The trap and trapz/trapnz instructions now take a trap code immediate operand which indicates the reason for trapping.
997 lines
44 KiB
Rust
997 lines
44 KiB
Rust
//! This module contains the bulk of the interesting code performing the translation between
|
|
//! WebAssembly and Cretonne IL.
|
|
//!
|
|
//! The translation is done in one pass, opcode by opcode. Two main data structures are used during
|
|
//! code translations: the value stack and the control stack. The value stack mimics the execution
|
|
//! of the WebAssembly stack machine: each instruction result is pushed onto the stack and
|
|
//! instruction arguments are popped off the stack. Similarly, when encountering a control flow
|
|
//! block, it is pushed onto the control stack and popped off when encountering the corresponding
|
|
//! `End`.
|
|
//!
|
|
//! Another data structure, the translation state, records information concerning unreachable code
|
|
//! status and about if inserting a return at the end of the function is necessary.
|
|
//!
|
|
//! Some of the WebAssembly instructions need information about the runtime to be translated:
|
|
//!
|
|
//! - the loads and stores need the memory base address;
|
|
//! - the `get_global` et `set_global` instructions depends on how the globals are implemented;
|
|
//! - `current_memory` and `grow_memory` are runtime functions;
|
|
//! - `call_indirect` has to translate the function index into the address of where this
|
|
//! is;
|
|
//!
|
|
//! That is why `translate_function_body` takes an object having the `WasmRuntime` trait as
|
|
//! argument.
|
|
use cretonne::ir::{self, InstBuilder, Ebb, MemFlags, JumpTableData};
|
|
use cretonne::ir::types::*;
|
|
use cretonne::ir::condcodes::{IntCC, FloatCC};
|
|
use cton_frontend::FunctionBuilder;
|
|
use wasmparser::{Operator, MemoryImmediate};
|
|
use translation_utils::{f32_translation, f64_translation, type_to_type, translate_type, Local};
|
|
use translation_utils::{TableIndex, SignatureIndex, FunctionIndex, MemoryIndex};
|
|
use state::{TranslationState, ControlStackFrame};
|
|
use std::collections::HashMap;
|
|
use runtime::{FuncEnvironment, GlobalValue};
|
|
use std::u32;
|
|
|
|
/// Translates wasm operators into Cretonne IL instructions. Returns `true` if it inserted
|
|
/// a return.
|
|
pub fn translate_operator<FE: FuncEnvironment + ?Sized>(
|
|
op: &Operator,
|
|
builder: &mut FunctionBuilder<Local>,
|
|
state: &mut TranslationState,
|
|
environ: &mut FE,
|
|
) {
|
|
if state.in_unreachable_code() {
|
|
return translate_unreachable_operator(op, builder, state);
|
|
}
|
|
|
|
// This big match treats all Wasm code operators.
|
|
match *op {
|
|
/********************************** Locals ****************************************
|
|
* `get_local` and `set_local` are treated as non-SSA variables and will completely
|
|
* diseappear in the Cretonne Code
|
|
***********************************************************************************/
|
|
Operator::GetLocal { local_index } => state.push1(builder.use_var(Local(local_index))),
|
|
Operator::SetLocal { local_index } => {
|
|
let val = state.pop1();
|
|
builder.def_var(Local(local_index), val);
|
|
}
|
|
Operator::TeeLocal { local_index } => {
|
|
let val = state.peek1();
|
|
builder.def_var(Local(local_index), val);
|
|
}
|
|
/********************************** Globals ****************************************
|
|
* `get_global` and `set_global` are handled by the runtime.
|
|
***********************************************************************************/
|
|
Operator::GetGlobal { global_index } => {
|
|
let val = match state.get_global(builder.func, global_index, environ) {
|
|
GlobalValue::Const(val) => val,
|
|
GlobalValue::Memory { gv, ty } => {
|
|
let addr = builder.ins().global_addr(environ.native_pointer(), gv);
|
|
// TODO: It is likely safe to set `aligned notrap` flags on a global load.
|
|
let flags = ir::MemFlags::new();
|
|
builder.ins().load(ty, flags, addr, 0)
|
|
}
|
|
};
|
|
state.push1(val);
|
|
}
|
|
Operator::SetGlobal { global_index } => {
|
|
match state.get_global(builder.func, global_index, environ) {
|
|
GlobalValue::Const(_) => panic!("global #{} is a constant", global_index),
|
|
GlobalValue::Memory { gv, .. } => {
|
|
let addr = builder.ins().global_addr(environ.native_pointer(), gv);
|
|
// TODO: It is likely safe to set `aligned notrap` flags on a global store.
|
|
let flags = ir::MemFlags::new();
|
|
let val = state.pop1();
|
|
builder.ins().store(flags, val, addr, 0);
|
|
}
|
|
}
|
|
}
|
|
/********************************* Stack misc ***************************************
|
|
* `drop`, `nop`, `unreachable` and `select`.
|
|
***********************************************************************************/
|
|
Operator::Drop => {
|
|
state.pop1();
|
|
}
|
|
Operator::Select => {
|
|
let (arg1, arg2, cond) = state.pop3();
|
|
state.push1(builder.ins().select(cond, arg2, arg1));
|
|
}
|
|
Operator::Nop => {
|
|
// We do nothing
|
|
}
|
|
Operator::Unreachable => {
|
|
// We use `trap user0` to indicate a user-generated trap.
|
|
// We could make the trap code configurable if need be.
|
|
builder.ins().trap(ir::TrapCode::User(0));
|
|
state.real_unreachable_stack_depth = 1;
|
|
}
|
|
/***************************** Control flow blocks **********************************
|
|
* When starting a control flow block, we create a new `Ebb` that will hold the code
|
|
* after the block, and we push a frame on the control stack. Depending on the type
|
|
* of block, we create a new `Ebb` for the body of the block with an associated
|
|
* jump instruction.
