see [InterpreterState]) as the execution
/// semantics for each Cranelift instruction (see [step]).
pub struct Interpreter<'a> {
state: InterpreterState<'a>,
fuel: Option<u64>,
}
impl<'a> Interpreter<'a> {
pub fn new(state: InterpreterState<'a>) -> Self {
Self { state, fuel: None }
}
/// The `fuel` mechanism sets a number of instructions that
/// the interpreter can execute before stopping. If this
/// value is `None` (the default), no limit is imposed.
pub fn with_fuel(self, fuel: Option<u64>) -> Self {
Self { fuel, ..self }
}
/// Call a function by name; this is a helpful proxy for [Interpreter::call_by_index].
pub fn call_by_name(
&mut self,
func_name: &str,
arguments: &[DataValue],
) -> Result<ControlFlow<'a, DataValue>, InterpreterError> {
let index = self
.state
.functions
.index_of(func_name)
.ok_or_else(|| InterpreterError::UnknownFunctionName(func_name.to_string()))?;
self.call_by_index(index, arguments)
}
/// Call a function by its index in the [FunctionStore]; this is a proxy for
/// `Interpreter::call`.
pub fn call_by_index(
&mut self,
index: FuncIndex,
arguments: &[DataValue],
) -> Result<ControlFlow<'a, DataValue>, InterpreterError> {
match self.state.functions.get_by_index(index) {
None => Err(InterpreterError::UnknownFunctionIndex(index)),
Some(func) => self.call(func, arguments),
}
}
/// Interpret a call to a [Function] given its [DataValue] arguments.
fn call(
&mut self,
function: &'a Function,
arguments: &[DataValue],
) -> Result<ControlFlow<'a, DataValue>, InterpreterError> {
trace!("Call: {}({:?})", function.name, arguments);
let first_block = function
.layout
.blocks()
.next()
.expect("to have a first block");
let parameters = function.dfg.block_params(first_block);
self.state.push_frame(function);
self.state
.current_frame_mut()
.set_all(parameters, arguments.to_vec());
self.block(first_block)
}
/// Interpret a [Block] in a [Function]. This drives the interpretation over sequences of
/// instructions, which may continue in other blocks, until the function returns.
fn block(&mut self, block: Block) -> Result<ControlFlow<'a, DataValue>, InterpreterError> {
trace!("Block: {}", block);
let function = self.state.current_frame_mut().function;
let layout = &function.layout;
let mut maybe_inst = layout.first_inst(block);
while let Some(inst) = maybe_inst {
if self.consume_fuel() == FuelResult::Stop {
return Err(InterpreterError::FuelExhausted);
}
let inst_context = DfgInstructionContext::new(inst, &function.dfg);
match step(&mut self.state, inst_context)? {
ControlFlow::Assign(values) => {
self.state
.current_frame_mut()
.set_all(function.dfg.inst_results(inst), values.to_vec());
maybe_inst = layout.next_inst(inst)
}
ControlFlow::Continue => maybe_inst = layout.next_inst(inst),
ControlFlow::ContinueAt(block, block_arguments) => {
trace!("Block: {}", block);
self.state
.current_frame_mut()
.set_all(function.dfg.block_params(block), block_arguments.to_vec());
maybe_inst = layout.first_inst(block)
}
ControlFlow::Call(called_function, arguments) => {
let returned_arguments =
self.call(called_function, &arguments)?.unwrap_return();
self.state
.current_frame_mut()
.set_all(function.dfg.inst_results(inst), returned_arguments);
maybe_inst = layout.next_inst(inst)
}
ControlFlow::Return(returned_values) => {
self.state.pop_frame();
return Ok(ControlFlow::Return(returned_values));
}
ControlFlow::Trap(trap) => return Ok(ControlFlow::Trap(trap)),
}
}
Err(InterpreterError::Unreachable)
}
fn consume_fuel(&mut self) -> FuelResult {
match self.fuel {
Some(0) => FuelResult::Stop,
Some(ref mut n) => {
*n -= 1;
FuelResult::Continue
}
// We do not have fuel enabled, so unconditionally continue
None => FuelResult::Continue,
}
}
}
#[derive(Debug, PartialEq, Clone)]
/// The result of consuming fuel. Signals if the caller should stop or continue.
pub enum FuelResult {
/// We still have `fuel` available and should continue execution.
