Files
wasmtime/crates/runtime/src/memory.rs
Alex Crichton 15bb0c6903 Remove the ModuleLimits pooling configuration structure (#3837)
* Remove the `ModuleLimits` pooling configuration structure

This commit is an attempt to improve the usability of the pooling
allocator by removing the need to configure a `ModuleLimits` structure.
Internally this structure has limits on all forms of wasm constructs but
this largely bottoms out in the size of an allocation for an instance in
the instance pooling allocator. Maintaining this list of limits can be
cumbersome as modules may get tweaked over time and there's otherwise no
real reason to limit the number of globals in a module since the main
goal is to limit the memory consumption of a `VMContext` which can be
done with a memory allocation limit rather than fine-tuned control over
each maximum and minimum.

The new approach taken in this commit is to remove `ModuleLimits`. Some
fields, such as `tables`, `table_elements` , `memories`, and
`memory_pages` are moved to `InstanceLimits` since they're still
enforced at runtime. A new field `size` is added to `InstanceLimits`
which indicates, in bytes, the maximum size of the `VMContext`
allocation. If the size of a `VMContext` for a module exceeds this value
then instantiation will fail.

This involved adding a few more checks to `{Table, Memory}::new_static`
to ensure that the minimum size is able to fit in the allocation, since
previously modules were validated at compile time of the module that
everything fit and that validation no longer happens (it happens at
runtime).

A consequence of this commit is that Wasmtime will have no built-in way
to reject modules at compile time if they'll fail to be instantiated
within a particular pooling allocator configuration. Instead a module
must attempt instantiation see if a failure happens.

* Fix benchmark compiles

* Fix some doc links

* Fix a panic by ensuring modules have limited tables/memories

* Review comments

* Add back validation at `Module` time instantiation is possible

This allows for getting an early signal at compile time that a module
will never be instantiable in an engine with matching settings.

* Provide a better error message when sizes are exceeded

Improve the error message when an instance size exceeds the maximum by
providing a breakdown of where the bytes are all going and why the large
size is being requested.