|
|
*
|
|
* The `End` instruction pops the last control frame from the control stack, seals
|
|
* the destination block (since `br` instructions targeting it only appear inside the
|
|
* block and have already been translated) and modify the value stack to use the
|
|
* possible `Ebb`'s arguments values.
|
|
***********************************************************************************/
|
|
Operator::Block { ty } => {
|
|
let next = builder.create_ebb();
|
|
if let Ok(ty_cre) = type_to_type(&ty) {
|
|
builder.append_ebb_arg(next, ty_cre);
|
|
}
|
|
state.push_block(next, translate_type(ty).unwrap());
|
|
}
|
|
Operator::Loop { ty } => {
|
|
let loop_body = builder.create_ebb();
|
|
let next = builder.create_ebb();
|
|
if let Ok(ty_cre) = type_to_type(&ty) {
|
|
builder.append_ebb_arg(next, ty_cre);
|
|
}
|
|
builder.ins().jump(loop_body, &[]);
|
|
state.push_loop(loop_body, next, translate_type(ty).unwrap());
|
|
builder.switch_to_block(loop_body, &[]);
|
|
}
|
|
Operator::If { ty } => {
|
|
let val = state.pop1();
|
|
let if_not = builder.create_ebb();
|
|
let jump_inst = builder.ins().brz(val, if_not, &[]);
|
|
// Here we append an argument to an Ebb targeted by an argumentless jump instruction
|
|
// But in fact there are two cases:
|
|
// - either the If does not have a Else clause, in that case ty = EmptyBlock
|
|
// and we add nothing;
|
|
// - either the If have an Else clause, in that case the destination of this jump
|
|
// instruction will be changed later when we translate the Else operator.
|
|
if let Ok(ty_cre) = type_to_type(&ty) {
|
|
builder.append_ebb_arg(if_not, ty_cre);
|
|
}
|
|
state.push_if(jump_inst, if_not, translate_type(ty).unwrap());
|
|
}
|
|
Operator::Else => {
|
|
// We take the control frame pushed by the if, use its ebb as the else body
|
|
// and push a new control frame with a new ebb for the code after the if/then/else
|
|
// At the end of the then clause we jump to the destination
|
|
let i = state.control_stack.len() - 1;
|
|
let (destination, return_count, branch_inst) = match state.control_stack[i] {
|
|
ControlStackFrame::If {
|
|
destination,
|
|
ref return_values,
|
|
branch_inst,
|
|
..
|
|
} => (destination, return_values.len(), branch_inst),
|
|
_ => panic!("should not happen"),
|
|
};
|
|
builder.ins().jump(destination, state.peekn(return_count));
|
|
state.popn(return_count);
|
|
// We change the target of the branch instruction
|
|
let else_ebb = builder.create_ebb();
|
|
builder.change_jump_destination(branch_inst, else_ebb);
|
|
builder.seal_block(else_ebb);
|
|
builder.switch_to_block(else_ebb, &[]);
|
|
}
|
|
Operator::End => {
|
|
let frame = state.control_stack.pop().unwrap();
|
|
if !builder.is_unreachable() || !builder.is_pristine() {
|
|
let return_count = frame.return_values().len();
|
|
builder.ins().jump(
|
|
frame.following_code(),
|
|
state.peekn(return_count),
|
|
);
|
|
state.popn(return_count);
|
|
}
|
|
builder.switch_to_block(frame.following_code(), frame.return_values());
|
|
builder.seal_block(frame.following_code());
|
|
// If it is a loop we also have to seal the body loop block
|
|
match frame {
|
|
ControlStackFrame::Loop { header, .. } => builder.seal_block(header),
|
|
_ => {}
|
|
}
|
|
state.stack.truncate(frame.original_stack_size());
|
|
state.stack.extend_from_slice(
|
|
builder.ebb_args(frame.following_code()),
|
|
);
|
|
}
|
|
/**************************** Branch instructions *********************************
|
|
* The branch instructions all have as arguments a target nesting level, which
|
|
* corresponds to how many control stack frames do we have to pop to get the
|
|
* destination `Ebb`.
|
|
*
|
|
* Once the destination `Ebb` is found, we sometimes have to declare a certain depth
|
|
* of the stack unreachable, because some branch instructions are terminator.
|
|
*
|
|
* The `br_table` case is much more complicated because Cretonne's `br_table` instruction
|
|
* does not support jump arguments like all the other branch instructions. That is why, in
|
|
* the case where we would use jump arguments for every other branch instructions, we
|
|
* need to split the critical edges leaving the `br_tables` by creating one `Ebb` per
|
|
* table destination; the `br_table` will point to these newly created `Ebbs` and these
|
|
* `Ebb`s contain only a jump instruction pointing to the final destination, this time with
|
|
* jump arguments.
|
|
*
|
|
* This system is also implemented in Cretonne's SSA construction algorithm, because
|
|
* `use_var` located in a destination `Ebb` of a `br_table` might trigger the addition
|
|
* of jump arguments in each predecessor branch instruction, one of which might be a
|
|
* `br_table`.
