Files
wasmtime/lib/frontend/src/ssa.rs

1265 lines
51 KiB
Rust

//! A SSA-building API that handles incomplete CFGs.
//!
//! The algorithm is based upon Braun M., Buchwald S., Hack S., Leißa R., Mallon C.,
//! Zwinkau A. (2013) Simple and Efficient Construction of Static Single Assignment Form.
//! In: Jhala R., De Bosschere K. (eds) Compiler Construction. CC 2013.
//! Lecture Notes in Computer Science, vol 7791. Springer, Berlin, Heidelberg
use cretonne_codegen::cursor::{Cursor, FuncCursor};
use cretonne_codegen::entity::{EntityMap, EntityRef, PrimaryMap};
use cretonne_codegen::ir::immediates::{Ieee32, Ieee64};
use cretonne_codegen::ir::instructions::BranchInfo;
use cretonne_codegen::ir::types::{F32, F64};
use cretonne_codegen::ir::{Ebb, Function, Inst, InstBuilder, Type, Value};
use cretonne_codegen::packed_option::PackedOption;
use cretonne_codegen::packed_option::ReservedValue;
use std::mem;
use std::u32;
use std::vec::Vec;
/// Structure containing the data relevant the construction of SSA for a given function.
///
/// The parameter struct `Variable` corresponds to the way variables are represented in the
/// non-SSA language you're translating from.
///
/// The SSA building relies on information about the variables used and defined, as well as
/// their position relative to basic blocks which are stricter than extended basic blocks since
/// they don't allow branching in the middle of them.
///
/// This SSA building module allows you to def and use variables on the fly while you are
/// constructing the CFG, no need for a separate SSA pass after the CFG is completed.
///
/// A basic block is said _filled_ if all the instruction that it contains have been translated,
/// and it is said _sealed_ if all of its predecessors have been declared. Only filled predecessors
/// can be declared.
pub struct SSABuilder<Variable>
where
Variable: EntityRef,
{
// Records for every variable and for every relevant block, the last definition of
// the variable in the block.
variables: EntityMap<Variable, EntityMap<Block, PackedOption<Value>>>,
// Records the position of the basic blocks and the list of values used but not defined in the
// block.
blocks: PrimaryMap<Block, BlockData<Variable>>,
// Records the basic blocks at the beginning of the `Ebb`s.
ebb_headers: EntityMap<Ebb, PackedOption<Block>>,
// Call and result stacks for use in the `use_var`/`predecessors_lookup` state machine.
calls: Vec<Call>,
results: Vec<Value>,
// Side effects accumulated in the `use_var`/`predecessors_lookup` state machine.
side_effects: SideEffects,
}
/// Side effects of a `use_var` or a `seal_ebb_header_block` method call.
pub struct SideEffects {
/// When we want to append jump arguments to a `br_table` instruction, the critical edge is
/// splitted and the newly created `Ebb`s are signaled here.
pub split_ebbs_created: Vec<Ebb>,
/// When a variable is used but has never been defined before (this happens in the case of
/// unreachable code), a placeholder `iconst` or `fconst` value is added to the right `Ebb`.
/// This field signals if it is the case and return the `Ebb` to which the initialization has
/// been added.
pub instructions_added_to_ebbs: Vec<Ebb>,
}
impl SideEffects {
fn new() -> Self {
Self {
split_ebbs_created: Vec::new(),
instructions_added_to_ebbs: Vec::new(),
}
}
fn is_empty(&self) -> bool {
self.split_ebbs_created.is_empty() && self.instructions_added_to_ebbs.is_empty()
}
}
/// Describes the current position of a basic block in the control flow graph.
enum BlockData<Variable> {
/// A block at the top of an `Ebb`.
EbbHeader(EbbHeaderBlockData<Variable>),
/// A block inside an `Ebb` with an unique other block as its predecessor.
/// The block is implicitly sealed at creation.
EbbBody { predecessor: Block },
}
impl<Variable> BlockData<Variable> {
fn add_predecessor(&mut self, pred: Block, inst: Inst) {
match *self {
BlockData::EbbBody { .. } => panic!("you can't add a predecessor to a body block"),
BlockData::EbbHeader(ref mut data) => {
debug_assert!(!data.sealed, "sealed blocks cannot accept new predecessors");
data.predecessors.push((pred, inst));
}
}
}
fn remove_predecessor(&mut self, inst: Inst) -> Block {
match *self {
BlockData::EbbBody { .. } => panic!("should not happen"),
BlockData::EbbHeader(ref mut data) => {
// This a linear complexity operation but the number of predecessors is low
// in all non-pathological cases
let pred: usize = data.predecessors
.iter()
.position(|pair| pair.1 == inst)
.expect("the predecessor you are trying to remove is not declared");
data.predecessors.swap_remove(pred).0
}
}
}
}
struct EbbHeaderBlockData<Variable> {
// The predecessors of the Ebb header block, with the block and branch instruction.
predecessors: Vec<(Block, Inst)>,
// A ebb header block is sealed if all of its predecessors have been declared.
sealed: bool,
// The ebb which this block is part of.
ebb: Ebb,
// List of current Ebb arguments for which an earlier def has not been found yet.
undef_variables: Vec<(Variable, Value)>,
}
/// A opaque reference to a basic block.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct Block(u32);
impl EntityRef for Block {
fn new(index: usize) -> Self {
debug_assert!(index < (u32::MAX as usize));
Block(index as u32)
}
fn index(self) -> usize {
self.0 as usize
}
}
impl ReservedValue for Block {
fn reserved_value() -> Self {
Block(u32::MAX)
}
}
impl<Variable> SSABuilder<Variable>
where
Variable: EntityRef,
{
/// Allocate a new blank SSA builder struct. Use the API function to interact with the struct.