Continue,
/// The available `fuel` has been exhausted, we should stop now.
Stop,
}
/// The ways interpretation can fail.
#[derive(Error, Debug)]
pub enum InterpreterError {
#[error("failed to interpret instruction")]
StepError(#[from] StepError),
#[error("reached an unreachable statement")]
Unreachable,
#[error("unknown function index (has it been added to the function store?): {0}")]
UnknownFunctionIndex(FuncIndex),
#[error("unknown function with name (has it been added to the function store?): {0}")]
UnknownFunctionName(String),
#[error("value error")]
ValueError(#[from] ValueError),
#[error("fuel exhausted")]
FuelExhausted,
}
pub type HeapBacking = Vec<u8>;
/// Represents a registered heap with an interpreter.
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct HeapId(u32);
/// Options for initializing a heap memory region
#[derive(Debug)]
pub enum HeapInit {
/// A zero initialized heap with `size` bytes
Zeroed(usize),
/// Initializes the heap with the backing memory unchanged.
FromBacking(HeapBacking),
}
/// Maintains the [Interpreter]'s state, implementing the [State] trait.
pub struct InterpreterState<'a> {
pub functions: FunctionStore<'a>,
pub frame_stack: Vec<Frame<'a>>,
/// Number of bytes from the bottom of the stack where the current frame's stack space is
pub frame_offset: usize,
pub stack: Vec<u8>,
pub heaps: Vec<HeapBacking>,
pub iflags: HashSet<IntCC>,
pub fflags: HashSet<FloatCC>,
}
impl Default for InterpreterState<'_> {
fn default() -> Self {
Self {
functions: FunctionStore::default(),
frame_stack: vec![],
frame_offset: 0,
stack: Vec::with_capacity(1024),
heaps: Vec::new(),
iflags: HashSet::new(),
fflags: HashSet::new(),
}
}
}
impl<'a> InterpreterState<'a> {
pub fn with_function_store(self, functions: FunctionStore<'a>) -> Self {
Self { functions, ..self }
}
/// Registers a static heap and returns a reference to it
///
/// This heap reference can be used to generate a heap pointer, which
/// can be used inside the interpreter to load / store values into the heap.
///
/// ```rust
/// # use cranelift_codegen::ir::types::I64;
/// # use cranelift_interpreter::interpreter::{InterpreterState, HeapInit};
/// let mut state = InterpreterState::default();
/// let heap0 = state.register_heap(HeapInit::Zeroed(1024));
///
/// let backing = Vec::from([10u8; 24]);
/// let heap1 = state.register_heap(HeapInit::FromBacking(backing));
/// ```
pub fn register_heap(&mut self, init: HeapInit) -> HeapId {
let heap_id = HeapId(self.heaps.len() as u32);
self.heaps.push(match init {
HeapInit::Zeroed(size) => iter::repeat(0).take(size).collect(),
HeapInit::FromBacking(backing) => backing,
});
heap_id
}
/// Returns a heap address that can be used inside the interpreter
///
/// ```rust
/// # use cranelift_codegen::ir::types::I64;
/// # use cranelift_interpreter::interpreter::{InterpreterState, HeapInit};
/// let mut state = InterpreterState::default();
/// let heap_id = state.register_heap(HeapInit::Zeroed(1024));
/// let heap_base = state.get_heap_address(I64, heap_id, 0);
/// let heap_bound = state.get_heap_address(I64, heap_id, 1024);
/// ```
pub fn get_heap_address(
&self,
ty: Type,
heap_id: HeapId,
offset: u64,
) -> Result<DataValue, MemoryError> {
let size = AddressSize::try_from(ty)?;
let heap_id = heap_id.0 as u64;
let addr = Address::from_parts(size, AddressRegion::Heap, heap_id, offset)?;
self.validate_address(&addr)?;
let dv = addr.try_into()?;
Ok(dv)
}
fn current_frame_mut(&mut self) -> &mut Frame<'a> {
let num_frames = self.frame_stack.len();
match num_frames {
