* Switch macOS to using mach ports for trap handling This commit moves macOS to using mach ports instead of signals for handling traps. The motivation for this is listed in #2456, namely that once mach ports are used in a process that means traditional UNIX signal handlers won't get used. This means that if Wasmtime is integrated with Breakpad, for example, then Wasmtime's trap handler never fires and traps don't work. The `traphandlers` module is refactored as part of this commit to split the platform-specific bits into their own files (it was growing quite a lot for one inline `cfg_if!`). The `unix.rs` and `windows.rs` files remain the same as they were before with a few minor tweaks for some refactored interfaces. The `macos.rs` file is brand new and lifts almost its entire implementation from SpiderMonkey, adapted for Wasmtime though. The main gotcha with mach ports is that a separate thread is what services the exception. Some unsafe magic allows this separate thread to read non-`Send` and temporary state from other threads, but is hoped to be safe in this context. The unfortunate downside is that calling wasm on macOS now involves taking a global lock and modifying a global hash map twice-per-call. I'm not entirely sure how to get out of this cost for now, but hopefully for any embeddings on macOS it's not the end of the world. Closes #2456 * Add a sketch of arm64 apple support * store: maintain CallThreadState mapping when switching fibers * cranelift/aarch64: generate unwind directives to disable pointer auth Aarch64 post ARMv8.3 has a feature called pointer authentication, designed to fight ROP/JOP attacks: some pointers may be signed using new instructions, adding payloads to the high (previously unused) bits of the pointers. More on this here: https://lwn.net/Articles/718888/ Unwinders on aarch64 need to know if some pointers contained on the call frame contain an authentication code or not, to be able to properly authenticate them or use them directly. Since native code may have enabled it by default (as is the case on the Mac M1), and the default is that this configuration value is inherited, we need to explicitly disable it, for the only kind of supported pointers (return addresses). To do so, we set the value of a non-existing dwarf pseudo register (34) to 0, as documented in https://github.com/ARM-software/abi-aa/blob/master/aadwarf64/aadwarf64.rst#note-8. This is done at the function granularity, in the spirit of Cranelift compilation model. Alternatively, a single directive could be generated in the CIE, generating less information per module. * Make exception handling work on Mac aarch64 too * fibers: use a breakpoint instruction after the final call in wasmtime_fiber_start Co-authored-by: Alex Crichton <alex@alexcrichton.com>
Cranelift Code Generator
A Bytecode Alliance project
Cranelift is a low-level retargetable code generator. It translates a target-independent intermediate representation into executable machine code.
For more information, see the documentation.
For an example of how to use the JIT, see the JIT Demo, which implements a toy language.
For an example of how to use Cranelift to run WebAssembly code, see Wasmtime, which implements a standalone, embeddable, VM using Cranelift.
Status
Cranelift currently supports enough functionality to run a wide variety of programs, including all the functionality needed to execute WebAssembly MVP functions, although it needs to be used within an external WebAssembly embedding to be part of a complete WebAssembly implementation.
The x86-64 backend is currently the most complete and stable; other architectures are in various stages of development. Cranelift currently supports both the System V AMD64 ABI calling convention used on many platforms and the Windows x64 calling convention. The performance of code produced by Cranelift is not yet impressive, though we have plans to fix that.
The core codegen crates have minimal dependencies, support no_std mode (see below), and do not require any host floating-point support, and do not use callstack recursion.
Cranelift does not yet perform mitigations for Spectre or related security issues, though it may do so in the future. It does not currently make any security-relevant instruction timing guarantees. It has seen a fair amount of testing and fuzzing, although more work is needed before it would be ready for a production use case.
Cranelift's APIs are not yet stable.
Cranelift currently requires Rust 1.37 or later to build.
Contributing
If you're interested in contributing to Cranelift: thank you! We have a contributing guide which will help you getting involved in the Cranelift project.
Planned uses
Cranelift is designed to be a code generator for WebAssembly, but it is general enough to be useful elsewhere too. The initial planned uses that affected its design are:
- WebAssembly compiler for the SpiderMonkey engine in Firefox.
- Backend for the IonMonkey JavaScript JIT compiler in Firefox.
- Debug build backend for the Rust compiler.
- Wasmtime non-Web wasm engine.
Building Cranelift
Cranelift uses a conventional Cargo build process.
Cranelift consists of a collection of crates, and uses a Cargo
Workspace,
so for some cargo commands, such as cargo test, the --all is needed
to tell cargo to visit all of the crates.
test-all.sh at the top level is a script which runs all the cargo
tests and also performs code format, lint, and documentation checks.
Building with no_std
The following crates support `no_std`, although they do depend on liballoc:
- cranelift-entity
- cranelift-bforest
- cranelift-codegen
- cranelift-frontend
- cranelift-native
- cranelift-wasm
- cranelift-module
- cranelift-preopt
- cranelift
To use no_std mode, disable the std feature and enable the core feature. This currently requires nightly rust.
For example, to build `cranelift-codegen`:
cd cranelift-codegen
cargo build --no-default-features --features core
Or, when using cranelift-codegen as a dependency (in Cargo.toml):
[dependency.cranelift-codegen]
...
default-features = false
features = ["core"]
no_std support is currently "best effort". We won't try to break it, and we'll accept patches fixing problems, however we don't expect all developers to build and test no_std when submitting patches. Accordingly, the ./test-all.sh script does not test no_std.
There is a separate ./test-no_std.sh script that tests the no_std support in packages which support it.
It's important to note that cranelift still needs liballoc to compile. Thus, whatever environment is used must implement an allocator.
Also, to allow the use of HashMaps with no_std, an external crate called hashmap_core is pulled in (via the core feature). This is mostly the same as std::collections::HashMap, except that it doesn't have DOS protection. Just something to think about.
Log configuration
Cranelift uses the log crate to log messages at various levels. It doesn't
specify any maximal logging level, so embedders can choose what it should be;
however, this can have an impact of Cranelift's code size. You can use log
features to reduce the maximum logging level. For instance if you want to limit
the level of logging to warn messages and above in release mode:
[dependency.log]
...
features = ["release_max_level_warn"]
Editor Support
Editor support for working with Cranelift IR (clif) files: