The implementation is pretty straightforward. Wasm atomic instructions fall
into 5 groups
* atomic read-modify-write
* atomic compare-and-swap
* atomic loads
* atomic stores
* fences
and the implementation mirrors that structure, at both the CLIF and AArch64
levels.
At the CLIF level, there are five new instructions, one for each group. Some
comments about these:
* for those that take addresses (all except fences), the address is contained
entirely in a single `Value`; there is no offset field as there is with
normal loads and stores. Wasm atomics require alignment checks, and
removing the offset makes implementation of those checks a bit simpler.
* atomic loads and stores get their own instructions, rather than reusing the
existing load and store instructions, for two reasons:
- per above comment, makes alignment checking simpler
- reuse of existing loads and stores would require extension of `MemFlags`
to indicate atomicity, which sounds semantically unclean. For example,
then *any* instruction carrying `MemFlags` could be marked as atomic, even
in cases where it is meaningless or ambiguous.
* I tried to specify, in comments, the behaviour of these instructions as
tightly as I could. Unfortunately there is no way (per my limited CLIF
knowledge) to enforce the constraint that they may only be used on I8, I16,
I32 and I64 types, and in particular not on floating point or vector types.
The translation from Wasm to CLIF, in `code_translator.rs` is unremarkable.
At the AArch64 level, there are also five new instructions, one for each
group. All of them except `::Fence` contain multiple real machine
instructions. Atomic r-m-w and atomic c-a-s are emitted as the usual
load-linked store-conditional loops, guarded at both ends by memory fences.
Atomic loads and stores are emitted as a load preceded by a fence, and a store
followed by a fence, respectively. The amount of fencing may be overkill, but
it reflects exactly what the SM Wasm baseline compiler for AArch64 does.
One reason to implement r-m-w and c-a-s as a single insn which is expanded
only at emission time is that we must be very careful what instructions we
allow in between the load-linked and store-conditional. In particular, we
cannot allow *any* extra memory transactions in there, since -- particularly
on low-end hardware -- that might cause the transaction to fail, hence
deadlocking the generated code. That implies that we can't present the LL/SC
loop to the register allocator as its constituent instructions, since it might
insert spills anywhere. Hence we must present it as a single indivisible
unit, as we do here. It also has the benefit of reducing the total amount of
work the RA has to do.
The only other notable feature of the r-m-w and c-a-s translations into
AArch64 code, is that they both need a scratch register internally. Rather
than faking one up by claiming, in `get_regs` that it modifies an extra
scratch register, and having to have a dummy initialisation of it, these new
instructions (`::LLSC` and `::CAS`) simply use fixed registers in the range
x24-x28. We rely on the RA's ability to coalesce V<-->R copies to make the
cost of the resulting extra copies zero or almost zero. x24-x28 are chosen so
as to be call-clobbered, hence their use is less likely to interfere with long
live ranges that span calls.
One subtlety regarding the use of completely fixed input and output registers
is that we must be careful how the surrounding copy from/to of the arg/result
registers is done. In particular, it is not safe to simply emit copies in
some arbitrary order if one of the arg registers is a real reg. For that
reason, the arguments are first moved into virtual regs if they are not
already there, using a new method `<LowerCtx for Lower>::ensure_in_vreg`.
Again, we rely on coalescing to turn them into no-ops in the common case.
There is also a ridealong fix for the AArch64 lowering case for
`Opcode::Trapif | Opcode::Trapff`, which removes a bug in which two trap insns
in a row were generated.
In the patch as submitted there are 6 "FIXME JRS" comments, which mark things
which I believe to be correct, but for which I would appreciate a second
opinion. Unless otherwise directed, I will remove them for the final commit
but leave the associated code/comments unchanged.
855 lines
26 KiB
Rust
855 lines
26 KiB
Rust
//! Converting Cranelift IR to text.
|
|
//!
|
|
//! The `write` module provides the `write_function` function which converts an IR `Function` to an
|
|
//! equivalent textual form. This textual form can be read back by the `cranelift-reader` crate.
|
|
|
|
use crate::entity::SecondaryMap;
|
|
use crate::ir::entities::AnyEntity;
|
|
use crate::ir::{
|
|
Block, DataFlowGraph, DisplayFunctionAnnotations, Function, Inst, SigRef, Type, Value,
|
|
ValueDef, ValueLoc,
|
|
};
|
|
use crate::isa::{RegInfo, TargetIsa};
|
|
use crate::packed_option::ReservedValue;
|
|
use crate::value_label::ValueLabelsRanges;
|
|
use crate::HashSet;
|
|
use alloc::string::String;
|
|
use alloc::vec::Vec;
|
|
use core::fmt::{self, Write};
|
|
|
|
/// A `FuncWriter` used to decorate functions during printing.