pub fn new() -> Self {
Self {
variables: EntityMap::with_default(EntityMap::new()),
blocks: PrimaryMap::new(),
ebb_headers: EntityMap::new(),
calls: Vec::new(),
results: Vec::new(),
side_effects: SideEffects::new(),
}
}
/// Clears a `SSABuilder` from all its data, letting it in a pristine state without
/// deallocating memory.
pub fn clear(&mut self) {
self.variables.clear();
self.blocks.clear();
self.ebb_headers.clear();
debug_assert!(self.calls.is_empty());
debug_assert!(self.results.is_empty());
debug_assert!(self.side_effects.is_empty());
}
/// Tests whether an `SSABuilder` is in a cleared state.
pub fn is_empty(&self) -> bool {
self.variables.is_empty() && self.blocks.is_empty() && self.ebb_headers.is_empty()
&& self.calls.is_empty() && self.results.is_empty()
&& self.side_effects.is_empty()
}
}
/// Small enum used for clarity in some functions.
#[derive(Debug)]
enum ZeroOneOrMore<T> {
Zero(),
One(T),
More(),
}
#[derive(Debug)]
enum UseVarCases {
Unsealed(Value),
SealedOnePredecessor(Block),
SealedMultiplePredecessors(Value, Ebb),
}
/// States for the `use_var`/`predecessors_lookup` state machine.
enum Call {
UseVar(Block),
FinishSealedOnePredecessor(Block),
FinishPredecessorsLookup(Value, Ebb),
}
/// Emit instructions to produce a zero value in the given type.
fn emit_zero(ty: Type, mut cur: FuncCursor) -> Value {
if ty.is_int() {
cur.ins().iconst(ty, 0)
} else if ty.is_bool() {
cur.ins().bconst(ty, false)
} else if ty == F32 {
cur.ins().f32const(Ieee32::with_bits(0))
} else if ty == F64 {
cur.ins().f64const(Ieee64::with_bits(0))
} else if ty.is_vector() {
let scalar_ty = ty.lane_type();
if scalar_ty.is_int() {
cur.ins().iconst(ty, 0)
} else if scalar_ty.is_bool() {
cur.ins().bconst(ty, false)
} else if scalar_ty == F32 {
let scalar = cur.ins().f32const(Ieee32::with_bits(0));
cur.ins().splat(ty, scalar)
} else if scalar_ty == F64 {
let scalar = cur.ins().f64const(Ieee64::with_bits(0));
cur.ins().splat(ty, scalar)
} else {
panic!("unimplemented scalar type: {:?}", ty)
}
} else {
panic!("unimplemented type: {:?}", ty)
}
}
/// The following methods are the API of the SSA builder. Here is how it should be used when
/// translating to Cretonne IR:
///
/// - for each sequence of contiguous instructions (with no branches), create a corresponding
/// basic block with `declare_ebb_body_block` or `declare_ebb_header_block` depending on the
/// position of the basic block;
///
/// - while traversing a basic block and translating instruction, use `def_var` and `use_var`
/// to record definitions and uses of variables, these methods will give you the corresponding
/// SSA values;
///
/// - when all the instructions in a basic block have translated, the block is said _filled_ and
/// only then you can add it as a predecessor to other blocks with `declare_ebb_predecessor`;
///
/// - when you have constructed all the predecessor to a basic block at the beginning of an `Ebb`,
/// call `seal_ebb_header_block` on it with the `Function` that you are building.
///
/// This API will give you the correct SSA values to use as arguments of your instructions,
/// as well as modify the jump instruction and `Ebb` headers parameters to account for the SSA
/// Phi functions.
///
impl<Variable> SSABuilder<Variable>
where
Variable: EntityRef,
{
/// Declares a new definition of a variable in a given basic block.
/// The SSA value is passed as an argument because it should be created with
/// `ir::DataFlowGraph::append_result`.
pub fn def_var(&mut self, var: Variable, val: Value, block: Block) {
self.variables[var][block] = PackedOption::from(val);
}
/// Declares a use of a variable in a given basic block. Returns the SSA value corresponding
/// to the current SSA definition of this variable and a list of newly created Ebbs that
/// are the results of critical edge splitting for `br_table` with arguments.
///
/// If the variable has never been defined in this blocks or recursively in its predecessors,
/// this method will silently create an initializer with `iconst` or `fconst`. You are
/// responsible for making sure that you initialize your variables.
pub fn use_var(
&mut self,
func: &mut Function,
var: Variable,
ty: Type,
block: Block,
) -> (Value, SideEffects) {
// First we lookup for the current definition of the variable in this block
if let Some(var_defs) = self.variables.get(var) {
if let Some(val) = var_defs[block].expand() {
return (val, SideEffects::new());
}
}
// Otherwise, we have to do a non-local lookup.
debug_assert!(self.calls.is_empty());
debug_assert!(self.results.is_empty());
debug_assert!(self.side_effects.is_empty());
self.use_var_nonlocal(func, var, ty, block);
(
self.run_state_machine(func, var, ty),
mem::replace(&mut self.side_effects, SideEffects::new()),
)
}
/// Resolve a use of `var` in `block` in the case where there's no prior def
/// in `block`.