|
|
***********************************************************************************/
|
|
Operator::Br { relative_depth } => {
|
|
let i = state.control_stack.len() - 1 - (relative_depth as usize);
|
|
let (return_count, br_destination) = {
|
|
let frame = &mut state.control_stack[i];
|
|
// We signal that all the code that follows until the next End is unreachable
|
|
frame.set_reachable();
|
|
let return_count = if frame.is_loop() {
|
|
0
|
|
} else {
|
|
frame.return_values().len()
|
|
};
|
|
(return_count, frame.br_destination())
|
|
};
|
|
builder.ins().jump(
|
|
br_destination,
|
|
state.peekn(return_count),
|
|
);
|
|
state.popn(return_count);
|
|
state.real_unreachable_stack_depth = 1 + relative_depth as usize;
|
|
}
|
|
Operator::BrIf { relative_depth } => {
|
|
let val = state.pop1();
|
|
let i = state.control_stack.len() - 1 - (relative_depth as usize);
|
|
let (return_count, br_destination) = {
|
|
let frame = &mut state.control_stack[i];
|
|
// The values returned by the branch are still available for the reachable
|
|
// code that comes after it
|
|
frame.set_reachable();
|
|
let return_count = if frame.is_loop() {
|
|
0
|
|
} else {
|
|
frame.return_values().len()
|
|
};
|
|
(return_count, frame.br_destination())
|
|
};
|
|
builder.ins().brnz(
|
|
val,
|
|
br_destination,
|
|
state.peekn(return_count),
|
|
);
|
|
}
|
|
Operator::BrTable { ref table } => {
|
|
let (depths, default) = table.read_table();
|
|
let mut min_depth = default;
|
|
for depth in &depths {
|
|
if *depth < min_depth {
|
|
min_depth = *depth;
|
|
}
|
|
}
|
|
let jump_args_count = {
|
|
let i = state.control_stack.len() - 1 - (min_depth as usize);
|
|
let min_depth_frame = &state.control_stack[i];
|
|
if min_depth_frame.is_loop() {
|
|
0
|
|
} else {
|
|
min_depth_frame.return_values().len()
|
|
}
|
|
};
|
|
if jump_args_count == 0 {
|
|
// No jump arguments
|
|
let val = state.pop1();
|
|
let mut data = JumpTableData::with_capacity(depths.len());
|
|
for depth in depths {
|
|
let i = state.control_stack.len() - 1 - (depth as usize);
|
|
let frame = &mut state.control_stack[i];
|
|
let ebb = frame.br_destination();
|
|
data.push_entry(ebb);
|
|
frame.set_reachable();
|
|
}
|
|
let jt = builder.create_jump_table(data);
|
|
builder.ins().br_table(val, jt);
|
|
let i = state.control_stack.len() - 1 - (default as usize);
|
|
let frame = &mut state.control_stack[i];
|
|
let ebb = frame.br_destination();
|
|
builder.ins().jump(ebb, &[]);
|
|
state.real_unreachable_stack_depth = 1 + min_depth as usize;
|
|
frame.set_reachable();
|
|
} else {
|
|
// Here we have jump arguments, but Cretonne's br_table doesn't support them
|
|
// We then proceed to split the edges going out of the br_table
|
|
let val = state.pop1();
|
|
let return_count = jump_args_count;
|
|
let mut data = JumpTableData::with_capacity(depths.len());
|
|
let dest_ebbs: HashMap<usize, Ebb> = depths.iter().fold(HashMap::new(), |mut acc,
|
|
&depth| {
|
|
if acc.get(&(depth as usize)).is_none() {
|
|
let branch_ebb = builder.create_ebb();
|
|
data.push_entry(branch_ebb);
|
|
acc.insert(depth as usize, branch_ebb);
|
|
return acc;
|
|
};
|
|
let branch_ebb = acc[&(depth as usize)];
|
|
data.push_entry(branch_ebb);
|
|
acc
|
|
});
|
|
let jt = builder.create_jump_table(data);
|
|
builder.ins().br_table(val, jt);
|
|
let default_ebb = state.control_stack[state.control_stack.len() - 1 -
|
|
(default as usize)]
|
|
.br_destination();
|
|
builder.ins().jump(default_ebb, state.peekn(return_count));
|
|
for (depth, dest_ebb) in dest_ebbs {
|
|
builder.switch_to_block(dest_ebb, &[]);
|
|
builder.seal_block(dest_ebb);
|
|
let i = state.control_stack.len() - 1 - depth;
|
|
let real_dest_ebb = {
|
|
let frame = &mut state.control_stack[i];
|
|
frame.set_reachable();
|
|
frame.br_destination()
|
|
};
|
|
builder.ins().jump(real_dest_ebb, state.peekn(return_count));
|
|
}
|
|
state.popn(return_count);
|
|
state.real_unreachable_stack_depth = 1 + min_depth as usize;
|
|
}
|
|
}
|
|
Operator::Return => {
|
|
let (return_count, br_destination) = {
|
|
let frame = &mut state.control_stack[0];
|
|
frame.set_reachable();
|
|
let return_count = frame.return_values().len();
|
|
(return_count, frame.br_destination())
|
|
};
|
|
{
|
|
let args = state.peekn(return_count);
|
|
if environ.flags().return_at_end() {
|
|
builder.ins().jump(br_destination, args);
|
|
} else {
|
|
builder.ins().return_(args);
|
|
}
|
|
}
|
|
state.popn(return_count);
|
|
state.real_unreachable_stack_depth = 1;
|
|
}
|
|
/************************************ Calls ****************************************
|
|
* The call instructions pop off their arguments from the stack and append their
|
|
* return values to it. `call_indirect` needs runtime support because there is an
|
|
* argument referring to an index in the external functions table of the module.
|
|
************************************************************************************/
|
|
Operator::Call { function_index } => {
|
|
let (fref, num_args) = state.get_direct_func(builder.func, function_index, environ);
|
|
let call = environ.translate_call(
|
|
builder.cursor(),
|
|
function_index as FunctionIndex,
|
|
fref,
|
|
state.peekn(num_args),
|
|
);
|
|
state.popn(num_args);
|
|
state.pushn(builder.func.dfg.inst_results(call));
|
|
}
|
|
Operator::CallIndirect { index, table_index } => {
|
|
// `index` is the index of the function's signature and `table_index` is the index of
|
|
// the table to search the function in.
|
|
let (sigref, num_args) = state.get_indirect_sig(builder.func, index, environ);
|
|
let callee = state.pop1();
|
|
let call = environ.translate_call_indirect(
|
|
builder.cursor(),
|
|
table_index as TableIndex,
|
|
index as SignatureIndex,
|
|
sigref,
|
|
callee,
|
|
state.peekn(num_args),
|
|
);
|
|
state.popn(num_args);
|
|
state.pushn(builder.func.dfg.inst_results(call));
|
|
}
|
|
/******************************* Memory management ***********************************
|
|
* Memory management is handled by runtime. It is usually translated into calls to
|
|
* special functions.