|
|
pub trait FuncWriter {
|
|
/// Write the basic block header for the current function.
|
|
fn write_block_header(
|
|
&mut self,
|
|
w: &mut dyn Write,
|
|
func: &Function,
|
|
isa: Option<&dyn TargetIsa>,
|
|
block: Block,
|
|
indent: usize,
|
|
) -> fmt::Result;
|
|
|
|
/// Write the given `inst` to `w`.
|
|
fn write_instruction(
|
|
&mut self,
|
|
w: &mut dyn Write,
|
|
func: &Function,
|
|
aliases: &SecondaryMap<Value, Vec<Value>>,
|
|
isa: Option<&dyn TargetIsa>,
|
|
inst: Inst,
|
|
indent: usize,
|
|
) -> fmt::Result;
|
|
|
|
/// Write the preamble to `w`. By default, this uses `write_entity_definition`.
|
|
fn write_preamble(
|
|
&mut self,
|
|
w: &mut dyn Write,
|
|
func: &Function,
|
|
regs: Option<&RegInfo>,
|
|
) -> Result<bool, fmt::Error> {
|
|
self.super_preamble(w, func, regs)
|
|
}
|
|
|
|
/// Default impl of `write_preamble`
|
|
fn super_preamble(
|
|
&mut self,
|
|
w: &mut dyn Write,
|
|
func: &Function,
|
|
regs: Option<&RegInfo>,
|
|
) -> Result<bool, fmt::Error> {
|
|
let mut any = false;
|
|
|
|
for (ss, slot) in func.stack_slots.iter() {
|
|
any = true;
|
|
self.write_entity_definition(w, func, ss.into(), slot)?;
|
|
}
|
|
|
|
for (gv, gv_data) in &func.global_values {
|
|
any = true;
|
|
self.write_entity_definition(w, func, gv.into(), gv_data)?;
|
|
}
|
|
|
|
for (heap, heap_data) in &func.heaps {
|
|
if !heap_data.index_type.is_invalid() {
|
|
any = true;
|
|
self.write_entity_definition(w, func, heap.into(), heap_data)?;
|
|
}
|
|
}
|
|
|
|
for (table, table_data) in &func.tables {
|
|
if !table_data.index_type.is_invalid() {
|
|
any = true;
|
|
self.write_entity_definition(w, func, table.into(), table_data)?;
|
|
}
|
|
}
|
|
|
|
// Write out all signatures before functions since function declarations can refer to
|
|
// signatures.
|
|
for (sig, sig_data) in &func.dfg.signatures {
|
|
any = true;
|
|
self.write_entity_definition(w, func, sig.into(), &sig_data.display(regs))?;
|
|
}
|
|
|
|
for (fnref, ext_func) in &func.dfg.ext_funcs {
|
|
if ext_func.signature != SigRef::reserved_value() {
|
|
any = true;
|
|
self.write_entity_definition(w, func, fnref.into(), ext_func)?;
|
|
}
|
|
}
|
|
|
|
for (jt, jt_data) in &func.jump_tables {
|
|
any = true;
|
|
self.write_entity_definition(w, func, jt.into(), jt_data)?;
|
|
}
|
|
|
|
for (&cref, cval) in func.dfg.constants.iter() {
|
|
any = true;
|
|
self.write_entity_definition(w, func, cref.into(), cval)?;
|
|
}
|
|
|
|
if let Some(limit) = func.stack_limit {
|
|
any = true;
|
|
self.write_entity_definition(w, func, AnyEntity::StackLimit, &limit)?;
|
|
}
|
|
|
|
Ok(any)
|
|
}
|
|
|
|
/// Write an entity definition defined in the preamble to `w`.
|
|
fn write_entity_definition(
|
|
&mut self,
|
|
w: &mut dyn Write,
|
|
func: &Function,
|
|
entity: AnyEntity,
|
|
value: &dyn fmt::Display,
|
|
) -> fmt::Result {
|
|
self.super_entity_definition(w, func, entity, value)
|
|
}
|
|
|
|
/// Default impl of `write_entity_definition`
|
|
#[allow(unused_variables)]
|
|
fn super_entity_definition(
|
|
&mut self,
|
|
w: &mut dyn Write,
|
|
func: &Function,
|
|
entity: AnyEntity,
|
|
value: &dyn fmt::Display,
|
|
) -> fmt::Result {
|
|
writeln!(w, " {} = {}", entity, value)
|
|
}
|
|
}
|
|
|
|
/// A `PlainWriter` that doesn't decorate the function.