fn use_var_nonlocal(&mut self, func: &mut Function, var: Variable, ty: Type, block: Block) {
let case = match self.blocks[block] {
BlockData::EbbHeader(ref mut data) => {
// The block has multiple predecessors so we append an Ebb parameter that
// will serve as a value.
if data.sealed {
if data.predecessors.len() == 1 {
// Only one predecessor, straightforward case
UseVarCases::SealedOnePredecessor(data.predecessors[0].0)
} else {
let val = func.dfg.append_ebb_param(data.ebb, ty);
UseVarCases::SealedMultiplePredecessors(val, data.ebb)
}
} else {
let val = func.dfg.append_ebb_param(data.ebb, ty);
data.undef_variables.push((var, val));
UseVarCases::Unsealed(val)
}
}
BlockData::EbbBody { predecessor: pred } => UseVarCases::SealedOnePredecessor(pred),
};
match case {
// The block has a single predecessor, we look into it.
UseVarCases::SealedOnePredecessor(pred) => {
self.calls.push(Call::FinishSealedOnePredecessor(block));
self.calls.push(Call::UseVar(pred));
}
// The block has multiple predecessors, we register the EBB parameter as the current
// definition for the variable.
UseVarCases::Unsealed(val) => {
self.def_var(var, val, block);
self.results.push(val);
}
UseVarCases::SealedMultiplePredecessors(val, ebb) => {
// If multiple predecessor we look up a use_var in each of them:
// if they all yield the same value no need for an EBB parameter
self.def_var(var, val, block);
self.begin_predecessors_lookup(val, ebb);
}
}
}
/// For blocks with a single predecessor, once we've determined the value,
/// record a local def for it for future queries to find.
fn finish_sealed_one_predecessor(&mut self, var: Variable, block: Block) {
let val = *self.results.last().unwrap();
self.def_var(var, val, block);
}
/// Declares a new basic block belonging to the body of a certain `Ebb` and having `pred`
/// as a predecessor. `pred` is the only predecessor of the block and the block is sealed
/// at creation.
///
/// To declare a `Ebb` header block, see `declare_ebb_header_block`.
pub fn declare_ebb_body_block(&mut self, pred: Block) -> Block {
self.blocks.push(BlockData::EbbBody { predecessor: pred })
}
/// Declares a new basic block at the beginning of an `Ebb`. No predecessors are declared
/// here and the block is not sealed.
/// Predecessors have to be added with `declare_ebb_predecessor`.
pub fn declare_ebb_header_block(&mut self, ebb: Ebb) -> Block {
let block = self.blocks.push(BlockData::EbbHeader(EbbHeaderBlockData {
predecessors: Vec::new(),
sealed: false,
ebb,
undef_variables: Vec::new(),
}));
self.ebb_headers[ebb] = block.into();
block
}
/// Gets the header block corresponding to an Ebb, panics if the Ebb or the header block
/// isn't declared.
pub fn header_block(&self, ebb: Ebb) -> Block {
self.ebb_headers
.get(ebb)
.expect("the ebb has not been declared")
.expand()
.expect("the header block has not been defined")
}
/// Declares a new predecessor for an `Ebb` header block and record the branch instruction
/// of the predecessor that leads to it.
///
/// Note that the predecessor is a `Block` and not an `Ebb`. This `Block` must be filled
/// before added as predecessor. Note that you must provide no jump arguments to the branch
/// instruction when you create it since `SSABuilder` will fill them for you.
///
/// Callers are expected to avoid adding the same predecessor more than once in the case
/// of a jump table.
pub fn declare_ebb_predecessor(&mut self, ebb: Ebb, pred: Block, inst: Inst) {
debug_assert!(!self.is_sealed(ebb));
let header_block = self.header_block(ebb);
self.blocks[header_block].add_predecessor(pred, inst)
}
/// Remove a previously declared Ebb predecessor by giving a reference to the jump
/// instruction. Returns the basic block containing the instruction.
///
/// Note: use only when you know what you are doing, this might break the SSA building problem
pub fn remove_ebb_predecessor(&mut self, ebb: Ebb, inst: Inst) -> Block {
debug_assert!(!self.is_sealed(ebb));
let header_block = self.header_block(ebb);
self.blocks[header_block].remove_predecessor(inst)
}
/// Completes the global value numbering for an `Ebb`, all of its predecessors having been
/// already sealed.
///
/// This method modifies the function's `Layout` by adding arguments to the `Ebb`s to
/// take into account the Phi function placed by the SSA algorithm.
///
/// Returns the list of newly created ebbs for critical edge splitting.
pub fn seal_ebb_header_block(&mut self, ebb: Ebb, func: &mut Function) -> SideEffects {
self.seal_one_ebb_header_block(ebb, func);
mem::replace(&mut self.side_effects, SideEffects::new())
}
/// Completes the global value numbering for all `Ebb`s in `func`.
///
/// It's more efficient to seal `Ebb`s as soon as possible, during
/// translation, but for frontends where this is impractical to do, this
/// function can be used at the end of translating all blocks to ensure
/// that everything is sealed.
pub fn seal_all_ebb_header_blocks(&mut self, func: &mut Function) -> SideEffects {
// Seal all `Ebb`s currently in the function. This can entail splitting
// and creation of new blocks, however such new blocks are sealed on
// the fly, so we don't need to account for them here.
for ebb in self.ebb_headers.keys() {
self.seal_one_ebb_header_block(ebb, func);
}
mem::replace(&mut self.side_effects, SideEffects::new())
}
/// Helper function for `seal_ebb_header_block` and
/// `seal_all_ebb_header_blocks`.
fn seal_one_ebb_header_block(&mut self, ebb: Ebb, func: &mut Function) {
let block = self.header_block(ebb);
let (undef_vars, ebb): (Vec<(Variable, Value)>, Ebb) = match self.blocks[block] {
BlockData::EbbBody { .. } => panic!("this should not happen"),
BlockData::EbbHeader(ref mut data) => {
debug_assert!(!data.sealed);
// Extract the undef_variables data from the block so that we
// can iterate over it without borrowing the whole builder.
let undef_variables = mem::replace(&mut data.undef_variables, Vec::new());
(undef_variables, data.ebb)
}
};
// For each undef var we look up values in the predecessors and create an EBB parameter
// only if necessary.
for (var, val) in undef_vars {
let ty = func.dfg.value_type(val);
self.predecessors_lookup(func, val, var, ty, ebb);
}
self.mark_ebb_header_block_sealed(block);
}
/// Set the `sealed` flag for `block`.
fn mark_ebb_header_block_sealed(&mut self, block: Block) {
// Then we mark the block as sealed.
match self.blocks[block] {
BlockData::EbbBody { .. } => panic!("this should not happen"),
BlockData::EbbHeader(ref mut data) => {
debug_assert!(!data.sealed);
debug_assert!(data.undef_variables.is_empty());
data.sealed = true;
// We could call data.predecessors.shrink_to_fit() here, if
// important, because no further predecessors will be added
// to this block.
}
}
}
/// Look up in the predecessors of an Ebb the def for a value an decides whether or not
/// to keep the eeb arg, and act accordingly. Returns the chosen value and optionally a
/// list of Ebb that are the middle of newly created critical edges splits.
fn predecessors_lookup(
&mut self,
func: &mut Function,
temp_arg_val: Value,
temp_arg_var: Variable,
ty: Type,
dest_ebb: Ebb,
) -> Value {
debug_assert!(self.calls.is_empty());
debug_assert!(self.results.is_empty());
// self.side_effects may be non-empty here so that callers can
// accumulate side effects over multiple calls.
self.begin_predecessors_lookup(temp_arg_val, dest_ebb);
self.run_state_machine(func, temp_arg_var, ty)
}
/// Initiate use lookups in all predecessors of `dest_ebb`, and arrange for a call
/// to `finish_predecessors_lookup` once they complete.
fn begin_predecessors_lookup(&mut self, temp_arg_val: Value, dest_ebb: Ebb) {
self.calls
.push(Call::FinishPredecessorsLookup(temp_arg_val, dest_ebb));
// Iterate over the predecessors.
let mut calls = mem::replace(&mut self.calls, Vec::new());
calls.extend(
self.predecessors(dest_ebb)
.iter()
.rev()
.map(|&(pred, _)| Call::UseVar(pred)),
);
self.calls = calls;
}
/// Examine the values from the predecessors and compute a result value, creating
/// block parameters as needed.
fn finish_predecessors_lookup(
&mut self,
func: &mut Function,
temp_arg_val: Value,
temp_arg_var: Variable,
dest_ebb: Ebb,
) {
let mut pred_values: ZeroOneOrMore<Value> = ZeroOneOrMore::Zero();
// Iterate over the predecessors.
for _ in 0..self.predecessors(dest_ebb).len() {
// For each predecessor, we query what is the local SSA value corresponding
// to var and we put it as an argument of the branch instruction.
let pred_val = self.results.pop().unwrap();
match pred_values {
ZeroOneOrMore::Zero() => {
if pred_val != temp_arg_val {
pred_values = ZeroOneOrMore::One(pred_val);
}
}
ZeroOneOrMore::One(old_val) => {
if pred_val != temp_arg_val && pred_val != old_val {
pred_values = ZeroOneOrMore::More();
}
}
ZeroOneOrMore::More() => {}
}
}
let result_val = match pred_values {
ZeroOneOrMore::Zero() => {
// The variable is used but never defined before. This is an irregularity in the
// code, but rather than throwing an error we silently initialize the variable to
// 0. This will have no effect since this situation happens in unreachable code.
if !func.layout.is_ebb_inserted(dest_ebb) {
func.layout.append_ebb(dest_ebb);
}
self.side_effects.instructions_added_to_ebbs.push(dest_ebb);
let zero = emit_zero(
func.dfg.value_type(temp_arg_val),
FuncCursor::new(func).at_first_insertion_point(dest_ebb),
);
func.dfg.remove_ebb_param(temp_arg_val);
func.dfg.change_to_alias(temp_arg_val, zero);
zero
}
ZeroOneOrMore::One(pred_val) => {
// Here all the predecessors use a single value to represent our variable
// so we don't need to have it as an ebb argument.
// We need to replace all the occurrences of val with pred_val but since
// we can't afford a re-writing pass right now we just declare an alias.