0 => panic!("unable to retrieve the current frame because no frames were pushed"),
_ => &mut self.frame_stack[num_frames - 1],
}
}
fn current_frame(&self) -> &Frame<'a> {
let num_frames = self.frame_stack.len();
match num_frames {
0 => panic!("unable to retrieve the current frame because no frames were pushed"),
_ => &self.frame_stack[num_frames - 1],
}
}
}
impl<'a> State<'a, DataValue> for InterpreterState<'a> {
fn get_function(&self, func_ref: FuncRef) -> Option<&'a Function> {
self.functions
.get_from_func_ref(func_ref, self.frame_stack.last().unwrap().function)
}
fn get_current_function(&self) -> &'a Function {
self.current_frame().function
}
fn push_frame(&mut self, function: &'a Function) {
if let Some(frame) = self.frame_stack.iter().last() {
self.frame_offset += frame.function.stack_size() as usize;
}
// Grow the stack by the space necessary for this frame
self.stack
.extend(iter::repeat(0).take(function.stack_size() as usize));
self.frame_stack.push(Frame::new(function));
}
fn pop_frame(&mut self) {
if let Some(frame) = self.frame_stack.pop() {
// Shorten the stack after exiting the frame
self.stack
.truncate(self.stack.len() - frame.function.stack_size() as usize);
// Reset frame_offset to the start of this function
if let Some(frame) = self.frame_stack.iter().last() {
self.frame_offset -= frame.function.stack_size() as usize;
}
}
}
fn get_value(&self, name: ValueRef) -> Option<DataValue> {
Some(self.current_frame().get(name).clone()) // TODO avoid clone?
}
fn set_value(&mut self, name: ValueRef, value: DataValue) -> Option<DataValue> {
self.current_frame_mut().set(name, value)
}
fn has_iflag(&self, flag: IntCC) -> bool {
self.iflags.contains(&flag)
}
fn has_fflag(&self, flag: FloatCC) -> bool {
self.fflags.contains(&flag)
}
fn set_iflag(&mut self, flag: IntCC) {
self.iflags.insert(flag);
}
fn set_fflag(&mut self, flag: FloatCC) {
self.fflags.insert(flag);
}
fn clear_flags(&mut self) {
self.iflags.clear();
self.fflags.clear()
}
fn stack_address(
&self,
size: AddressSize,
slot: StackSlot,
offset: u64,
) -> Result<Address, MemoryError> {
let stack_slots = &self.get_current_function().stack_slots;
let stack_slot = &stack_slots[slot];
// offset must be `0 <= Offset < sizeof(SS)`
if offset >= stack_slot.size as u64 {
return Err(MemoryError::InvalidOffset {
offset,
max: stack_slot.size as u64,
});
}
// Calculate the offset from the current frame to the requested stack slot
let slot_offset: u64 = stack_slots
.keys()
.filter(|k| k < &slot)
.map(|k| stack_slots[k].size as u64)
.sum();
let final_offset = self.frame_offset as u64 + slot_offset + offset;
Address::from_parts(size, AddressRegion::Stack, 0, final_offset)
}
/// Builds an [Address] for the [Heap] referenced in the currently executing function.
///
/// A CLIF Heap is essentially a GlobalValue and some metadata about that memory
/// region, such as bounds. Since heaps are based on Global Values it means that
/// once that GV is resolved we can essentially end up anywhere in memory.
///
/// To build an [Address] we perform GV resolution, and try to ensure that we end up
/// in a valid region of memory.
fn heap_address(
&self,
size: AddressSize,
heap: Heap,
offset: u64,
) -> Result<Address, MemoryError> {
let heap_data = &self.get_current_function().heaps[heap];
let heap_base = self.resolve_global_value(heap_data.base)?;
let mut addr = Address::try_from(heap_base)?;
addr.size = size;
addr.offset += offset;
// After resolving the address can point anywhere, we need to check if it's
// still valid.