|
|
pub struct PlainWriter;
|
|
|
|
impl FuncWriter for PlainWriter {
|
|
fn write_instruction(
|
|
&mut self,
|
|
w: &mut dyn Write,
|
|
func: &Function,
|
|
aliases: &SecondaryMap<Value, Vec<Value>>,
|
|
isa: Option<&dyn TargetIsa>,
|
|
inst: Inst,
|
|
indent: usize,
|
|
) -> fmt::Result {
|
|
write_instruction(w, func, aliases, isa, inst, indent)
|
|
}
|
|
|
|
fn write_block_header(
|
|
&mut self,
|
|
w: &mut dyn Write,
|
|
func: &Function,
|
|
isa: Option<&dyn TargetIsa>,
|
|
block: Block,
|
|
indent: usize,
|
|
) -> fmt::Result {
|
|
write_block_header(w, func, isa, block, indent)
|
|
}
|
|
}
|
|
|
|
/// Write `func` to `w` as equivalent text.
|
|
/// Use `isa` to emit ISA-dependent annotations.
|
|
pub fn write_function(
|
|
w: &mut dyn Write,
|
|
func: &Function,
|
|
annotations: &DisplayFunctionAnnotations,
|
|
) -> fmt::Result {
|
|
decorate_function(&mut PlainWriter, w, func, annotations)
|
|
}
|
|
|
|
/// Create a reverse-alias map from a value to all aliases having that value as a direct target
|
|
fn alias_map(func: &Function) -> SecondaryMap<Value, Vec<Value>> {
|
|
let mut aliases = SecondaryMap::<_, Vec<_>>::new();
|
|
for v in func.dfg.values() {
|
|
// VADFS returns the immediate target of an alias
|
|
if let Some(k) = func.dfg.value_alias_dest_for_serialization(v) {
|
|
aliases[k].push(v);
|
|
}
|
|
}
|
|
aliases
|
|
}
|
|
|
|
/// Writes `func` to `w` as text.
|
|
/// write_function_plain is passed as 'closure' to print instructions as text.
|
|
/// pretty_function_error is passed as 'closure' to add error decoration.
|
|
pub fn decorate_function<FW: FuncWriter>(
|
|
func_w: &mut FW,
|
|
w: &mut dyn Write,
|
|
func: &Function,
|
|
annotations: &DisplayFunctionAnnotations,
|
|
) -> fmt::Result {
|
|
let regs = annotations.isa.map(TargetIsa::register_info);
|
|
let regs = regs.as_ref();
|
|
|
|
write!(w, "function ")?;
|
|
write_spec(w, func, regs)?;
|
|
writeln!(w, " {{")?;
|
|
let aliases = alias_map(func);
|
|
let mut any = func_w.write_preamble(w, func, regs)?;
|
|
for block in &func.layout {
|
|
if any {
|
|
writeln!(w)?;
|
|
}
|
|
decorate_block(func_w, w, func, &aliases, annotations, block)?;
|
|
any = true;
|
|
}
|
|
writeln!(w, "}}")
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
//
|
|
// Function spec.
|
|
|
|
fn write_spec(w: &mut dyn Write, func: &Function, regs: Option<&RegInfo>) -> fmt::Result {
|
|
write!(w, "{}{}", func.name, func.signature.display(regs))
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
//
|
|
// Basic blocks
|
|
|
|
fn write_arg(
|
|
w: &mut dyn Write,
|
|
func: &Function,
|
|
regs: Option<&RegInfo>,
|
|
arg: Value,
|
|
) -> fmt::Result {
|
|
write!(w, "{}: {}", arg, func.dfg.value_type(arg))?;
|
|
let loc = func.locations[arg];
|
|
if loc.is_assigned() {
|
|
write!(w, " [{}]", loc.display(regs))?
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Write out the basic block header, outdented:
|
|
///
|
|
/// block1:
|
|
/// block1(v1: i32):
|
|
/// block10(v4: f64, v5: b1):
|
|
///
|
|
pub fn write_block_header(
|
|
w: &mut dyn Write,
|
|
func: &Function,
|
|
isa: Option<&dyn TargetIsa>,
|
|
block: Block,
|
|
indent: usize,
|
|
) -> fmt::Result {
|
|
// The `indent` is the instruction indentation. block headers are 4 spaces out from that.
|
|
write!(w, "{1:0$}{2}", indent - 4, "", block)?;
|
|
|
|
let regs = isa.map(TargetIsa::register_info);
|
|
let regs = regs.as_ref();
|
|
|
|
let mut args = func.dfg.block_params(block).iter().cloned();
|
|
match args.next() {
|
|
None => return writeln!(w, ":"),
|
|
Some(arg) => {
|
|
write!(w, "(")?;
|
|
write_arg(w, func, regs, arg)?;
|
|
}
|
|
}
|
|
// Remaining arguments.
|
|
for arg in args {
|
|
write!(w, ", ")?;
|
|
write_arg(w, func, regs, arg)?;
|
|
}
|
|
writeln!(w, "):")
|
|
}
|
|
|
|
fn write_valueloc(w: &mut dyn Write, loc: ValueLoc, regs: &RegInfo) -> fmt::Result {
|
|
match loc {
|
|
ValueLoc::Reg(r) => write!(w, "{}", regs.display_regunit(r)),
|
|
ValueLoc::Stack(ss) => write!(w, "{}", ss),
|
|
ValueLoc::Unassigned => write!(w, "?"),
|
|
}
|
|
}
|
|
|
|
fn write_value_range_markers(
|
|
w: &mut dyn Write,
|
|
val_ranges: &ValueLabelsRanges,
|
|
regs: &RegInfo,
|
|
offset: u32,
|
|
indent: usize,
|
|
) -> fmt::Result {
|
|
let mut result = String::new();
|
|
let mut shown = HashSet::new();
|
|
for (val, rng) in val_ranges {
|
|
for i in (0..rng.len()).rev() {
|
|
if rng[i].start == offset {
|
|
write!(&mut result, " {}@", val)?;
|
|
write_valueloc(&mut result, rng[i].loc, regs)?;
|
|
shown.insert(val);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
for (val, rng) in val_ranges {
|
|
for i in (0..rng.len()).rev() {
|
|
if rng[i].end == offset && !shown.contains(val) {
|
|
write!(&mut result, " {}\u{2620}", val)?;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if !result.is_empty() {
|
|
writeln!(w, ";{1:0$}; {2}", indent + 24, "", result)?;
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn decorate_block<FW: FuncWriter>(
|
|
func_w: &mut FW,
|
|
w: &mut dyn Write,
|
|
func: &Function,
|
|
aliases: &SecondaryMap<Value, Vec<Value>>,
|
|
annotations: &DisplayFunctionAnnotations,
|
|
block: Block,
|
|
) -> fmt::Result {
|
|
// Indent all instructions if any encodings are present.
|
|
let indent = if func.encodings.is_empty() && func.srclocs.is_empty() {
|
|
4
|
|
} else {
|
|
36
|
|
};
|
|
let isa = annotations.isa;
|
|
|
|
func_w.write_block_header(w, func, isa, block, indent)?;
|
|
for a in func.dfg.block_params(block).iter().cloned() {
|
|
write_value_aliases(w, aliases, a, indent)?;
|
|
}
|
|
|
|
if let Some(isa) = isa {
|
|
if !func.offsets.is_empty() {
|
|
let encinfo = isa.encoding_info();
|
|
let regs = &isa.register_info();
|
|
for (offset, inst, size) in func.inst_offsets(block, &encinfo) {
|
|
func_w.write_instruction(w, func, aliases, Some(isa), inst, indent)?;
|
|
if size > 0 {
|
|
if let Some(val_ranges) = annotations.value_ranges {
|
|
write_value_range_markers(w, val_ranges, regs, offset + size, indent)?;
|
|
}
|
|
}
|
|
}
|
|
return Ok(());
|
|
}
|
|
}
|
|
|
|
for inst in func.layout.block_insts(block) {
|
|
func_w.write_instruction(w, func, aliases, isa, inst, indent)?;
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
//
|
|
// Instructions
|
|
|
|
// Should `inst` be printed with a type suffix?
|
|
//
|
|
// Polymorphic instructions may need a suffix indicating the value of the controlling type variable
|
|
// if it can't be trivially inferred.
|
|
//
|
|
fn type_suffix(func: &Function, inst: Inst) -> Option<Type> {
|
|
let inst_data = &func.dfg[inst];
|
|
let constraints = inst_data.opcode().constraints();
|
|
|
|
if !constraints.is_polymorphic() {
|
|
return None;
|
|
}
|
|
|
|
// If the controlling type variable can be inferred from the type of the designated value input
|
|
// operand, we don't need the type suffix.
|
|
if constraints.use_typevar_operand() {
|
|
let ctrl_var = inst_data.typevar_operand(&func.dfg.value_lists).unwrap();
|
|
let def_block = match func.dfg.value_def(ctrl_var) {
|
|
ValueDef::Result(instr, _) => func.layout.inst_block(instr),
|
|
ValueDef::Param(block, _) => Some(block),
|
|
};
|
|
if def_block.is_some() && def_block == func.layout.inst_block(inst) {
|
|
return None;
|
|
}
|
|
}
|
|
|
|
let rtype = func.dfg.ctrl_typevar(inst);
|
|
assert!(
|
|
!rtype.is_invalid(),
|
|
"Polymorphic instruction must produce a result"
|
|
);
|
|
Some(rtype)
|
|
}
|
|
|
|
/// Write out any aliases to the given target, including indirect aliases
|
|
fn write_value_aliases(
|
|
w: &mut dyn Write,
|
|
aliases: &SecondaryMap<Value, Vec<Value>>,
|
|
target: Value,
|
|
indent: usize,
|
|
) -> fmt::Result {
|
|
let mut todo_stack = vec![target];
|
|
while let Some(target) = todo_stack.pop() {
|
|
for &a in &aliases[target] {
|
|
writeln!(w, "{1:0$}{2} -> {3}", indent, "", a, target)?;
|
|
todo_stack.push(a);
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn write_instruction(
|
|
w: &mut dyn Write,
|
|
func: &Function,
|
|
aliases: &SecondaryMap<Value, Vec<Value>>,
|
|
isa: Option<&dyn TargetIsa>,
|
|
inst: Inst,
|
|
indent: usize,
|
|
) -> fmt::Result {
|
|
// Prefix containing source location, encoding, and value locations.
|
|
let mut s = String::with_capacity(16);
|
|
|
|
// Source location goes first.
|
|
let srcloc = func.srclocs[inst];
|
|
if !srcloc.is_default() {
|
|
write!(s, "{} ", srcloc)?;
|
|
}
|
|
|
|
// Write out encoding info.
|
|
if let Some(enc) = func.encodings.get(inst).cloned() {
|
|
if let Some(isa) = isa {
|
|
write!(s, "[{}", isa.encoding_info().display(enc))?;
|
|
// Write value locations, if we have them.
|
|
if !func.locations.is_empty() {
|
|
let regs = isa.register_info();
|
|
for &r in func.dfg.inst_results(inst) {
|
|
write!(s, ",{}", func.locations[r].display(®s))?
|
|
}
|
|
}
|
|
write!(s, "] ")?;
|
|
} else {
|
|
write!(s, "[{}] ", enc)?;
|
|
}
|
|
}
|
|
|
|
// Write out prefix and indent the instruction.
|
|
write!(w, "{1:0$}", indent, s)?;
|
|
|
|
// Write out the result values, if any.
|
|
let mut has_results = false;
|
|
for r in func.dfg.inst_results(inst) {
|
|
if !has_results {
|
|
has_results = true;
|
|
write!(w, "{}", r)?;
|
|
} else {
|
|
write!(w, ", {}", r)?;
|
|
}
|
|
}
|
|
if has_results {
|
|
write!(w, " = ")?;
|
|
}
|
|
|
|
// Then the opcode, possibly with a '.type' suffix.
|
|
let opcode = func.dfg[inst].opcode();
|
|
|
|
match type_suffix(func, inst) {
|
|
Some(suf) => write!(w, "{}.{}", opcode, suf)?,
|
|
None => write!(w, "{}", opcode)?,
|
|
}
|
|
|
|
write_operands(w, &func.dfg, isa, inst)?;
|
|
writeln!(w)?;
|
|
|
|
// Value aliases come out on lines after the instruction defining the referent.
|
|
for r in func.dfg.inst_results(inst) {
|
|
write_value_aliases(w, aliases, *r, indent)?;
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Write the operands of `inst` to `w` with a prepended space.
|
|
pub fn write_operands(
|
|
w: &mut dyn Write,
|
|
dfg: &DataFlowGraph,
|
|
isa: Option<&dyn TargetIsa>,
|
|
inst: Inst,
|
|
) -> fmt::Result {
|
|
let pool = &dfg.value_lists;
|
|
use crate::ir::instructions::InstructionData::*;
|
|
match dfg[inst] {
|
|
AtomicRmw { op, args, .. } => write!(w, " {}, {}, {}", op, args[0], args[1]),
|
|
AtomicCas { args, .. } => write!(w, " {}, {}, {}", args[0], args[1], args[2]),
|
|
LoadNoOffset { flags, arg, .. } => write!(w, "{} {}", flags, arg),
|
|
StoreNoOffset { flags, args, .. } => write!(w, "{} {}, {}", flags, args[0], args[1]),
|
|
Unary { arg, .. } => write!(w, " {}", arg),
|
|
UnaryImm { imm, .. } => write!(w, " {}", imm),
|
|
UnaryIeee32 { imm, .. } => write!(w, " {}", imm),
|
|
UnaryIeee64 { imm, .. } => write!(w, " {}", imm),
|
|
UnaryBool { imm, .. } => write!(w, " {}", imm),
|
|
UnaryGlobalValue { global_value, .. } => write!(w, " {}", global_value),
|
|
UnaryConst {
|
|
constant_handle, ..