// Resolve aliases eagerly so that we can check for cyclic aliasing,
// which can occur in unreachable code.
let mut resolved = func.dfg.resolve_aliases(pred_val);
if temp_arg_val == resolved {
// Cycle detected. Break it by creating a zero value.
resolved = emit_zero(
func.dfg.value_type(temp_arg_val),
FuncCursor::new(func).at_first_insertion_point(dest_ebb),
);
}
func.dfg.remove_ebb_param(temp_arg_val);
func.dfg.change_to_alias(temp_arg_val, resolved);
resolved
}
ZeroOneOrMore::More() => {
// There is disagreement in the predecessors on which value to use so we have
// to keep the ebb argument. To avoid borrowing `self` for the whole loop,
// temporarily detach the predecessors list and replace it with an empty list.
let mut preds = mem::replace(self.predecessors_mut(dest_ebb), Vec::new());
for &mut (ref mut pred_block, ref mut last_inst) in &mut preds {
// We already did a full `use_var` above, so we can do just the fast path.
let pred_val = self.variables
.get(temp_arg_var)
.unwrap()
.get(*pred_block)
.unwrap()
.unwrap();
let jump_arg = self.append_jump_argument(
func,
*last_inst,
*pred_block,
dest_ebb,
pred_val,
temp_arg_var,
);
if let Some((middle_ebb, middle_block, middle_jump_inst)) = jump_arg {
*pred_block = middle_block;
*last_inst = middle_jump_inst;
self.side_effects.split_ebbs_created.push(middle_ebb);
}
}
// Now that we're done, move the predecessors list back.
debug_assert!(self.predecessors(dest_ebb).is_empty());
*self.predecessors_mut(dest_ebb) = preds;
temp_arg_val
}
};
self.results.push(result_val);
}
/// Appends a jump argument to a jump instruction, returns ebb created in case of
/// critical edge splitting.
fn append_jump_argument(
&mut self,
func: &mut Function,
jump_inst: Inst,
jump_inst_block: Block,
dest_ebb: Ebb,
val: Value,
var: Variable,
) -> Option<(Ebb, Block, Inst)> {
match func.dfg.analyze_branch(jump_inst) {
BranchInfo::NotABranch => {
panic!("you have declared a non-branch instruction as a predecessor to an ebb");
}
// For a single destination appending a jump argument to the instruction
// is sufficient.
BranchInfo::SingleDest(_, _) => {
func.dfg.append_inst_arg(jump_inst, val);
None
}
BranchInfo::Table(jt) => {
// In the case of a jump table, the situation is tricky because br_table doesn't
// support arguments.
// We have to split the critical edge
let middle_ebb = func.dfg.make_ebb();
func.layout.append_ebb(middle_ebb);
let middle_block = self.declare_ebb_header_block(middle_ebb);
self.blocks[middle_block].add_predecessor(jump_inst_block, jump_inst);
self.mark_ebb_header_block_sealed(middle_block);
for old_dest in func.jump_tables[jt].as_mut_slice() {
if old_dest.unwrap() == dest_ebb {
*old_dest = PackedOption::from(middle_ebb);
}
}
let mut cur = FuncCursor::new(func).at_bottom(middle_ebb);
let middle_jump_inst = cur.ins().jump(dest_ebb, &[val]);
self.def_var(var, val, middle_block);
Some((middle_ebb, middle_block, middle_jump_inst))
}
}
}
/// Returns the list of `Ebb`s that have been declared as predecessors of the argument.
pub fn predecessors(&self, ebb: Ebb) -> &[(Block, Inst)] {
let block = self.header_block(ebb);
match self.blocks[block] {
BlockData::EbbBody { .. } => panic!("should not happen"),
BlockData::EbbHeader(ref data) => &data.predecessors,
}
}
/// Same as predecessors, but for &mut.
pub fn predecessors_mut(&mut self, ebb: Ebb) -> &mut Vec<(Block, Inst)> {
let block = self.header_block(ebb);
match self.blocks[block] {
BlockData::EbbBody { .. } => panic!("should not happen"),
BlockData::EbbHeader(ref mut data) => &mut data.predecessors,
}
}
/// Returns `true` if and only if `seal_ebb_header_block` has been called on the argument.
pub fn is_sealed(&self, ebb: Ebb) -> bool {
match self.blocks[self.header_block(ebb)] {
BlockData::EbbBody { .. } => panic!("should not happen"),
BlockData::EbbHeader(ref data) => data.sealed,
}
}
/// The main algorithm is naturally recursive: when there's a `use_var` in a
/// block with no corresponding local defs, it recurses and performs a
/// `use_var` in each predecessor. To avoid risking running out of callstack
/// space, we keep an explicit stack and use a small state machine rather
/// than literal recursion.
fn run_state_machine(&mut self, func: &mut Function, var: Variable, ty: Type) -> Value {
// Process the calls scheduled in `self.calls` until it is empty.
while let Some(call) = self.calls.pop() {
match call {
Call::UseVar(block) => {
// First we lookup for the current definition of the variable in this block
if let Some(var_defs) = self.variables.get(var) {
if let Some(val) = var_defs[block].expand() {
self.results.push(val);
continue;
}
}
self.use_var_nonlocal(func, var, ty, block);
}
Call::FinishSealedOnePredecessor(block) => {
self.finish_sealed_one_predecessor(var, block);
}
Call::FinishPredecessorsLookup(temp_arg_val, dest_ebb) => {
self.finish_predecessors_lookup(func, temp_arg_val, var, dest_ebb);
}
}
}
debug_assert_eq!(self.results.len(), 1);
self.results.pop().unwrap()
}
}
#[cfg(test)]
mod tests {
use cretonne_codegen::cursor::{Cursor, FuncCursor};
use cretonne_codegen::entity::EntityRef;
use cretonne_codegen::ir::instructions::BranchInfo;
use cretonne_codegen::ir::types::*;
use cretonne_codegen::ir::{Function, Inst, InstBuilder, JumpTableData, Opcode};
use cretonne_codegen::settings;
use cretonne_codegen::verify_function;
use ssa::SSABuilder;
use Variable;
#[test]
fn simple_block() {
let mut func = Function::new();
let mut ssa: SSABuilder<Variable> = SSABuilder::new();
let ebb0 = func.dfg.make_ebb();
// Here is the pseudo-program we want to translate:
// x = 1;
// y = 2;
// z = x + y;
// z = x + z;
let block = ssa.declare_ebb_header_block(ebb0);
let x_var = Variable::new(0);
let x_ssa = {
let mut cur = FuncCursor::new(&mut func);
cur.insert_ebb(ebb0);
cur.ins().iconst(I32, 1)
};
ssa.def_var(x_var, x_ssa, block);
let y_var = Variable::new(1);
let y_ssa = {
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb0);
cur.ins().iconst(I32, 2)
};
ssa.def_var(y_var, y_ssa, block);
assert_eq!(ssa.use_var(&mut func, x_var, I32, block).0, x_ssa);
assert_eq!(ssa.use_var(&mut func, y_var, I32, block).0, y_ssa);
let z_var = Variable::new(2);
let x_use1 = ssa.use_var(&mut func, x_var, I32, block).0;
let y_use1 = ssa.use_var(&mut func, y_var, I32, block).0;
let z1_ssa = {
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb0);
cur.ins().iadd(x_use1, y_use1)
};
ssa.def_var(z_var, z1_ssa, block);
assert_eq!(ssa.use_var(&mut func, z_var, I32, block).0, z1_ssa);
let x_use2 = ssa.use_var(&mut func, x_var, I32, block).0;
let z_use1 = ssa.use_var(&mut func, z_var, I32, block).0;
let z2_ssa = {
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb0);
cur.ins().iadd(x_use2, z_use1)
};
ssa.def_var(z_var, z2_ssa, block);
assert_eq!(ssa.use_var(&mut func, z_var, I32, block).0, z2_ssa);
}
#[test]
fn sequence_of_blocks() {
let mut func = Function::new();
let mut ssa: SSABuilder<Variable> = SSABuilder::new();
let ebb0 = func.dfg.make_ebb();
let ebb1 = func.dfg.make_ebb();
// Here is the pseudo-program we want to translate:
// ebb0:
// x = 1;
// y = 2;
// z = x + y;
// brnz y, ebb1;
// z = x + z;
// ebb1:
// y = x + y;
let block0 = ssa.declare_ebb_header_block(ebb0);
let x_var = Variable::new(0);
let x_ssa = {
let mut cur = FuncCursor::new(&mut func);
cur.insert_ebb(ebb0);
cur.insert_ebb(ebb1);
cur.goto_bottom(ebb0);
cur.ins().iconst(I32, 1)
};
ssa.def_var(x_var, x_ssa, block0);
let y_var = Variable::new(1);
let y_ssa = {
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb0);
cur.ins().iconst(I32, 2)
};
ssa.def_var(y_var, y_ssa, block0);
assert_eq!(ssa.use_var(&mut func, x_var, I32, block0).0, x_ssa);
assert_eq!(ssa.use_var(&mut func, y_var, I32, block0).0, y_ssa);
let z_var = Variable::new(2);
let x_use1 = ssa.use_var(&mut func, x_var, I32, block0).0;
let y_use1 = ssa.use_var(&mut func, y_var, I32, block0).0;
let z1_ssa = {
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb0);
cur.ins().iadd(x_use1, y_use1)
};
ssa.def_var(z_var, z1_ssa, block0);
assert_eq!(ssa.use_var(&mut func, z_var, I32, block0).0, z1_ssa);
let y_use2 = ssa.use_var(&mut func, y_var, I32, block0).0;
let jump_inst: Inst = {
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb0);
cur.ins().brnz(y_use2, ebb1, &[])
};
let block1 = ssa.declare_ebb_body_block(block0);
let x_use2 = ssa.use_var(&mut func, x_var, I32, block1).0;
assert_eq!(x_use2, x_ssa);
let z_use1 = ssa.use_var(&mut func, z_var, I32, block1).0;
assert_eq!(z_use1, z1_ssa);
let z2_ssa = {
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb0);
cur.ins().iadd(x_use2, z_use1)
};
ssa.def_var(z_var, z2_ssa, block1);
assert_eq!(ssa.use_var(&mut func, z_var, I32, block1).0, z2_ssa);
ssa.seal_ebb_header_block(ebb0, &mut func);
let block2 = ssa.declare_ebb_header_block(ebb1);
ssa.declare_ebb_predecessor(ebb1, block0, jump_inst);
ssa.seal_ebb_header_block(ebb1, &mut func);
let x_use3 = ssa.use_var(&mut func, x_var, I32, block2).0;
assert_eq!(x_ssa, x_use3);
let y_use3 = ssa.use_var(&mut func, y_var, I32, block2).0;
assert_eq!(y_ssa, y_use3);
let y2_ssa = {