self.validate_address(&addr)?;
Ok(addr)
}
fn checked_load(&self, addr: Address, ty: Type) -> Result<DataValue, MemoryError> {
let load_size = ty.bytes() as usize;
let addr_start = addr.offset as usize;
let addr_end = addr_start + load_size;
let src = match addr.region {
AddressRegion::Stack => {
if addr_end > self.stack.len() {
return Err(MemoryError::OutOfBoundsLoad { addr, load_size });
}
&self.stack[addr_start..addr_end]
}
AddressRegion::Heap => {
let heap_mem = match self.heaps.get(addr.entry as usize) {
Some(mem) if addr_end <= mem.len() => mem,
_ => return Err(MemoryError::OutOfBoundsLoad { addr, load_size }),
};
&heap_mem[addr_start..addr_end]
}
_ => unimplemented!(),
};
Ok(DataValue::read_from_slice(src, ty))
}
fn checked_store(&mut self, addr: Address, v: DataValue) -> Result<(), MemoryError> {
let store_size = v.ty().bytes() as usize;
let addr_start = addr.offset as usize;
let addr_end = addr_start + store_size;
let dst = match addr.region {
AddressRegion::Stack => {
if addr_end > self.stack.len() {
return Err(MemoryError::OutOfBoundsStore { addr, store_size });
}
&mut self.stack[addr_start..addr_end]
}
AddressRegion::Heap => {
let heap_mem = match self.heaps.get_mut(addr.entry as usize) {
Some(mem) if addr_end <= mem.len() => mem,
_ => return Err(MemoryError::OutOfBoundsStore { addr, store_size }),
};
&mut heap_mem[addr_start..addr_end]
}
_ => unimplemented!(),
};
Ok(v.write_to_slice(dst))
}
/// Non-Recursively resolves a global value until its address is found
fn resolve_global_value(&self, gv: GlobalValue) -> Result<DataValue, MemoryError> {
// Resolving a Global Value is a "pointer" chasing operation that lends itself to
// using a recursive solution. However, resolving this in a recursive manner
// is a bad idea because its very easy to add a bunch of global values and
// blow up the call stack.
//
// Adding to the challenges of this, is that the operations possible with GlobalValues
// mean that we cannot use a simple loop to resolve each global value, we must keep
// a pending list of operations.
// These are the possible actions that we can perform
#[derive(Debug)]
enum ResolveAction {
Resolve(GlobalValue),
/// Perform an add on the current address
Add(DataValue),
/// Load From the current address and replace it with the loaded value
Load {
/// Offset added to the base pointer before doing the load.
offset: i32,
/// Type of the loaded value.
global_type: Type,
},
}
let func = self.get_current_function();
// We start with a sentinel value that will fail if we try to load / add to it
// without resolving the base GV First.
let mut current_val = DataValue::B(false);
let mut action_stack = vec![ResolveAction::Resolve(gv)];
loop {
match action_stack.pop() {
Some(ResolveAction::Resolve(gv)) => match func.global_values[gv] {
GlobalValueData::VMContext => {
// Fetch the VMContext value from the values of the first block in the function
let index = func
.signature
.params
.iter()
.enumerate()
.find(|(_, p)| p.purpose == ArgumentPurpose::VMContext)
.map(|(i, _)| i)
// This should be validated by the verifier
.expect("No VMCtx argument was found, but one is referenced");
let first_block =
func.layout.blocks().next().expect("to have a first block");
let vmctx_value = func.dfg.block_params(first_block)[index];
current_val = self.current_frame().get(vmctx_value).clone();
}
GlobalValueData::Load {
base,
offset,
global_type,
..
} => {
action_stack.push(ResolveAction::Load {
offset: offset.into(),
global_type,
});
action_stack.push(ResolveAction::Resolve(base));
}
GlobalValueData::IAddImm {
base,
offset,
global_type,
} => {
let offset: i64 = offset.into();
let dv = DataValue::int(offset as i128, global_type)
.map_err(|_| MemoryError::InvalidAddressType(global_type))?;
action_stack.push(ResolveAction::Add(dv));
action_stack.push(ResolveAction::Resolve(base));
}
GlobalValueData::Symbol { .. } => unimplemented!(),
},
Some(ResolveAction::Add(dv)) => {
current_val = current_val
.add(dv.clone())
.map_err(|_| MemoryError::InvalidAddress(dv))?;
}
Some(ResolveAction::Load {
offset,
global_type,
}) => {
let mut addr = Address::try_from(current_val)?;
// We can forego bounds checking here since its performed in `checked_load`
addr.offset += offset as u64;
current_val = self.checked_load(addr, global_type)?;
}
// We are done resolving this, return the current value
None => return Ok(current_val),
}
}
}
fn validate_address(&self, addr: &Address) -> Result<(), MemoryError> {
match addr.region {
AddressRegion::Stack => {
let stack_len = self.stack.len() as u64;
if addr.offset > stack_len {
return Err(MemoryError::InvalidEntry {
entry: addr.entry,
max: self.heaps.len() as u64,
});
}
}
AddressRegion::Heap => {
let heap_len = self
.heaps
.get(addr.entry as usize)
.ok_or_else(|| MemoryError::InvalidEntry {
entry: addr.entry,
max: self.heaps.len() as u64,
})
.map(|heap| heap.len() as u64)?;
if addr.offset > heap_len {
return Err(MemoryError::InvalidOffset {
offset: addr.offset,
max: heap_len,
});
}
}
_ => unimplemented!(),
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::step::CraneliftTrap;
use cranelift_codegen::ir::types::I64;
use cranelift_codegen::ir::TrapCode;
use cranelift_reader::parse_functions;
// Most interpreter tests should use the more ergonomic `test interpret` filetest but this
// unit test serves as a sanity check that the interpreter still works without all of the
// filetest infrastructure.
#[test]
fn sanity() {
let code = "function %test() -> b1 {
block0:
v0 = iconst.i32 1
v1 = iadd_imm v0, 1
v2 = irsub_imm v1, 44 ; 44 - 2 == 42 (see irsub_imm's semantics)
v3 = icmp_imm eq v2, 42
return v3
}";
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
let mut env = FunctionStore::default();
env.add(func.name.to_string(), &func);
let state = InterpreterState::default().with_function_store(env);
let result = Interpreter::new(state)
.call_by_name("%test", &[])
.unwrap()
.unwrap_return();
assert_eq!(result, vec![DataValue::B(true)])
}
// We don't have a way to check for traps with the current filetest infrastructure
#[test]
fn udiv_by_zero_traps() {
let code = "function %test() -> i32 {
block0:
v0 = iconst.i32 1
v1 = udiv_imm.i32 v0, 0
return v1
}";
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
let mut env = FunctionStore::default();
env.add(func.name.to_string(), &func);
let state = InterpreterState::default().with_function_store(env);
let trap = Interpreter::new(state)
.call_by_name("%test", &[])
.unwrap()
.unwrap_trap();
assert_eq!(trap, CraneliftTrap::User(TrapCode::IntegerDivisionByZero));
}
#[test]
fn sdiv_min_by_neg_one_traps_with_overflow() {
let code = "function %test() -> i8 {
block0:
v0 = iconst.i32 -2147483648
v1 = sdiv_imm.i32 v0, -1
return v1
}";
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
let mut env = FunctionStore::default();
env.add(func.name.to_string(), &func);
let state = InterpreterState::default().with_function_store(env);
let result = Interpreter::new(state).call_by_name("%test", &[]).unwrap();
match result {
ControlFlow::Trap(CraneliftTrap::User(TrapCode::IntegerOverflow)) => {}
_ => panic!("Unexpected ControlFlow: {:?}", result),
}
}
// This test verifies that functions can refer to each other using the function store. A double indirection is
// required, which is tricky to get right: a referenced function is a FuncRef when called but a FuncIndex inside the
// function store. This test would preferably be a CLIF filetest but the filetest infrastructure only looks at a
// single function at a time--we need more than one function in the store for this test.