|
|
} => write!(w, " {}", constant_handle),
|
|
Binary { args, .. } => write!(w, " {}, {}", args[0], args[1]),
|
|
BinaryImm8 { arg, imm, .. } => write!(w, " {}, {}", arg, imm),
|
|
BinaryImm64 { arg, imm, .. } => write!(w, " {}, {}", arg, imm),
|
|
Ternary { args, .. } => write!(w, " {}, {}, {}", args[0], args[1], args[2]),
|
|
MultiAry { ref args, .. } => {
|
|
if args.is_empty() {
|
|
write!(w, "")
|
|
} else {
|
|
write!(w, " {}", DisplayValues(args.as_slice(pool)))
|
|
}
|
|
}
|
|
NullAry { .. } => write!(w, " "),
|
|
TernaryImm8 { imm, args, .. } => write!(w, " {}, {}, {}", args[0], args[1], imm),
|
|
Shuffle { mask, args, .. } => {
|
|
let data = dfg.immediates.get(mask).expect(
|
|
"Expected the shuffle mask to already be inserted into the immediates table",
|
|
);
|
|
write!(w, " {}, {}, {}", args[0], args[1], data)
|
|
}
|
|
IntCompare { cond, args, .. } => write!(w, " {} {}, {}", cond, args[0], args[1]),
|
|
IntCompareImm { cond, arg, imm, .. } => write!(w, " {} {}, {}", cond, arg, imm),
|
|
IntCond { cond, arg, .. } => write!(w, " {} {}", cond, arg),
|
|
FloatCompare { cond, args, .. } => write!(w, " {} {}, {}", cond, args[0], args[1]),
|
|
FloatCond { cond, arg, .. } => write!(w, " {} {}", cond, arg),
|
|
IntSelect { cond, args, .. } => {
|
|
write!(w, " {} {}, {}, {}", cond, args[0], args[1], args[2])
|
|
}
|
|
Jump {
|
|
destination,
|
|
ref args,
|
|
..
|
|
} => {
|
|
write!(w, " {}", destination)?;
|
|
write_block_args(w, args.as_slice(pool))
|
|
}
|
|
Branch {
|
|
destination,
|
|
ref args,
|
|
..
|
|
} => {
|
|
let args = args.as_slice(pool);
|
|
write!(w, " {}, {}", args[0], destination)?;
|
|
write_block_args(w, &args[1..])
|
|
}
|
|
BranchInt {
|
|
cond,
|
|
destination,
|
|
ref args,
|
|
..
|
|
} => {
|
|
let args = args.as_slice(pool);
|
|
write!(w, " {} {}, {}", cond, args[0], destination)?;
|
|
write_block_args(w, &args[1..])
|
|
}
|
|
BranchFloat {
|
|
cond,
|
|
destination,
|
|
ref args,
|
|
..
|
|
} => {
|
|
let args = args.as_slice(pool);
|
|
write!(w, " {} {}, {}", cond, args[0], destination)?;
|
|
write_block_args(w, &args[1..])
|
|
}
|
|
BranchIcmp {
|
|
cond,
|
|
destination,
|
|
ref args,
|
|
..
|
|
} => {
|
|
let args = args.as_slice(pool);
|
|
write!(w, " {} {}, {}, {}", cond, args[0], args[1], destination)?;
|
|
write_block_args(w, &args[2..])
|
|
}
|
|
BranchTable {
|
|
arg,
|
|
destination,
|
|
table,
|
|
..
|
|
} => write!(w, " {}, {}, {}", arg, destination, table),
|
|
BranchTableBase { table, .. } => write!(w, " {}", table),
|
|
BranchTableEntry {
|
|
args, imm, table, ..
|
|
} => write!(w, " {}, {}, {}, {}", args[0], args[1], imm, table),
|
|
IndirectJump { arg, table, .. } => write!(w, " {}, {}", arg, table),
|
|
Call {
|
|
func_ref, ref args, ..
|
|
} => write!(w, " {}({})", func_ref, DisplayValues(args.as_slice(pool))),
|
|
CallIndirect {
|
|
sig_ref, ref args, ..
|
|
} => {
|
|
let args = args.as_slice(pool);
|
|
write!(
|
|
w,
|
|
" {}, {}({})",
|
|
sig_ref,
|
|
args[0],
|
|
DisplayValues(&args[1..])