|
|
************************************************************************************/
|
|
Operator::GrowMemory { reserved } => {
|
|
// The WebAssembly MVP only supports one linear memory, but we expect the reserved
|
|
// argument to be a memory index.
|
|
let heap_index = reserved as MemoryIndex;
|
|
let heap = state.get_heap(builder.func, reserved, environ);
|
|
let val = state.pop1();
|
|
state.push1(environ.translate_grow_memory(
|
|
builder.cursor(),
|
|
heap_index,
|
|
heap,
|
|
val,
|
|
))
|
|
}
|
|
Operator::CurrentMemory { reserved } => {
|
|
let heap_index = reserved as MemoryIndex;
|
|
let heap = state.get_heap(builder.func, reserved, environ);
|
|
state.push1(environ.translate_current_memory(
|
|
builder.cursor(),
|
|
heap_index,
|
|
heap,
|
|
));
|
|
}
|
|
/******************************* Load instructions ***********************************
|
|
* Wasm specifies an integer alignment flag but we drop it in Cretonne.
|
|
* The memory base address is provided by the runtime.
|
|
* TODO: differentiate between 32 bit and 64 bit architecture, to put the uextend or not
|
|
************************************************************************************/
|
|
Operator::I32Load8U { memory_immediate: MemoryImmediate { flags: _, offset } } => {
|
|
translate_load(offset, ir::Opcode::Uload8, I32, builder, state, environ);
|
|
}
|
|
Operator::I32Load16U { memory_immediate: MemoryImmediate { flags: _, offset } } => {
|
|
translate_load(offset, ir::Opcode::Uload16, I32, builder, state, environ);
|
|
}
|
|
Operator::I32Load8S { memory_immediate: MemoryImmediate { flags: _, offset } } => {
|
|
translate_load(offset, ir::Opcode::Sload8, I32, builder, state, environ);
|
|
}
|
|
Operator::I32Load16S { memory_immediate: MemoryImmediate { flags: _, offset } } => {
|
|
translate_load(offset, ir::Opcode::Sload16, I32, builder, state, environ);
|
|
}
|
|
Operator::I64Load8U { memory_immediate: MemoryImmediate { flags: _, offset } } => {
|
|
translate_load(offset, ir::Opcode::Uload8, I64, builder, state, environ);
|
|
}
|
|
Operator::I64Load16U { memory_immediate: MemoryImmediate { flags: _, offset } } => {
|
|
translate_load(offset, ir::Opcode::Uload16, I64, builder, state, environ);
|
|
}
|
|
Operator::I64Load8S { memory_immediate: MemoryImmediate { flags: _, offset } } => {
|
|
translate_load(offset, ir::Opcode::Sload8, I64, builder, state, environ);
|
|
}
|
|
Operator::I64Load16S { memory_immediate: MemoryImmediate { flags: _, offset } } => {
|
|
translate_load(offset, ir::Opcode::Sload16, I64, builder, state, environ);
|
|
}
|
|
Operator::I64Load32S { memory_immediate: MemoryImmediate { flags: _, offset } } => {
|
|
translate_load(offset, ir::Opcode::Sload32, I64, builder, state, environ);
|
|
}
|
|
Operator::I64Load32U { memory_immediate: MemoryImmediate { flags: _, offset } } => {
|
|
translate_load(offset, ir::Opcode::Uload32, I64, builder, state, environ);
|
|
}
|
|
Operator::I32Load { memory_immediate: MemoryImmediate { flags: _, offset } } => {
|
|
translate_load(offset, ir::Opcode::Load, I32, builder, state, environ);
|
|
}
|
|
Operator::F32Load { memory_immediate: MemoryImmediate { flags: _, offset } } => {
|
|
translate_load(offset, ir::Opcode::Load, F32, builder, state, environ);
|
|
}
|
|
Operator::I64Load { memory_immediate: MemoryImmediate { flags: _, offset } } => {
|
|
translate_load(offset, ir::Opcode::Load, I64, builder, state, environ);
|
|
}
|
|
Operator::F64Load { memory_immediate: MemoryImmediate { flags: _, offset } } => {
|
|
translate_load(offset, ir::Opcode::Load, F64, builder, state, environ);
|
|
}
|
|
/****************************** Store instructions ***********************************
|
|
* Wasm specifies an integer alignment flag but we drop it in Cretonne.
|
|
* The memory base address is provided by the runtime.
|
|
* TODO: differentiate between 32 bit and 64 bit architecture, to put the uextend or not
|
|
************************************************************************************/
|
|
Operator::I32Store { memory_immediate: MemoryImmediate { flags: _, offset } } |
|
|
Operator::I64Store { memory_immediate: MemoryImmediate { flags: _, offset } } |
|
|
Operator::F32Store { memory_immediate: MemoryImmediate { flags: _, offset } } |
|
|
Operator::F64Store { memory_immediate: MemoryImmediate { flags: _, offset } } => {
|
|
translate_store(offset, ir::Opcode::Store, builder, state, environ);
|
|
}
|
|
Operator::I32Store8 { memory_immediate: MemoryImmediate { flags: _, offset } } |
|
|
Operator::I64Store8 { memory_immediate: MemoryImmediate { flags: _, offset } } => {
|
|
translate_store(offset, ir::Opcode::Istore8, builder, state, environ);
|
|
}
|
|
Operator::I32Store16 { memory_immediate: MemoryImmediate { flags: _, offset } } |
|
|
Operator::I64Store16 { memory_immediate: MemoryImmediate { flags: _, offset } } => {
|
|
translate_store(offset, ir::Opcode::Istore16, builder, state, environ);
|
|
}
|
|
Operator::I64Store32 { memory_immediate: MemoryImmediate { flags: _, offset } } => {
|
|
translate_store(offset, ir::Opcode::Istore32, builder, state, environ);
|
|
}
|
|
/****************************** Nullary Operators ************************************/
|
|
Operator::I32Const { value } => state.push1(builder.ins().iconst(I32, value as i64)),
|
|
Operator::I64Const { value } => state.push1(builder.ins().iconst(I64, value)),
|
|
Operator::F32Const { value } => {
|
|
state.push1(builder.ins().f32const(f32_translation(value)));
|
|
}
|
|
Operator::F64Const { value } => {
|
|
state.push1(builder.ins().f64const(f64_translation(value)));
|
|
}
|
|
/******************************* Unary Operators *************************************/
|
|
Operator::I32Clz => {
|
|
let arg = state.pop1();
|
|
let val = builder.ins().clz(arg);
|
|
state.push1(builder.ins().sextend(I32, val));
|
|
}
|
|
Operator::I64Clz => {
|
|
let arg = state.pop1();
|
|
let val = builder.ins().clz(arg);
|
|
state.push1(builder.ins().sextend(I64, val));
|
|
}
|
|
Operator::I32Ctz => {
|
|
let val = state.pop1();
|
|
let short_res = builder.ins().ctz(val);
|
|
state.push1(builder.ins().sextend(I32, short_res));
|
|
}
|
|
Operator::I64Ctz => {
|
|
let val = state.pop1();
|
|
let short_res = builder.ins().ctz(val);
|
|
state.push1(builder.ins().sextend(I64, short_res));
|
|
}
|
|
Operator::I32Popcnt => {
|
|
let arg = state.pop1();
|
|
let val = builder.ins().popcnt(arg);
|
|
state.push1(builder.ins().sextend(I32, val));
|
|
}
|
|
Operator::I64Popcnt => {
|
|
let arg = state.pop1();
|
|
let val = builder.ins().popcnt(arg);
|
|
state.push1(builder.ins().sextend(I64, val));
|
|
}
|
|
Operator::I64ExtendSI32 => {
|
|
let val = state.pop1();
|
|
state.push1(builder.ins().sextend(I64, val));
|
|
}
|
|
Operator::I64ExtendUI32 => {
|
|
let val = state.pop1();
|
|
state.push1(builder.ins().uextend(I64, val));
|
|
}
|
|
Operator::I32WrapI64 => {
|
|
let val = state.pop1();
|
|
state.push1(builder.ins().ireduce(I32, val));
|
|
}
|
|
Operator::F32Sqrt |
|
|
Operator::F64Sqrt => {
|
|
let arg = state.pop1();
|
|
state.push1(builder.ins().sqrt(arg));
|
|
}
|
|
Operator::F32Ceil |
|
|
Operator::F64Ceil => {
|
|
let arg = state.pop1();
|
|
state.push1(builder.ins().ceil(arg));
|
|
}
|
|
Operator::F32Floor |
|
|
Operator::F64Floor => {
|
|
let arg = state.pop1();
|
|
state.push1(builder.ins().floor(arg));
|
|
}
|
|
Operator::F32Trunc |
|
|
Operator::F64Trunc => {
|
|
let arg = state.pop1();
|
|
state.push1(builder.ins().trunc(arg));
|
|
}
|
|
Operator::F32Nearest |
|
|
Operator::F64Nearest => {
|
|
let arg = state.pop1();
|
|
state.push1(builder.ins().nearest(arg));
|
|
}
|
|
Operator::F32Abs | Operator::F64Abs => {
|
|
let val = state.pop1();
|
|
state.push1(builder.ins().fabs(val));
|
|
}
|
|
Operator::F32Neg | Operator::F64Neg => {
|
|
let arg = state.pop1();
|
|
state.push1(builder.ins().fneg(arg));
|
|
}
|
|
Operator::F64ConvertUI64 |
|
|
Operator::F64ConvertUI32 => {
|
|
let val = state.pop1();
|
|
state.push1(builder.ins().fcvt_from_uint(F64, val));
|
|
}
|
|
Operator::F64ConvertSI64 |
|
|
Operator::F64ConvertSI32 => {
|
|
let val = state.pop1();
|
|
state.push1(builder.ins().fcvt_from_sint(F64, val));
|
|
}
|
|
