Files
wasmtime/crates/lightbeam
Alex Crichton e8aa7bb53b Reimplement how unwind information is stored (#3180)
* Reimplement how unwind information is stored

This commit is a major refactoring of how unwind information is stored
after compilation of a function has finished. Previously we would store
the raw `UnwindInfo` as a result of compilation and this would get
serialized/deserialized alongside the rest of the ELF object that
compilation creates. Whenever functions were registered with
`CodeMemory` this would also result in registering unwinding information
dynamically at runtime, which in the case of Unix, for example, would
dynamically created FDE/CIE entries on-the-fly.

Eventually I'd like to support compiling Wasmtime without Cranelift, but
this means that `UnwindInfo` wouldn't be easily available to decode into
and create unwinding information from. To solve this I've changed the
ELF object created to have the unwinding information encoded into it
ahead-of-time so loading code into memory no longer needs to create
unwinding tables. This change has two different implementations for
Windows/Unix:

* On Windows the implementation was much easier. The unwinding
  information on Windows is already stored after the function itself in
  the text section. This was actually slightly duplicated in object
  building and in code memory allocation. Now the object building
  continues to do the same, recording unwinding information after
  functions, and code memory no longer manually tracks this.
  Additionally Wasmtime will emit a special custom section in the object
  file with unwinding information which is the list of
  `RUNTIME_FUNCTION` structures that `RtlAddFunctionTable` expects. This
  means that the object file has all the information precompiled into it
  and registration at runtime is simply passing a few pointers around to
  the runtime.

* Unix was a little bit more difficult than Windows. Today a `.eh_frame`
  section is created on-the-fly with offsets in FDEs specified as the
  absolute address that functions are loaded at. This absolute
  address hindered the ability to precompile the FDE into the object
  file itself. I've switched how addresses are encoded, though, to using
  `DW_EH_PE_pcrel` which means that FDE addresses are now specified
  relative to the FDE itself. This means that we can maintain a fixed
  offset between the `.eh_frame` loaded in memory and the beginning of
  code memory. When doing so this enables precompiling the `.eh_frame`
  section into the object file and at runtime when loading an object no
  further construction of unwinding information is needed.

The overall result of this commit is that unwinding information is no
longer stored in its cranelift-data-structure form on disk. This means
that this unwinding information format is only present during
compilation, which will make it that much easier to compile out
cranelift in the future.

This commit also significantly refactors `CodeMemory` since the way
unwinding information is handled is not much different from before.
Previously `CodeMemory` was suitable for incrementally adding more and
more functions to it, but nowadays a `CodeMemory` either lives per
module (in which case all functions are known up front) or it's created
once-per-`Func::new` with two trampolines. In both cases we know all
functions up front so the functionality of incrementally adding more and
more segments is no longer needed. This commit removes the ability to
add a function-at-a-time in `CodeMemory` and instead it can now only
load objects in their entirety. A small helper function is added to
build a small object file for trampolines in `Func::new` to handle
allocation there.

Finally, this commit also folds the `wasmtime-obj` crate directly into
the `wasmtime-cranelift` crate and its builder structure to be more
amenable to this strategy of managing unwinding tables.

It is not intentional to have any real functional change as a result of
this commit. This might accelerate loading a module from cache slightly
since less work is needed to manage the unwinding information, but
that's just a side benefit from the main goal of this commit which is to
remove the dependence on cranelift unwinding information being available
at runtime.

* Remove isa reexport from wasmtime-environ

* Trim down reexports of `cranelift-codegen`

Remove everything non-essential so that only the bits which will need to
be refactored out of cranelift remain.

* Fix debug tests

* Review comments
2021-08-17 17:14:18 -05:00
..
2021-08-04 09:53:47 -05:00
2019-11-08 16:16:12 -06:00
2021-08-04 09:53:47 -05:00
2019-11-08 06:35:40 -08:00

Lightbeam

Lightbeam is an optimising one-pass streaming compiler for WebAssembly, intended for use in Wasmtime.