|
|
)
|
|
}
|
|
FuncAddr { func_ref, .. } => write!(w, " {}", func_ref),
|
|
StackLoad {
|
|
stack_slot, offset, ..
|
|
} => write!(w, " {}{}", stack_slot, offset),
|
|
StackStore {
|
|
arg,
|
|
stack_slot,
|
|
offset,
|
|
..
|
|
} => write!(w, " {}, {}{}", arg, stack_slot, offset),
|
|
HeapAddr { heap, arg, imm, .. } => write!(w, " {}, {}, {}", heap, arg, imm),
|
|
TableAddr { table, arg, .. } => write!(w, " {}, {}", table, arg),
|
|
Load {
|
|
flags, arg, offset, ..
|
|
} => write!(w, "{} {}{}", flags, arg, offset),
|
|
LoadComplex {
|
|
flags,
|
|
ref args,
|
|
offset,
|
|
..
|
|
} => {
|
|
let args = args.as_slice(pool);
|
|
write!(
|
|
w,
|
|
"{} {}{}",
|
|
flags,
|
|
DisplayValuesWithDelimiter(&args, '+'),
|
|
offset
|
|
)
|
|
}
|
|
Store {
|
|
flags,
|
|
args,
|
|
offset,
|
|
..
|
|
} => write!(w, "{} {}, {}{}", flags, args[0], args[1], offset),
|
|
StoreComplex {
|
|
flags,
|
|
ref args,
|
|
offset,
|
|
..
|
|
} => {
|
|
let args = args.as_slice(pool);
|
|
write!(
|
|
w,
|
|
"{} {}, {}{}",
|
|
flags,
|
|
args[0],
|
|
DisplayValuesWithDelimiter(&args[1..], '+'),
|
|
offset
|
|
)
|
|
}
|
|
RegMove { arg, src, dst, .. } => {
|
|
if let Some(isa) = isa {
|
|
let regs = isa.register_info();
|
|
write!(
|
|
w,
|
|
" {}, {} -> {}",
|
|
arg,
|
|
regs.display_regunit(src),
|
|
regs.display_regunit(dst)
|
|
)
|
|
} else {
|
|
write!(w, " {}, %{} -> %{}", arg, src, dst)
|
|
}
|
|
}
|
|
CopySpecial { src, dst, .. } => {
|
|
if let Some(isa) = isa {
|
|
let regs = isa.register_info();
|
|
write!(
|
|
w,
|
|
" {} -> {}",
|
|
regs.display_regunit(src),
|
|
regs.display_regunit(dst)
|
|
)
|
|
} else {
|
|
write!(w, " %{} -> %{}", src, dst)
|
|
}
|
|
}
|
|
CopyToSsa { src, .. } => {
|
|
if let Some(isa) = isa {
|
|
let regs = isa.register_info();
|
|
write!(w, " {}", regs.display_regunit(src))
|
|
} else {
|
|
write!(w, " %{}", src)
|
|
}
|
|
}
|
|
RegSpill { arg, src, dst, .. } => {
|
|
if let Some(isa) = isa {
|
|
let regs = isa.register_info();
|
|
write!(w, " {}, {} -> {}", arg, regs.display_regunit(src), dst)
|
|
} else {
|
|
write!(w, " {}, %{} -> {}", arg, src, dst)
|
|
}
|
|
}
|
|
RegFill { arg, src, dst, .. } => {
|
|
if let Some(isa) = isa {
|
|
let regs = isa.register_info();
|
|
write!(w, " {}, {} -> {}", arg, src, regs.display_regunit(dst))
|
|
} else {
|
|
write!(w, " {}, {} -> %{}", arg, src, dst)
|
|
}
|
|
}
|
|
Trap { code, .. } => write!(w, " {}", code),
|
|
CondTrap { arg, code, .. } => write!(w, " {}, {}", arg, code),
|
|
IntCondTrap {
|
|
cond, arg, code, ..
|
|
} => write!(w, " {} {}, {}", cond, arg, code),
|
|
FloatCondTrap {
|
|
cond, arg, code, ..
|
|
} => write!(w, " {} {}, {}", cond, arg, code),
|
|
}
|
|
}
|
|
|
|
/// Write block args using optional parantheses.
|
|
fn write_block_args(w: &mut dyn Write, args: &[Value]) -> fmt::Result {
|
|
if args.is_empty() {
|
|
Ok(())
|
|
} else {
|
|
write!(w, "({})", DisplayValues(args))
|
|
}
|
|
}
|
|
|
|
/// Displayable slice of values.