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb0);
cur.ins().iadd(x_use3, y_use3)
};
ssa.def_var(y_var, y2_ssa, block2);
match func.dfg.analyze_branch(jump_inst) {
BranchInfo::SingleDest(dest, jump_args) => {
assert_eq!(dest, ebb1);
assert_eq!(jump_args.len(), 0);
}
_ => assert!(false),
};
}
#[test]
fn program_with_loop() {
let mut func = Function::new();
let mut ssa: SSABuilder<Variable> = SSABuilder::new();
let ebb0 = func.dfg.make_ebb();
let ebb1 = func.dfg.make_ebb();
let ebb2 = func.dfg.make_ebb();
// Here is the pseudo-program we want to translate:
// ebb0:
// x = 1;
// y = 2;
// z = x + y;
// jump ebb1
// ebb1:
// z = z + y;
// brnz y, ebb1;
// z = z - x;
// return y
// ebb2:
// y = y - x
// jump ebb1
let block0 = ssa.declare_ebb_header_block(ebb0);
ssa.seal_ebb_header_block(ebb0, &mut func);
let x_var = Variable::new(0);
let x1 = {
let mut cur = FuncCursor::new(&mut func);
cur.insert_ebb(ebb0);
cur.insert_ebb(ebb1);
cur.insert_ebb(ebb2);
cur.goto_bottom(ebb0);
cur.ins().iconst(I32, 1)
};
ssa.def_var(x_var, x1, block0);
assert_eq!(ssa.use_var(&mut func, x_var, I32, block0).0, x1);
let y_var = Variable::new(1);
let y1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb0);
cur.ins().iconst(I32, 2)
};
ssa.def_var(y_var, y1, block0);
assert_eq!(ssa.use_var(&mut func, y_var, I32, block0).0, y1);
let z_var = Variable::new(2);
let x2 = ssa.use_var(&mut func, x_var, I32, block0).0;
assert_eq!(x2, x1);
let y2 = ssa.use_var(&mut func, y_var, I32, block0).0;
assert_eq!(y2, y1);
let z1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb0);
cur.ins().iadd(x2, y2)
};
ssa.def_var(z_var, z1, block0);
let jump_ebb0_ebb1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb0);
cur.ins().jump(ebb1, &[])
};
let block1 = ssa.declare_ebb_header_block(ebb1);
ssa.declare_ebb_predecessor(ebb1, block0, jump_ebb0_ebb1);
let z2 = ssa.use_var(&mut func, z_var, I32, block1).0;
let y3 = ssa.use_var(&mut func, y_var, I32, block1).0;
let z3 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb1);
cur.ins().iadd(z2, y3)
};
ssa.def_var(z_var, z3, block1);
let y4 = ssa.use_var(&mut func, y_var, I32, block1).0;
assert_eq!(y4, y3);
let jump_ebb1_ebb2 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb1);
cur.ins().brnz(y4, ebb2, &[])
};
let block2 = ssa.declare_ebb_body_block(block1);
let z4 = ssa.use_var(&mut func, z_var, I32, block2).0;
assert_eq!(z4, z3);
let x3 = ssa.use_var(&mut func, x_var, I32, block2).0;
let z5 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb1);
cur.ins().isub(z4, x3)
};
ssa.def_var(z_var, z5, block2);
let y5 = ssa.use_var(&mut func, y_var, I32, block2).0;
assert_eq!(y5, y3);
{
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb1);
cur.ins().return_(&[y5])
};
let block3 = ssa.declare_ebb_header_block(ebb2);
ssa.declare_ebb_predecessor(ebb2, block1, jump_ebb1_ebb2);
ssa.seal_ebb_header_block(ebb2, &mut func);
let y6 = ssa.use_var(&mut func, y_var, I32, block3).0;
assert_eq!(y6, y3);
let x4 = ssa.use_var(&mut func, x_var, I32, block3).0;
assert_eq!(x4, x3);
let y7 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb2);
cur.ins().isub(y6, x4)
};
ssa.def_var(y_var, y7, block3);
let jump_ebb2_ebb1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb2);
cur.ins().jump(ebb1, &[])
};
ssa.declare_ebb_predecessor(ebb1, block3, jump_ebb2_ebb1);
ssa.seal_ebb_header_block(ebb1, &mut func);
assert_eq!(func.dfg.ebb_params(ebb1)[0], z2);
assert_eq!(func.dfg.ebb_params(ebb1)[1], y3);
assert_eq!(func.dfg.resolve_aliases(x3), x1);
}
#[test]
fn br_table_with_args() {
// This tests the on-demand splitting of critical edges for br_table with jump arguments
let mut func = Function::new();
let mut ssa: SSABuilder<Variable> = SSABuilder::new();
let ebb0 = func.dfg.make_ebb();
let ebb1 = func.dfg.make_ebb();
// Here is the pseudo-program we want to translate:
// ebb0:
// x = 0;
// br_table x ebb1
// x = 1
// jump ebb1
// ebb1:
// x = x + 1
// return
//
let block0 = ssa.declare_ebb_header_block(ebb0);
ssa.seal_ebb_header_block(ebb0, &mut func);
let x_var = Variable::new(0);
let x1 = {
let mut cur = FuncCursor::new(&mut func);
cur.insert_ebb(ebb0);
cur.insert_ebb(ebb1);
cur.goto_bottom(ebb0);
cur.ins().iconst(I32, 1)
};
ssa.def_var(x_var, x1, block0);
let mut data = JumpTableData::new();
data.push_entry(ebb1);
let jt = func.create_jump_table(data);
ssa.use_var(&mut func, x_var, I32, block0).0;
let br_table = {
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb0);
cur.ins().br_table(x1, jt)
};
let block1 = ssa.declare_ebb_body_block(block0);
let x3 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb0);
cur.ins().iconst(I32, 2)
};
ssa.def_var(x_var, x3, block1);
let jump_inst = {
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb0);