* Try to fix test in qemu

* Flag new test as 64-bit only

Sizes are all specific to 64-bit right now
2022-02-25 09:11:51 -06:00

671 lines
25 KiB
Rust

//! Memory management for linear memories.
//!
//! `RuntimeLinearMemory` is to WebAssembly linear memories what `Table` is to WebAssembly tables.
use crate::mmap::Mmap;
use crate::vmcontext::VMMemoryDefinition;
use crate::MemoryImage;
use crate::MemoryImageSlot;
use crate::Store;
use anyhow::Error;
use anyhow::{bail, format_err, Result};
use more_asserts::{assert_ge, assert_le};
use std::convert::TryFrom;
use std::sync::Arc;
use wasmtime_environ::{MemoryPlan, MemoryStyle, WASM32_MAX_PAGES, WASM64_MAX_PAGES};
const WASM_PAGE_SIZE: usize = wasmtime_environ::WASM_PAGE_SIZE as usize;
const WASM_PAGE_SIZE_U64: u64 = wasmtime_environ::WASM_PAGE_SIZE as u64;
/// A memory allocator
pub trait RuntimeMemoryCreator: Send + Sync {
/// Create new RuntimeLinearMemory
fn new_memory(
&self,
plan: &MemoryPlan,
minimum: usize,
maximum: Option<usize>,
// Optionally, a memory image for CoW backing.
memory_image: Option<&Arc<MemoryImage>>,
) -> Result<Box<dyn RuntimeLinearMemory>>;
}
/// A default memory allocator used by Wasmtime
pub struct DefaultMemoryCreator;
impl RuntimeMemoryCreator for DefaultMemoryCreator {
/// Create new MmapMemory
fn new_memory(
&self,
plan: &MemoryPlan,
minimum: usize,
maximum: Option<usize>,
memory_image: Option<&Arc<MemoryImage>>,
) -> Result<Box<dyn RuntimeLinearMemory>> {
Ok(Box::new(MmapMemory::new(
plan,
minimum,
maximum,
memory_image,
)?))
}
}
/// A linear memory
pub trait RuntimeLinearMemory: Send + Sync {
/// Returns the number of allocated bytes.
fn byte_size(&self) -> usize;
/// Returns the maximum number of bytes the memory can grow to.
/// Returns `None` if the memory is unbounded.
fn maximum_byte_size(&self) -> Option<usize>;
/// Grow memory to the specified amount of bytes.
///
/// Returns an error if memory can't be grown by the specified amount
/// of bytes.
fn grow_to(&mut self, size: usize) -> Result<()>;
/// Return a `VMMemoryDefinition` for exposing the memory to compiled wasm
/// code.
fn vmmemory(&self) -> VMMemoryDefinition;
/// Does this memory need initialization? It may not if it already
/// has initial contents courtesy of the `MemoryImage` passed to
/// `RuntimeMemoryCreator::new_memory()`.
fn needs_init(&self) -> bool;
}
/// A linear memory instance.
#[derive(Debug)]
pub struct MmapMemory {
// The underlying allocation.
mmap: Mmap,
// The number of bytes that are accessible in `mmap` and available for
// reading and writing.
//
// This region starts at `pre_guard_size` offset from the base of `mmap`.
accessible: usize,
// The optional maximum accessible size, in bytes, for this linear memory.
//
// Note that this maximum does not factor in guard pages, so this isn't the
// maximum size of the linear address space reservation for this memory.
maximum: Option<usize>,
// The amount of extra bytes to reserve whenever memory grows. This is
// specified so that the cost of repeated growth is amortized.
extra_to_reserve_on_growth: usize,
// Size in bytes of extra guard pages before the start and after the end to
// optimize loads and stores with constant offsets.
pre_guard_size: usize,
offset_guard_size: usize,
// An optional CoW mapping that provides the initial content of this
// MmapMemory, if mapped.
memory_image: Option<MemoryImageSlot>,
}
impl MmapMemory {
/// Create a new linear memory instance with specified minimum and maximum number of wasm pages.
pub fn new(
plan: &MemoryPlan,
minimum: usize,
mut maximum: Option<usize>,
memory_image: Option<&Arc<MemoryImage>>,
) -> Result<Self> {
// It's a programmer error for these two configuration values to exceed
// the host available address space, so panic if such a configuration is
// found (mostly an issue for hypothetical 32-bit hosts).
let offset_guard_bytes = usize::try_from(plan.offset_guard_size).unwrap();
let pre_guard_bytes = usize::try_from(plan.pre_guard_size).unwrap();
let (alloc_bytes, extra_to_reserve_on_growth) = match plan.style {
// Dynamic memories start with the minimum size plus the `reserve`
// amount specified to grow into.
MemoryStyle::Dynamic { reserve } => (minimum, usize::try_from(reserve).unwrap()),
// Static memories will never move in memory and consequently get
// their entire allocation up-front with no extra room to grow into.
// Note that the `maximum` is adjusted here to whatever the smaller
// of the two is, the `maximum` given or the `bound` specified for
// this memory.
MemoryStyle::Static { bound } => {
assert_ge!(bound, plan.memory.minimum);
let bound_bytes =
usize::try_from(bound.checked_mul(WASM_PAGE_SIZE_U64).unwrap()).unwrap();
maximum = Some(bound_bytes.min(maximum.unwrap_or(usize::MAX)));
(bound_bytes, 0)
}
};
let request_bytes = pre_guard_bytes
.checked_add(alloc_bytes)
.and_then(|i| i.checked_add(extra_to_reserve_on_growth))
.and_then(|i| i.checked_add(offset_guard_bytes))
.ok_or_else(|| format_err!("cannot allocate {} with guard regions", minimum))?;
let mut mmap = Mmap::accessible_reserved(0, request_bytes)?;
if minimum > 0 {
mmap.make_accessible(pre_guard_bytes, minimum)?;
}
// If a memory image was specified, try to create the MemoryImageSlot on
// top of our mmap.
let memory_image = match memory_image {
Some(image) => {
let base = unsafe { mmap.as_mut_ptr().add(pre_guard_bytes) };
let mut slot = MemoryImageSlot::create(
base.cast(),
minimum,
alloc_bytes + extra_to_reserve_on_growth,
);
slot.instantiate(minimum, Some(image))?;
// On drop, we will unmap our mmap'd range that this slot was
// mapped on top of, so there is no need for the slot to wipe
// it with an anonymous mapping first.
slot.no_clear_on_drop();
Some(slot)
}
None => None,
};
Ok(Self {
mmap,
accessible: minimum,
maximum,
pre_guard_size: pre_guard_bytes,
offset_guard_size: offset_guard_bytes,
extra_to_reserve_on_growth,
memory_image,
})
}
}
impl RuntimeLinearMemory for MmapMemory {
fn byte_size(&self) -> usize {
self.accessible
}
fn maximum_byte_size(&self) -> Option<usize> {
self.maximum
}
fn grow_to(&mut self, new_size: usize) -> Result<()> {
if new_size > self.mmap.len() - self.offset_guard_size - self.pre_guard_size {
// If the new size of this heap exceeds the current size of the
// allocation we have, then this must be a dynamic heap. Use
// `new_size` to calculate a new size of an allocation, allocate it,
// and then copy over the memory from before.
let request_bytes = self
.pre_guard_size
.checked_add(new_size)
.and_then(|s| s.checked_add(self.extra_to_reserve_on_growth))
.and_then(|s| s.checked_add(self.offset_guard_size))
.ok_or_else(|| format_err!("overflow calculating size of memory allocation"))?;
let mut new_mmap = Mmap::accessible_reserved(0, request_bytes)?;
new_mmap.make_accessible(self.pre_guard_size, new_size)?;
new_mmap.as_mut_slice()[self.pre_guard_size..][..self.accessible]
.copy_from_slice(&self.mmap.as_slice()[self.pre_guard_size..][..self.accessible]);
// Now drop the MemoryImageSlot, if any. We've lost the CoW
// advantages by explicitly copying all data, but we have
// preserved all of its content; so we no longer need the
// mapping. We need to do this before we (implicitly) drop the
// `mmap` field by overwriting it below.
drop(self.memory_image.take());
self.mmap = new_mmap;
} else if let Some(image) = self.memory_image.as_mut() {
// MemoryImageSlot has its own growth mechanisms; defer to its
// implementation.
image.set_heap_limit(new_size)?;
} else {
// If the new size of this heap fits within the existing allocation
// then all we need to do is to make the new pages accessible. This
// can happen either for "static" heaps which always hit this case,
// or "dynamic" heaps which have some space reserved after the
// initial allocation to grow into before the heap is moved in
// memory.
assert!(new_size > self.accessible);
self.mmap.make_accessible(
self.pre_guard_size + self.accessible,
new_size - self.accessible,
)?;
}
self.accessible = new_size;
Ok(())
}
fn vmmemory(&self) -> VMMemoryDefinition {
VMMemoryDefinition {
base: unsafe { self.mmap.as_mut_ptr().add(self.pre_guard_size) },
current_length: self.accessible,
}
}