#[test]
fn function_references() {
let code = "
function %child(i32) -> i32 {
block0(v0: i32):
v1 = iadd_imm v0, -1
return v1
}
function %parent(i32) -> i32 {
fn42 = %child(i32) -> i32
block0(v0: i32):
v1 = iadd_imm v0, 1
v2 = call fn42(v1)
return v2
}";
let mut env = FunctionStore::default();
let funcs = parse_functions(code).unwrap().to_vec();
funcs.iter().for_each(|f| env.add(f.name.to_string(), f));
let state = InterpreterState::default().with_function_store(env);
let result = Interpreter::new(state)
.call_by_name("%parent", &[DataValue::I32(0)])
.unwrap()
.unwrap_return();
assert_eq!(result, vec![DataValue::I32(0)])
}
#[test]
fn state_flags() {
let mut state = InterpreterState::default();
let flag = IntCC::Overflow;
assert!(!state.has_iflag(flag));
state.set_iflag(flag);
assert!(state.has_iflag(flag));
state.clear_flags();
assert!(!state.has_iflag(flag));
}
#[test]
fn fuel() {
let code = "function %test() -> b1 {
block0:
v0 = iconst.i32 1
v1 = iadd_imm v0, 1
return v1
}";
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
let mut env = FunctionStore::default();
env.add(func.name.to_string(), &func);
// The default interpreter should not enable the fuel mechanism
let state = InterpreterState::default().with_function_store(env.clone());
let result = Interpreter::new(state)
.call_by_name("%test", &[])
.unwrap()
.unwrap_return();
assert_eq!(result, vec![DataValue::I32(2)]);
// With 2 fuel, we should execute the iconst and iadd, but not the return thus giving a
// fuel exhausted error
let state = InterpreterState::default().with_function_store(env.clone());
let result = Interpreter::new(state)
.with_fuel(Some(2))
.call_by_name("%test", &[]);
match result {
Err(InterpreterError::FuelExhausted) => {}
_ => panic!("Expected Err(FuelExhausted), but got {:?}", result),
}
// With 3 fuel, we should be able to execute the return instruction, and complete the test
let state = InterpreterState::default().with_function_store(env.clone());
let result = Interpreter::new(state)
.with_fuel(Some(3))
.call_by_name("%test", &[])
.unwrap()
.unwrap_return();
assert_eq!(result, vec![DataValue::I32(2)]);
}
// Verifies that writing to the stack on a called function does not overwrite the parents
// stack slots.
#[test]
fn stack_slots_multi_functions() {
let code = "
function %callee(i64, i64) -> i64 {
ss0 = explicit_slot 8
ss1 = explicit_slot 8
block0(v0: i64, v1: i64):
stack_store.i64 v0, ss0
stack_store.i64 v1, ss1
v2 = stack_load.i64 ss0
v3 = stack_load.i64 ss1
v4 = iadd.i64 v2, v3
return v4
}
function %caller(i64, i64, i64, i64) -> i64 {
fn0 = %callee(i64, i64) -> i64
ss0 = explicit_slot 8
ss1 = explicit_slot 8
block0(v0: i64, v1: i64, v2: i64, v3: i64):
stack_store.i64 v0, ss0
stack_store.i64 v1, ss1
v4 = call fn0(v2, v3)
v5 = stack_load.i64 ss0
v6 = stack_load.i64 ss1
v7 = iadd.i64 v4, v5
v8 = iadd.i64 v7, v6
return v8
}";
let mut env = FunctionStore::default();
let funcs = parse_functions(code).unwrap().to_vec();
funcs.iter().for_each(|f| env.add(f.name.to_string(), f));
let state = InterpreterState::default().with_function_store(env);
let result = Interpreter::new(state)
.call_by_name(
"%caller",
&[
DataValue::I64(3),
DataValue::I64(5),
DataValue::I64(7),
DataValue::I64(11),
],
)
.unwrap()
.unwrap_return();
assert_eq!(result, vec![DataValue::I64(26)])
}
#[test]
fn out_of_slot_write_traps() {
let code = "
function %stack_write() {
ss0 = explicit_slot 8
block0:
v0 = iconst.i64 10
stack_store.i64 v0, ss0+8
return
}";
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
let mut env = FunctionStore::default();
env.add(func.name.to_string(), &func);
let state = InterpreterState::default().with_function_store(env);
let trap = Interpreter::new(state)
.call_by_name("%stack_write", &[])
.unwrap()
.unwrap_trap();
assert_eq!(trap, CraneliftTrap::User(TrapCode::HeapOutOfBounds));
}
#[test]
fn partial_out_of_slot_write_traps() {
let code = "
function %stack_write() {
ss0 = explicit_slot 8
block0:
v0 = iconst.i64 10
stack_store.i64 v0, ss0+4
return
}";