Quality of output

Already - with a very small number of relatively simple optimisation rules - Lightbeam produces surprisingly high-quality output considering how restricted it is. It even produces better code than Cranelift, Firefox or both for some workloads. Here's a very simple example, this recursive fibonacci function in Rust:

fn fib(n: i32) -> i32 {
    if n == 0 || n == 1 {
        1
    } else {
        fib(n - 1) + fib(n - 2)
    }
}

When compiled with optimisations enabled, rustc will produce the following WebAssembly:

(module
  (func $fib (param $p0 i32) (result i32)
    (local $l1 i32)
    (set_local $l1
      (i32.const 1))
    (block $B0
      (br_if $B0
        (i32.lt_u
          (get_local $p0)
          (i32.const 2)))
      (set_local $l1
        (i32.const 1))
      (loop $L1
        (set_local $l1
          (i32.add
            (call $fib
              (i32.add
                (get_local $p0)
                (i32.const -1)))
            (get_local $l1)))
        (br_if $L1
          (i32.gt_u
            (tee_local $p0
              (i32.add
                (get_local $p0)
                (i32.const -2)))
            (i32.const 1)))))
    (get_local $l1)))

Firefox's optimising compiler produces the following assembly (labels cleaned up somewhat):

fib:
  sub rsp, 0x18
  cmp qword ptr [r14 + 0x28], rsp
  jae stack_overflow
  mov dword ptr [rsp + 0xc], edi
  cmp edi, 2
  jae .Lelse
  mov eax, 1
  mov dword ptr [rsp + 8], eax
  jmp .Lreturn
.Lelse:
  mov dword ptr [rsp + 0xc], edi
  mov eax, 1
  mov dword ptr [rsp + 8], eax
.Lloop:
  mov edi, dword ptr [rsp + 0xc]
  add edi, -1
  call 0
  mov ecx, dword ptr [rsp + 8]
  add ecx, eax
  mov dword ptr [rsp + 8], ecx
  mov ecx, dword ptr [rsp + 0xc]
  add ecx, -2
  mov dword ptr [rsp + 0xc], ecx
  cmp ecx, 1
  ja .Lloop
.Lreturn:
  mov eax, dword ptr [rsp + 8]
  nop
  add rsp, 0x18
  ret

Cranelift with optimisations enabled produces similar:

fib:
  push   rbp
  mov    rbp, rsp
  sub    rsp, 0x20
  mov    qword ptr [rsp + 0x10], rdi
  mov    dword ptr [rsp + 0x1c], esi
  mov    eax, 1
  mov    dword ptr [rsp + 0x18], eax
  mov    eax, dword ptr [rsp + 0x1c]
  cmp    eax, 2
  jb     .Lreturn
  movabs rax, 0
  mov    qword ptr [rsp + 8], rax
.Lloop:
  mov    eax, dword ptr [rsp + 0x1c]
  add    eax, -1
  mov    rcx, qword ptr [rsp + 8]
  mov    rdx, qword ptr [rsp + 0x10]
  mov    rdi, rdx
  mov    esi, eax
  call   rcx
  mov    ecx, dword ptr [rsp + 0x18]
  add    eax, ecx
  mov    dword ptr [rsp + 0x18], eax
  mov    eax, dword ptr [rsp + 0x1c]
  add    eax, -2
  mov    dword ptr [rsp + 0x1c], eax
  mov    eax, dword ptr [rsp + 0x1c]
  cmp    eax, 1
  ja     .Lloop
.Lreturn:
  mov    eax, dword ptr [rsp + 0x18]
  add    rsp, 0x20
  pop    rbp
  ret

Whereas Lightbeam produces smaller code with far fewer memory accesses than both (and fewer blocks than Firefox's output):

fib:
  cmp  esi, 2
  mov  eax, 1
  jb   .Lreturn
  mov  eax, 1
.Lloop:
  mov  rcx, rsi
  add  ecx, 0xffffffff
  push rsi
  push rax
  push rax
  mov  rsi, rcx
  call fib
  add  eax, [rsp + 8]
  mov  rcx, [rsp + 0x10]
  add  ecx, 0xfffffffe
  cmp  ecx, 1
  mov  rsi, rcx
  lea  rsp, [rsp + 0x18]
  ja   .Lloop
.Lreturn:
  ret

Now obviously I'm not advocating for replacing Firefox's optimising compiler with Lightbeam since the latter can only really produce better code when receiving optimised WebAssembly (and so debug-mode or hand-written WebAssembly may produce much worse output). However, this shows that even with the restrictions of a streaming compiler it's absolutely possible to produce high-quality assembly output. For the assembly above, the Lightbeam output runs within 15% of native speed. This is paramount for one of Lightbeam's intended usecases for real-time systems that want good runtime performance but cannot tolerate compiler bombs.

Specification compliance

Lightbeam passes 100% of the specification test suite, but that doesn't necessarily mean that it's 100% specification-compliant. Hopefully as we run a fuzzer against it we can find any issues and get Lightbeam to a state where it can be used in production.

Getting involved

You can file issues in the Wasmtime issue tracker. If you want to get involved jump into the Bytecode Alliance Zulip and someone can direct you to the right place. I wish I could say "the most useful thing you can do is play with it and open issues where you find problems" but until it passes the spec suite that won't be very helpful.