fn needs_init(&self) -> bool {
// If we're using a CoW mapping, then no initialization
// is needed.
self.memory_image.is_none()
}
}
/// Representation of a runtime wasm linear memory.
pub enum Memory {
/// A "static" memory where the lifetime of the backing memory is managed
/// elsewhere. Currently used with the pooling allocator.
Static {
/// The memory in the host for this wasm memory. The length of this
/// slice is the maximum size of the memory that can be grown to.
base: &'static mut [u8],
/// The current size, in bytes, of this memory.
size: usize,
/// A callback which makes portions of `base` accessible for when memory
/// is grown. Otherwise it's expected that accesses to `base` will
/// fault.
make_accessible: Option<fn(*mut u8, usize) -> Result<()>>,
/// The image management, if any, for this memory. Owned here and
/// returned to the pooling allocator when termination occurs.
memory_image: Option<MemoryImageSlot>,
/// Stores the pages in the linear memory that have faulted as guard pages when using the `uffd` feature.
/// These pages need their protection level reset before the memory can grow.
#[cfg(all(feature = "uffd", target_os = "linux"))]
guard_page_faults: Vec<(usize, usize, fn(*mut u8, usize) -> Result<()>)>,
},
/// A "dynamic" memory whose data is managed at runtime and lifetime is tied
/// to this instance.
Dynamic(Box<dyn RuntimeLinearMemory>),
}
impl Memory {
/// Create a new dynamic (movable) memory instance for the specified plan.
pub fn new_dynamic(
plan: &MemoryPlan,
creator: &dyn RuntimeMemoryCreator,
store: &mut dyn Store,
memory_image: Option<&Arc<MemoryImage>>,
) -> Result<Self> {
let (minimum, maximum) = Self::limit_new(plan, store)?;
Ok(Memory::Dynamic(creator.new_memory(
plan,
minimum,
maximum,
memory_image,
)?))
}
/// Create a new static (immovable) memory instance for the specified plan.
pub fn new_static(
plan: &MemoryPlan,
base: &'static mut [u8],
make_accessible: Option<fn(*mut u8, usize) -> Result<()>>,
memory_image: Option<MemoryImageSlot>,
store: &mut dyn Store,
) -> Result<Self> {
let (minimum, maximum) = Self::limit_new(plan, store)?;
if base.len() < minimum {
bail!(
"initial memory size of {} exceeds the pooling allocator's \
configured maximum memory size of {} bytes",
minimum,
base.len(),
);
}
let base = match maximum {
Some(max) if max < base.len() => &mut base[..max],
_ => base,
};
if let Some(make_accessible) = make_accessible {
if minimum > 0 {
make_accessible(base.as_mut_ptr(), minimum)?;
}
}
Ok(Memory::Static {
base,
size: minimum,
make_accessible,
memory_image,
#[cfg(all(feature = "uffd", target_os = "linux"))]
guard_page_faults: Vec::new(),
})
}
/// Calls the `store`'s limiter to optionally prevent a memory from being allocated.
///
/// Returns the minimum size and optional maximum size of the memory, in
/// bytes.
fn limit_new(plan: &MemoryPlan, store: &mut dyn Store) -> Result<(usize, Option<usize>)> {
// Sanity-check what should already be true from wasm module validation.
let absolute_max = if plan.memory.memory64 {
WASM64_MAX_PAGES
} else {
WASM32_MAX_PAGES
};
assert_le!(plan.memory.minimum, absolute_max);
assert!(plan.memory.maximum.is_none() || plan.memory.maximum.unwrap() <= absolute_max);
// This is the absolute possible maximum that the module can try to
// allocate, which is our entire address space minus a wasm page. That
// shouldn't ever actually work in terms of an allocation because
// presumably the kernel wants *something* for itself, but this is used
// to pass to the `store`'s limiter for a requested size
// to approximate the scale of the request that the wasm module is
// making. This is necessary because the limiter works on `usize` bytes
// whereas we're working with possibly-overflowing `u64` calculations
// here. To actually faithfully represent the byte requests of modules
// we'd have to represent things as `u128`, but that's kinda
// overkill for this purpose.
let absolute_max = 0usize.wrapping_sub(WASM_PAGE_SIZE);
// If the minimum memory size overflows the size of our own address
// space, then we can't satisfy this request, but defer the error to