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
let mut env = FunctionStore::default();
env.add(func.name.to_string(), &func);
let state = InterpreterState::default().with_function_store(env);
let trap = Interpreter::new(state)
.call_by_name("%stack_write", &[])
.unwrap()
.unwrap_trap();
assert_eq!(trap, CraneliftTrap::User(TrapCode::HeapOutOfBounds));
}
#[test]
fn out_of_slot_read_traps() {
let code = "
function %stack_load() {
ss0 = explicit_slot 8
block0:
v0 = stack_load.i64 ss0+8
return
}";
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
let mut env = FunctionStore::default();
env.add(func.name.to_string(), &func);
let state = InterpreterState::default().with_function_store(env);
let trap = Interpreter::new(state)
.call_by_name("%stack_load", &[])
.unwrap()
.unwrap_trap();
assert_eq!(trap, CraneliftTrap::User(TrapCode::HeapOutOfBounds));
}
#[test]
fn partial_out_of_slot_read_traps() {
let code = "
function %stack_load() {
ss0 = explicit_slot 8
block0:
v0 = stack_load.i64 ss0+4
return
}";
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
let mut env = FunctionStore::default();
env.add(func.name.to_string(), &func);
let state = InterpreterState::default().with_function_store(env);
let trap = Interpreter::new(state)
.call_by_name("%stack_load", &[])
.unwrap()
.unwrap_trap();
assert_eq!(trap, CraneliftTrap::User(TrapCode::HeapOutOfBounds));
}
#[test]
fn partial_out_of_slot_read_by_addr_traps() {
let code = "
function %stack_load() {
ss0 = explicit_slot 8
block0:
v0 = stack_addr.i64 ss0
v1 = iconst.i64 4
v2 = iadd.i64 v0, v1
v3 = load.i64 v2
return
}";
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
let mut env = FunctionStore::default();
env.add(func.name.to_string(), &func);
let state = InterpreterState::default().with_function_store(env);
let trap = Interpreter::new(state)
.call_by_name("%stack_load", &[])
.unwrap()
.unwrap_trap();
assert_eq!(trap, CraneliftTrap::User(TrapCode::HeapOutOfBounds));
}
#[test]
fn partial_out_of_slot_write_by_addr_traps() {
let code = "
function %stack_store() {
ss0 = explicit_slot 8
block0:
v0 = stack_addr.i64 ss0
v1 = iconst.i64 4
v2 = iadd.i64 v0, v1
store.i64 v1, v2
return
}";
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
let mut env = FunctionStore::default();
env.add(func.name.to_string(), &func);
let state = InterpreterState::default().with_function_store(env);
let trap = Interpreter::new(state)
.call_by_name("%stack_store", &[])
.unwrap()
.unwrap_trap();
assert_eq!(trap, CraneliftTrap::User(TrapCode::HeapOutOfBounds));
}
/// Most heap tests are in .clif files using the filetest machinery. However, this is a sanity
/// check that the heap mechanism works without the rest of the filetest infrastructure
#[test]
fn heap_sanity_test() {
let code = "
function %heap_load_store(i64 vmctx) -> b1 {
gv0 = vmctx
gv1 = load.i64 notrap aligned gv0+0
; gv2/3 do nothing, but makes sure we understand the iadd_imm mechanism
gv2 = iadd_imm.i64 gv1, 1
gv3 = iadd_imm.i64 gv2, -1
heap0 = static gv3, min 0x1000, bound 0x1_0000_0000, offset_guard 0, index_type i64
block0(v0: i64):
v1 = iconst.i64 0
v2 = iconst.i64 123
v3 = heap_addr.i64 heap0, v1, 8
store.i64 v2, v3
v4 = load.i64 v3
v5 = icmp eq v2, v4
return v5
}";
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
let mut env = FunctionStore::default();
env.add(func.name.to_string(), &func);
let mut state = InterpreterState::default().with_function_store(env);
let heap0 = state.register_heap(HeapInit::Zeroed(0x1000));
let base_addr = state.get_heap_address(I64, heap0, 0).unwrap();
// Build a vmctx struct by writing the base pointer at index 0
let mut vmctx_struct = vec![0u8; 8];
base_addr.write_to_slice(&mut vmctx_struct[..]);
// This is our vmctx "heap"
let vmctx = state.register_heap(HeapInit::FromBacking(vmctx_struct));
let vmctx_addr = state.get_heap_address(I64, vmctx, 0).unwrap();
let result = Interpreter::new(state)
.call_by_name("%heap_load_store", &[vmctx_addr])
.unwrap()
.unwrap_return();
assert_eq!(result, vec![DataValue::B(true)])
}
}