Operator::F32ConvertSI64 |
|
|
Operator::F32ConvertSI32 => {
|
|
let val = state.pop1();
|
|
state.push1(builder.ins().fcvt_from_sint(F32, val));
|
|
}
|
|
Operator::F32ConvertUI64 |
|
|
Operator::F32ConvertUI32 => {
|
|
let val = state.pop1();
|
|
state.push1(builder.ins().fcvt_from_uint(F32, val));
|
|
}
|
|
Operator::F64PromoteF32 => {
|
|
let val = state.pop1();
|
|
state.push1(builder.ins().fpromote(F64, val));
|
|
}
|
|
Operator::F32DemoteF64 => {
|
|
let val = state.pop1();
|
|
state.push1(builder.ins().fdemote(F32, val));
|
|
}
|
|
Operator::I64TruncSF64 |
|
|
Operator::I64TruncSF32 => {
|
|
let val = state.pop1();
|
|
state.push1(builder.ins().fcvt_to_sint(I64, val));
|
|
}
|
|
Operator::I32TruncSF64 |
|
|
Operator::I32TruncSF32 => {
|
|
let val = state.pop1();
|
|
state.push1(builder.ins().fcvt_to_sint(I32, val));
|
|
}
|
|
Operator::I64TruncUF64 |
|
|
Operator::I64TruncUF32 => {
|
|
let val = state.pop1();
|
|
state.push1(builder.ins().fcvt_to_uint(I64, val));
|
|
}
|
|
Operator::I32TruncUF64 |
|
|
Operator::I32TruncUF32 => {
|
|
let val = state.pop1();
|
|
state.push1(builder.ins().fcvt_to_uint(I32, val));
|
|
}
|
|
Operator::F32ReinterpretI32 => {
|
|
let val = state.pop1();
|
|
state.push1(builder.ins().bitcast(F32, val));
|
|
}
|
|
Operator::F64ReinterpretI64 => {
|
|
let val = state.pop1();
|
|
state.push1(builder.ins().bitcast(F64, val));
|
|
}
|
|
Operator::I32ReinterpretF32 => {
|
|
let val = state.pop1();
|
|
state.push1(builder.ins().bitcast(I32, val));
|
|
}
|
|
Operator::I64ReinterpretF64 => {
|
|
let val = state.pop1();
|
|
state.push1(builder.ins().bitcast(I64, val));
|
|
}
|
|
/****************************** Binary Operators ************************************/
|
|
Operator::I32Add | Operator::I64Add => {
|
|
let (arg1, arg2) = state.pop2();
|
|
state.push1(builder.ins().iadd(arg1, arg2));
|
|
}
|
|
Operator::I32And | Operator::I64And => {
|
|
let (arg1, arg2) = state.pop2();
|
|
state.push1(builder.ins().band(arg1, arg2));
|
|
}
|
|
Operator::I32Or | Operator::I64Or => {
|
|
let (arg1, arg2) = state.pop2();
|
|
state.push1(builder.ins().bor(arg1, arg2));
|
|
}
|
|
Operator::I32Xor | Operator::I64Xor => {
|
|
let (arg1, arg2) = state.pop2();
|
|
state.push1(builder.ins().bxor(arg1, arg2));
|
|
}
|
|
Operator::I32Shl | Operator::I64Shl => {
|
|
let (arg1, arg2) = state.pop2();
|
|
state.push1(builder.ins().ishl(arg1, arg2));
|
|
}
|
|
Operator::I32ShrS |
|
|
Operator::I64ShrS => {
|
|
let (arg1, arg2) = state.pop2();
|
|
state.push1(builder.ins().sshr(arg1, arg2));
|
|
}
|
|
Operator::I32ShrU |
|
|
Operator::I64ShrU => {
|
|
let (arg1, arg2) = state.pop2();
|
|
state.push1(builder.ins().ushr(arg1, arg2));
|
|
}
|
|
Operator::I32Rotl |
|
|
Operator::I64Rotl => {
|
|
let (arg1, arg2) = state.pop2();
|
|
state.push1(builder.ins().rotl(arg1, arg2));
|
|
}
|
|
Operator::I32Rotr |
|
|
Operator::I64Rotr => {
|
|
let (arg1, arg2) = state.pop2();
|
|
state.push1(builder.ins().rotr(arg1, arg2));
|
|
}
|
|
Operator::F32Add | Operator::F64Add => {
|
|
let (arg1, arg2) = state.pop2();
|
|
state.push1(builder.ins().fadd(arg1, arg2));
|
|
}
|
|
Operator::I32Sub | Operator::I64Sub => {
|
|
let (arg1, arg2) = state.pop2();
|
|
state.push1(builder.ins().isub(arg1, arg2));
|
|
}
|
|
Operator::F32Sub | Operator::F64Sub => {
|
|
let (arg1, arg2) = state.pop2();
|
|
state.push1(builder.ins().fsub(arg1, arg2));
|
|
}
|
|
Operator::I32Mul | Operator::I64Mul => {
|
|
let (arg1, arg2) = state.pop2();
|
|
state.push1(builder.ins().imul(arg1, arg2));
|
|
}
|
|
Operator::F32Mul | Operator::F64Mul => {
|
|
let (arg1, arg2) = state.pop2();
|
|
state.push1(builder.ins().fmul(arg1, arg2));
|
|
}
|
|
Operator::F32Div | Operator::F64Div => {
|
|
let (arg1, arg2) = state.pop2();
|
|
state.push1(builder.ins().fdiv(arg1, arg2));
|
|
}
|
|
Operator::I32DivS |
|
|
Operator::I64DivS => {
|
|
let (arg1, arg2) = state.pop2();
|
|
state.push1(builder.ins().sdiv(arg1, arg2));
|
|
}
|
|
Operator::I32DivU |
|
|
Operator::I64DivU => {
|
|
let (arg1, arg2) = state.pop2();
|
|
state.push1(builder.ins().udiv(arg1, arg2));
|
|
}
|
|
Operator::I32RemS |
|
|
Operator::I64RemS => {
|
|
let (arg1, arg2) = state.pop2();
|
|
state.push1(builder.ins().srem(arg1, arg2));
|
|
}
|
|
Operator::I32RemU |
|
|
Operator::I64RemU => {
|
|
let (arg1, arg2) = state.pop2();
|
|
state.push1(builder.ins().urem(arg1, arg2));
|
|
}
|
|
Operator::F32Min | Operator::F64Min => {
|
|
let (arg1, arg2) = state.pop2();
|
|
state.push1(builder.ins().fmin(arg1, arg2));
|
|
}
|
|
Operator::F32Max | Operator::F64Max => {
|
|
let (arg1, arg2) = state.pop2();
|
|
state.push1(builder.ins().fmax(arg1, arg2));
|
|
}
|
|
Operator::F32Copysign |
|
|
Operator::F64Copysign => {
|
|
let (arg1, arg2) = state.pop2();
|
|
state.push1(builder.ins().fcopysign(arg1, arg2));
|
|
}
|
|
/**************************** Comparison Operators **********************************/
|
|
Operator::I32LtS | Operator::I64LtS => {
|
|
let (arg1, arg2) = state.pop2();
|
|
let val = builder.ins().icmp(IntCC::SignedLessThan, arg1, arg2);
|
|
state.push1(builder.ins().bint(I32, val));
|
|
}
|
|
Operator::I32LtU | Operator::I64LtU => {
|
|
let (arg1, arg2) = state.pop2();
|
|
let val = builder.ins().icmp(IntCC::UnsignedLessThan, arg1, arg2);
|
|
state.push1(builder.ins().bint(I32, val));
|
|
}
|
|
Operator::I32LeS | Operator::I64LeS => {
|
|
let (arg1, arg2) = state.pop2();
|
|
let val = builder.ins().icmp(IntCC::SignedLessThanOrEqual, arg1, arg2);
|
|
state.push1(builder.ins().bint(I32, val));
|
|
}
|
|
Operator::I32LeU | Operator::I64LeU => {
|
|
let (arg1, arg2) = state.pop2();
|
|
let val = builder.ins().icmp(
|
|
IntCC::UnsignedLessThanOrEqual,
|
|
arg1,
|
|
arg2,
|
|
);
|
|
state.push1(builder.ins().bint(I32, val));
|
|
}
|
|
Operator::I32GtS | Operator::I64GtS => {
|
|
let (arg1, arg2) = state.pop2();
|
|
let val = builder.ins().icmp(IntCC::SignedGreaterThan, arg1, arg2);
|
|
state.push1(builder.ins().bint(I32, val));
|
|
}
|
|
Operator::I32GtU | Operator::I64GtU => {
|
|
let (arg1, arg2) = state.pop2();
|
|
let val = builder.ins().icmp(IntCC::UnsignedGreaterThan, arg1, arg2);
|
|
state.push1(builder.ins().bint(I32, val));
|
|
}
|
|
Operator::I32GeS | Operator::I64GeS => {
|
|
let (arg1, arg2) = state.pop2();
|
|
let val = builder.ins().icmp(
|
|
IntCC::SignedGreaterThanOrEqual,
|
|
arg1,
|
|
arg2,
|
|
);
|
|
state.push1(builder.ins().bint(I32, val));
|
|
}
|
|
Operator::I32GeU | Operator::I64GeU => {
|
|
let (arg1, arg2) = state.pop2();
|
|
let val = builder.ins().icmp(
|
|
IntCC::UnsignedGreaterThanOrEqual,
|
|
arg1,
|
|
arg2,
|
|
);
|
|
state.push1(builder.ins().bint(I32, val));
|
|
}
|
|
Operator::I32Eqz | Operator::I64Eqz => {
|
|
let arg = state.pop1();
|
|
let val = builder.ins().icmp_imm(IntCC::Equal, arg, 0);
|
|
state.push1(builder.ins().bint(I32, val));
|
|
}
|
|
Operator::I32Eq | Operator::I64Eq => {
|
|
let (arg1, arg2) = state.pop2();
|
|
let val = builder.ins().icmp(IntCC::Equal, arg1, arg2);
|
|
state.push1(builder.ins().bint(I32, val));
|
|
}
|
|
Operator::F32Eq | Operator::F64Eq => {
|
|
let (arg1, arg2) = state.pop2();
|
|
let val = builder.ins().fcmp(FloatCC::Equal, arg1, arg2);
|
|
state.push1(builder.ins().bint(I32, val));
|
|
}
|
|
Operator::I32Ne | Operator::I64Ne => {
|
|
let (arg1, arg2) = state.pop2();
|
|
let val = builder.ins().icmp(IntCC::NotEqual, arg1, arg2);
|
|
state.push1(builder.ins().bint(I32, val));
|
|
}
|
|
Operator::F32Ne | Operator::F64Ne => {
|
|
let (arg1, arg2) = state.pop2();
|
|
let val = builder.ins().fcmp(FloatCC::NotEqual, arg1, arg2);
|
|
state.push1(builder.ins().bint(I32, val));
|
|
}
|
|
Operator::F32Gt | Operator::F64Gt => {
|
|
let (arg1, arg2) = state.pop2();
|
|
let val = builder.ins().fcmp(FloatCC::GreaterThan, arg1, arg2);
|
|
state.push1(builder.ins().bint(I32, val));
|
|
}
|
|
Operator::F32Ge | Operator::F64Ge => {
|
|
let (arg1, arg2) = state.pop2();
|
|
let val = builder.ins().fcmp(FloatCC::GreaterThanOrEqual, arg1, arg2);
|
|
state.push1(builder.ins().bint(I32, val));
|
|
}
|
|
Operator::F32Lt | Operator::F64Lt => {
|
|
let (arg1, arg2) = state.pop2();
|
|
let val = builder.ins().fcmp(FloatCC::LessThan, arg1, arg2);
|
|
state.push1(builder.ins().bint(I32, val));
|
|
}
|
|
Operator::F32Le | Operator::F64Le => {
|
|
let (arg1, arg2) = state.pop2();
|
|
let val = builder.ins().fcmp(FloatCC::LessThanOrEqual, arg1, arg2);
|
|
state.push1(builder.ins().bint(I32, val));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Deals with a Wasm instruction located in an unreachable portion of the code. Most of them
|
|
/// are dropped but special ones like `End` or `Else` signal the potential end of the unreachable
|
|
/// portion so the translation state muts be updated accordingly.