// later so the `store` can be informed that an effective oom is
// happening.
let minimum = plan
.memory
.minimum
.checked_mul(WASM_PAGE_SIZE_U64)
.and_then(|m| usize::try_from(m).ok());
// The plan stores the maximum size in units of wasm pages, but we
// use units of bytes. Unlike for the `minimum` size we silently clamp
// the effective maximum size to `absolute_max` above if the maximum is
// too large. This should be ok since as a wasm runtime we get to
// arbitrarily decide the actual maximum size of memory, regardless of
// what's actually listed on the memory itself.
let mut maximum = plan.memory.maximum.map(|max| {
usize::try_from(max)
.ok()
.and_then(|m| m.checked_mul(WASM_PAGE_SIZE))
.unwrap_or(absolute_max)
});
// If this is a 32-bit memory and no maximum is otherwise listed then we
// need to still specify a maximum size of 4GB. If the host platform is
// 32-bit then there's no need to limit the maximum this way since no
// allocation of 4GB can succeed, but for 64-bit platforms this is
// required to limit memories to 4GB.
if !plan.memory.memory64 && maximum.is_none() {
maximum = usize::try_from(1u64 << 32).ok();
}
// Inform the store's limiter what's about to happen. This will let the limiter
// reject anything if necessary, and this also guarantees that we should
// call the limiter for all requested memories, even if our `minimum`
// calculation overflowed. This means that the `minimum` we're informing
// the limiter is lossy and may not be 100% accurate, but for now the
// expected uses of limiter means that's ok.
if !store.memory_growing(0, minimum.unwrap_or(absolute_max), maximum)? {
bail!(
"memory minimum size of {} pages exceeds memory limits",
plan.memory.minimum
);
}
// At this point we need to actually handle overflows, so bail out with
// an error if we made it this far.
let minimum = minimum.ok_or_else(|| {
format_err!(
"memory minimum size of {} pages exceeds memory limits",
plan.memory.minimum
)
})?;
Ok((minimum, maximum))
}
/// Returns the number of allocated wasm pages.
pub fn byte_size(&self) -> usize {
match self {
Memory::Static { size, .. } => *size,
Memory::Dynamic(mem) => mem.byte_size(),
}
}
/// Returns the maximum number of pages the memory can grow to at runtime.
///
/// Returns `None` if the memory is unbounded.
///
/// The runtime maximum may not be equal to the maximum from the linear memory's
/// Wasm type when it is being constrained by an instance allocator.
pub fn maximum_byte_size(&self) -> Option<usize> {
match self {
Memory::Static { base, .. } => Some(base.len()),
Memory::Dynamic(mem) => mem.maximum_byte_size(),
}
}
/// Returns whether or not the underlying storage of the memory is "static".
#[cfg(feature = "pooling-allocator")]
pub(crate) fn is_static(&self) -> bool {
if let Memory::Static { .. } = self {
true
} else {
false
}
}
/// Returns whether or not this memory needs initialization. It
/// may not if it already has initial content thanks to a CoW
/// mechanism.
pub(crate) fn needs_init(&self) -> bool {
match self {
Memory::Static {
memory_image: Some(slot),
..
} => !slot.has_image(),
Memory::Dynamic(mem) => mem.needs_init(),
_ => true,
}
}
/// Grow memory by the specified amount of wasm pages.
///
/// Returns `None` if memory can't be grown by the specified amount
/// of wasm pages. Returns `Some` with the old size of memory, in bytes, on
/// successful growth.
///
/// # Safety
///
/// Resizing the memory can reallocate the memory buffer for dynamic memories.
/// An instance's `VMContext` may have pointers to the memory's base and will
/// need to be fixed up after growing the memory.
///
/// Generally, prefer using `InstanceHandle::memory_grow`, which encapsulates
/// this unsafety.
///
/// Ensure that the provided Store is not used to get access any Memory
/// which lives inside it.
pub unsafe fn grow(
&mut self,
delta_pages: u64,
store: &mut dyn Store,
) -> Result<Option<usize>, Error> {
let old_byte_size = self.byte_size();
// Wasm spec: when growing by 0 pages, always return the current size.
if delta_pages == 0 {
return Ok(Some(old_byte_size));
}
// largest wasm-page-aligned region of memory it is possible to
// represent in a usize. This will be impossible for the system to
// actually allocate.
let absolute_max = 0usize.wrapping_sub(WASM_PAGE_SIZE);
// calculate byte size of the new allocation. Let it overflow up to
// usize::MAX, then clamp it down to absolute_max.
let new_byte_size = usize::try_from(delta_pages)
.unwrap_or(usize::MAX)
.saturating_mul(WASM_PAGE_SIZE)
.saturating_add(old_byte_size);
let new_byte_size = if new_byte_size > absolute_max {
absolute_max
} else {
new_byte_size
};
let maximum = self.maximum_byte_size();
// Store limiter gets first chance to reject memory_growing.
if !store.memory_growing(old_byte_size, new_byte_size, maximum)? {
return Ok(None);
}
// Never exceed maximum, even if limiter permitted it.
if let Some(max) = maximum {
if new_byte_size > max {
store.memory_grow_failed(&format_err!("Memory maximum size exceeded"));
return Ok(None);
}
}
#[cfg(all(feature = "uffd", target_os = "linux"))]
{
if self.is_static() {
// Reset any faulted guard pages before growing the memory.
if let Err(e) = self.reset_guard_pages() {
store.memory_grow_failed(&e);
return Ok(None);
}
}
}
match self {
Memory::Static {
base,
size,
memory_image: Some(image),
..
} => {
// Never exceed static memory size
if new_byte_size > base.len() {
store.memory_grow_failed(&format_err!("static memory size exceeded"));
return Ok(None);
}
if let Err(e) = image.set_heap_limit(new_byte_size) {
store.memory_grow_failed(&e);
return Ok(None);
}
*size = new_byte_size;
}
Memory::Static {
base,
size,
make_accessible,
..
} => {
let make_accessible = make_accessible
.expect("make_accessible must be Some if this is not a CoW memory");
// Never exceed static memory size
if new_byte_size > base.len() {
store.memory_grow_failed(&format_err!("static memory size exceeded"));
return Ok(None);
}
// Operating system can fail to make memory accessible
if let Err(e) = make_accessible(
base.as_mut_ptr().add(old_byte_size),
new_byte_size - old_byte_size,
) {
store.memory_grow_failed(&e);
return Ok(None);
}
*size = new_byte_size;
}
Memory::Dynamic(mem) => {
if let Err(e) = mem.grow_to(new_byte_size) {
store.memory_grow_failed(&e);
return Ok(None);
}
}
}
Ok(Some(old_byte_size))
}
/// Return a `VMMemoryDefinition` for exposing the memory to compiled wasm code.
pub fn vmmemory(&mut self) -> VMMemoryDefinition {
match self {
Memory::Static { base, size, .. } => VMMemoryDefinition {
base: base.as_mut_ptr().cast(),
current_length: *size,
},
Memory::Dynamic(mem) => mem.vmmemory(),
}
}
/// Records a faulted guard page in a static memory.
///
/// This is used to track faulted guard pages that need to be reset for the uffd feature.
///
/// This function will panic if called on a dynamic memory.
#[cfg(all(feature = "uffd", target_os = "linux"))]
pub(crate) fn record_guard_page_fault(
&mut self,
page_addr: *mut u8,
size: usize,
reset: fn(*mut u8, usize) -> Result<()>,
) {
match self {
Memory::Static {
guard_page_faults, ..
} => {
guard_page_faults.push((page_addr as usize, size, reset));
}
Memory::Dynamic(_) => {
unreachable!("dynamic memories should not have guard page faults")
}
}
}
/// Resets the previously faulted guard pages of a static memory.
///
/// This is used to reset the protection of any guard pages that were previously faulted.
///
/// This function will panic if called on a dynamic memory.
#[cfg(all(feature = "uffd", target_os = "linux"))]
pub(crate) fn reset_guard_pages(&mut self) -> Result<()> {
match self {
Memory::Static {
guard_page_faults, ..
} => {
for (addr, len, reset) in guard_page_faults.drain(..) {
reset(addr as *mut u8, len)?;
}
}
Memory::Dynamic(_) => {
unreachable!("dynamic memories should not have guard page faults")
}
}
Ok(())
}
}
// The default memory representation is an empty memory that cannot grow.
impl Default for Memory {
fn default() -> Self {
Memory::Static {
base: &mut [],
size: 0,
make_accessible: Some(|_, _| unreachable!()),
memory_image: None,
#[cfg(all(feature = "uffd", target_os = "linux"))]
guard_page_faults: Vec::new(),
}
}
}