|
|
struct DisplayValues<'a>(&'a [Value]);
|
|
|
|
impl<'a> fmt::Display for DisplayValues<'a> {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
for (i, val) in self.0.iter().enumerate() {
|
|
if i == 0 {
|
|
write!(f, "{}", val)?;
|
|
} else {
|
|
write!(f, ", {}", val)?;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
struct DisplayValuesWithDelimiter<'a>(&'a [Value], char);
|
|
|
|
impl<'a> fmt::Display for DisplayValuesWithDelimiter<'a> {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
for (i, val) in self.0.iter().enumerate() {
|
|
if i == 0 {
|
|
write!(f, "{}", val)?;
|
|
} else {
|
|
write!(f, "{}{}", self.1, val)?;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use crate::cursor::{Cursor, CursorPosition, FuncCursor};
|
|
use crate::ir::types;
|
|
use crate::ir::{ExternalName, Function, InstBuilder, StackSlotData, StackSlotKind};
|
|
use alloc::string::ToString;
|
|
|
|
#[test]
|
|
fn basic() {
|
|
let mut f = Function::new();
|
|
assert_eq!(f.to_string(), "function u0:0() fast {\n}\n");
|
|
|
|
f.name = ExternalName::testcase("foo");
|
|
assert_eq!(f.to_string(), "function %foo() fast {\n}\n");
|
|
|
|
f.create_stack_slot(StackSlotData::new(StackSlotKind::ExplicitSlot, 4));
|
|
assert_eq!(
|
|
f.to_string(),
|
|
"function %foo() fast {\n ss0 = explicit_slot 4\n}\n"
|
|
);
|
|
|
|
let block = f.dfg.make_block();
|
|
f.layout.append_block(block);
|
|
assert_eq!(
|
|
f.to_string(),
|
|
"function %foo() fast {\n ss0 = explicit_slot 4\n\nblock0:\n}\n"
|
|
);
|
|
|
|
f.dfg.append_block_param(block, types::I8);
|
|
assert_eq!(
|
|
f.to_string(),
|
|
"function %foo() fast {\n ss0 = explicit_slot 4\n\nblock0(v0: i8):\n}\n"
|
|
);
|
|
|
|
f.dfg.append_block_param(block, types::F32.by(4).unwrap());
|
|
assert_eq!(
|
|
f.to_string(),
|
|
"function %foo() fast {\n ss0 = explicit_slot 4\n\nblock0(v0: i8, v1: f32x4):\n}\n"
|
|
);
|
|
|
|
{
|
|
let mut cursor = FuncCursor::new(&mut f);
|
|
cursor.set_position(CursorPosition::After(block));
|
|
cursor.ins().return_(&[])
|
|
};
|
|
assert_eq!(
|
|
f.to_string(),
|
|
"function %foo() fast {\n ss0 = explicit_slot 4\n\nblock0(v0: i8, v1: f32x4):\n return\n}\n"
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn aliases() {
|
|
use crate::ir::InstBuilder;
|
|
|
|
let mut func = Function::new();
|
|
{
|
|
let block0 = func.dfg.make_block();
|
|
let mut pos = FuncCursor::new(&mut func);
|
|
pos.insert_block(block0);
|
|
|
|
// make some detached values for change_to_alias
|
|
let v0 = pos.func.dfg.append_block_param(block0, types::I32);
|
|
let v1 = pos.func.dfg.append_block_param(block0, types::I32);
|
|
let v2 = pos.func.dfg.append_block_param(block0, types::I32);
|
|
pos.func.dfg.detach_block_params(block0);
|
|
|
|
// alias to a param--will be printed at beginning of block defining param
|
|
let v3 = pos.func.dfg.append_block_param(block0, types::I32);
|
|
pos.func.dfg.change_to_alias(v0, v3);
|
|
|
|
// alias to an alias--should print attached to alias, not ultimate target
|
|
pos.func.dfg.make_value_alias_for_serialization(v0, v2); // v0 <- v2
|
|
|
|
// alias to a result--will be printed after instruction producing result
|
|
let _dummy0 = pos.ins().iconst(types::I32, 42);
|
|
let v4 = pos.ins().iadd(v0, v0);
|
|
pos.func.dfg.change_to_alias(v1, v4);
|
|
let _dummy1 = pos.ins().iconst(types::I32, 23);
|
|
let _v7 = pos.ins().iadd(v1, v1);
|
|
}
|
|
assert_eq!(
|
|
func.to_string(),
|
|
"function u0:0() fast {\nblock0(v3: i32):\n v0 -> v3\n v2 -> v0\n v4 = iconst.i32 42\n v5 = iadd v0, v0\n v1 -> v5\n v6 = iconst.i32 23\n v7 = iadd v1, v1\n}\n"
|
|
);
|
|
}
|
|
}
|