|
|
fn translate_unreachable_operator(
|
|
op: &Operator,
|
|
builder: &mut FunctionBuilder<Local>,
|
|
state: &mut TranslationState,
|
|
) {
|
|
let stack = &mut state.stack;
|
|
let control_stack = &mut state.control_stack;
|
|
|
|
// We don't translate because the code is unreachable
|
|
// Nevertheless we have to record a phantom stack for this code
|
|
// to know when the unreachable code ends
|
|
match *op {
|
|
Operator::If { ty: _ } |
|
|
Operator::Loop { ty: _ } |
|
|
Operator::Block { ty: _ } => {
|
|
state.phantom_unreachable_stack_depth += 1;
|
|
}
|
|
Operator::End => {
|
|
if state.phantom_unreachable_stack_depth > 0 {
|
|
state.phantom_unreachable_stack_depth -= 1;
|
|
} else {
|
|
// This End corresponds to a real control stack frame
|
|
// We switch to the destination block but we don't insert
|
|
// a jump instruction since the code is still unreachable
|
|
let frame = control_stack.pop().unwrap();
|
|
|
|
builder.switch_to_block(frame.following_code(), &[]);
|
|
builder.seal_block(frame.following_code());
|
|
match frame {
|
|
// If it is a loop we also have to seal the body loop block
|
|
ControlStackFrame::Loop { header, .. } => builder.seal_block(header),
|
|
// If it is an if then the code after is reachable again
|
|
ControlStackFrame::If { .. } => {
|
|
state.real_unreachable_stack_depth = 1;
|
|
}
|
|
_ => {}
|
|
}
|
|
if frame.is_reachable() {
|
|
state.real_unreachable_stack_depth = 1;
|
|
}
|
|
// Now we have to split off the stack the values not used
|
|
// by unreachable code that hasn't been translated
|
|
stack.truncate(frame.original_stack_size());
|
|
// And add the return values of the block but only if the next block is reachble
|
|
// (which corresponds to testing if the stack depth is 1)
|
|
if state.real_unreachable_stack_depth == 1 {
|
|
stack.extend_from_slice(builder.ebb_args(frame.following_code()));
|
|
}
|
|
state.real_unreachable_stack_depth -= 1;
|
|
}
|
|
}
|
|
Operator::Else => {
|
|
if state.phantom_unreachable_stack_depth > 0 {
|
|
// This is part of a phantom if-then-else, we do nothing
|
|
} else {
|
|
// Encountering an real else means that the code in the else
|
|
// clause is reachable again
|
|
let (branch_inst, original_stack_size) = match control_stack[control_stack.len() -
|
|
1] {
|
|
ControlStackFrame::If {
|
|
branch_inst,
|
|
original_stack_size,
|
|
..
|
|
} => (branch_inst, original_stack_size),
|
|
_ => panic!("should not happen"),
|
|
};
|
|
// We change the target of the branch instruction
|
|
let else_ebb = builder.create_ebb();
|
|
builder.change_jump_destination(branch_inst, else_ebb);
|
|
builder.seal_block(else_ebb);
|
|
builder.switch_to_block(else_ebb, &[]);
|
|
// Now we have to split off the stack the values not used
|
|
// by unreachable code that hasn't been translated
|
|
stack.truncate(original_stack_size);
|
|
state.real_unreachable_stack_depth = 0;
|
|
}
|
|
}
|
|
_ => {
|
|
// We don't translate because this is unreachable code
|
|
}
|
|
}
|
|
}
|
|
|
|
// Get the address+offset to use for a heap access.
|
|
fn get_heap_addr(
|
|
heap: ir::Heap,
|
|
addr32: ir::Value,
|
|
offset: u32,
|
|
addr_ty: ir::Type,
|
|
builder: &mut FunctionBuilder<Local>,
|
|
) -> (ir::Value, i32) {
|
|
use std::cmp::min;
|
|
|
|
let guard_size: i64 = builder.func.heaps[heap].guard_size.into();
|
|
assert!(guard_size > 0, "Heap guard pages currently required");
|
|
|
|
// Generate `heap_addr` instructions that are friendly to CSE by checking offsets that are
|
|
// multiples of the guard size. Add one to make sure that we check the pointer itself is in
|
|
// bounds.
|
|
//
|
|
// For accesses on the outer skirts of the guard pages, we expect that we get a trap
|
|
// even if the access goes beyond the guard pages. This is because the first byte pointed to is
|
|
// inside the guard pages.
|
|
let check_size = min(
|
|
u32::max_value() as i64,
|
|
1 + (offset as i64 / guard_size) * guard_size,
|
|
) as u32;
|
|
let base = builder.ins().heap_addr(addr_ty, heap, addr32, check_size);
|
|
|
|
// Native load/store instructions take a signed `Offset32` immediate, so adjust the base
|
|
// pointer if necessary.
|
|
if offset > i32::max_value() as u32 {
|
|
// Offset doesn't fit in the load/store instruction.
|
|
let adj = builder.ins().iadd_imm(base, i32::max_value() as i64 + 1);
|
|
(adj, (offset - (i32::max_value() as u32 + 1)) as i32)
|
|
} else {
|
|
(base, offset as i32)
|
|
}
|
|
}
|
|
|
|
// Translate a load instruction.
|
|
fn translate_load<FE: FuncEnvironment + ?Sized>(
|
|
offset: u32,
|
|
opcode: ir::Opcode,
|
|
result_ty: ir::Type,
|
|
builder: &mut FunctionBuilder<Local>,
|
|
state: &mut TranslationState,
|
|
environ: &mut FE,
|
|
) {
|
|
let addr32 = state.pop1();
|
|
// We don't yet support multiple linear memories.
|
|
let heap = state.get_heap(builder.func, 0, environ);
|
|
let (base, offset) = get_heap_addr(heap, addr32, offset, environ.native_pointer(), builder);
|
|
let flags = MemFlags::new();
|
|
let (load, dfg) = builder.ins().Load(
|
|
opcode,
|
|
result_ty,
|
|
flags,
|
|
offset.into(),
|
|
base,
|
|
);
|
|
state.push1(dfg.first_result(load));
|
|
}
|
|
|
|
// Translate a store instruction.
|
|
fn translate_store<FE: FuncEnvironment + ?Sized>(
|
|
offset: u32,
|
|
opcode: ir::Opcode,
|
|
builder: &mut FunctionBuilder<Local>,
|
|
state: &mut TranslationState,
|
|
environ: &mut FE,
|
|
) {
|
|
let (addr32, val) = state.pop2();
|
|
let val_ty = builder.func.dfg.value_type(val);
|
|
|
|
// We don't yet support multiple linear memories.
|
|
let heap = state.get_heap(builder.func, 0, environ);
|
|
let (base, offset) = get_heap_addr(heap, addr32, offset, environ.native_pointer(), builder);
|
|
let flags = MemFlags::new();
|
|
builder.ins().Store(
|
|
opcode,
|
|
val_ty,
|
|
flags,
|
|
offset.into(),
|
|
val,
|
|
base,
|
|
);
|
|
}
|