cur.ins().jump(ebb1, &[])
};
let block2 = ssa.declare_ebb_header_block(ebb1);
ssa.declare_ebb_predecessor(ebb1, block1, jump_inst);
ssa.declare_ebb_predecessor(ebb1, block0, br_table);
ssa.seal_ebb_header_block(ebb1, &mut func);
let x4 = ssa.use_var(&mut func, x_var, I32, block2).0;
{
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb1);
cur.ins().iadd_imm(x4, 1)
};
{
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb1);
cur.ins().return_(&[])
};
let flags = settings::Flags::new(settings::builder());
match verify_function(&func, &flags) {
Ok(()) => {}
Err(_err) => {
#[cfg(feature = "std")]
panic!(_err.message);
#[cfg(not(feature = "std"))]
panic!("function failed to verify");
}
}
}
#[test]
fn undef_values_reordering() {
let mut func = Function::new();
let mut ssa: SSABuilder<Variable> = SSABuilder::new();
let ebb0 = func.dfg.make_ebb();
let ebb1 = func.dfg.make_ebb();
// Here is the pseudo-program we want to translate:
// ebb0:
// x = 0
// y = 1
// z = 2
// jump ebb1
// ebb1:
// x = z + x
// y = y - x
// jump ebb1
//
let block0 = ssa.declare_ebb_header_block(ebb0);
let x_var = Variable::new(0);
let y_var = Variable::new(1);
let z_var = Variable::new(2);
ssa.seal_ebb_header_block(ebb0, &mut func);
let x1 = {
let mut cur = FuncCursor::new(&mut func);
cur.insert_ebb(ebb0);
cur.insert_ebb(ebb1);
cur.goto_bottom(ebb0);
cur.ins().iconst(I32, 0)
};
ssa.def_var(x_var, x1, block0);
let y1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb0);
cur.ins().iconst(I32, 1)
};
ssa.def_var(y_var, y1, block0);
let z1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb0);
cur.ins().iconst(I32, 2)
};
ssa.def_var(z_var, z1, block0);
let jump_inst = {
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb0);
cur.ins().jump(ebb1, &[])
};
let block1 = ssa.declare_ebb_header_block(ebb1);
ssa.declare_ebb_predecessor(ebb1, block0, jump_inst);
let z2 = ssa.use_var(&mut func, z_var, I32, block1).0;
assert_eq!(func.dfg.ebb_params(ebb1)[0], z2);
let x2 = ssa.use_var(&mut func, x_var, I32, block1).0;
assert_eq!(func.dfg.ebb_params(ebb1)[1], x2);
let x3 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb1);
cur.ins().iadd(x2, z2)
};
ssa.def_var(x_var, x3, block1);
let x4 = ssa.use_var(&mut func, x_var, I32, block1).0;
let y3 = ssa.use_var(&mut func, y_var, I32, block1).0;
assert_eq!(func.dfg.ebb_params(ebb1)[2], y3);
let y4 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb1);
cur.ins().isub(y3, x4)
};
ssa.def_var(y_var, y4, block1);
let jump_inst = {
let mut cur = FuncCursor::new(&mut func).at_bottom(ebb1);
cur.ins().jump(ebb1, &[])
};
ssa.declare_ebb_predecessor(ebb1, block1, jump_inst);
ssa.seal_ebb_header_block(ebb1, &mut func);
// At sealing the "z" argument disappear but the remaining "x" and "y" args have to be
// in the right order.
assert_eq!(func.dfg.ebb_params(ebb1)[1], y3);
assert_eq!(func.dfg.ebb_params(ebb1)[0], x2);
}
#[test]
fn undef() {
// Use vars of various types which have not been defined.
let mut func = Function::new();
let mut ssa: SSABuilder<Variable> = SSABuilder::new();
let ebb0 = func.dfg.make_ebb();
let block = ssa.declare_ebb_header_block(ebb0);
ssa.seal_ebb_header_block(ebb0, &mut func);
let i32_var = Variable::new(0);
let f32_var = Variable::new(1);
let f64_var = Variable::new(2);
let b1_var = Variable::new(3);
let f32x4_var = Variable::new(4);
ssa.use_var(&mut func, i32_var, I32, block);
ssa.use_var(&mut func, f32_var, F32, block);
ssa.use_var(&mut func, f64_var, F64, block);
ssa.use_var(&mut func, b1_var, B1, block);
ssa.use_var(&mut func, f32x4_var, F32X4, block);
assert_eq!(func.dfg.num_ebb_params(ebb0), 0);
}
#[test]
fn undef_in_entry() {
// Use a var which has not been defined. The search should hit the
// top of the entry block, and then fall back to inserting an iconst.
let mut func = Function::new();
let mut ssa: SSABuilder<Variable> = SSABuilder::new();
let ebb0 = func.dfg.make_ebb();
let block = ssa.declare_ebb_header_block(ebb0);
ssa.seal_ebb_header_block(ebb0, &mut func);
let x_var = Variable::new(0);
assert_eq!(func.dfg.num_ebb_params(ebb0), 0);
ssa.use_var(&mut func, x_var, I32, block);
assert_eq!(func.dfg.num_ebb_params(ebb0), 0);
assert_eq!(
func.dfg[func.layout.first_inst(ebb0).unwrap()].opcode(),
Opcode::Iconst
);
}
#[test]
fn undef_in_entry_sealed_after() {
// Use a var which has not been defined, but the block is not sealed
// until afterward. Before sealing, the SSA builder should insert an
// ebb param; after sealing, it should be removed.
let mut func = Function::new();
let mut ssa: SSABuilder<Variable> = SSABuilder::new();
let ebb0 = func.dfg.make_ebb();
let block = ssa.declare_ebb_header_block(ebb0);
let x_var = Variable::new(0);
assert_eq!(func.dfg.num_ebb_params(ebb0), 0);
ssa.use_var(&mut func, x_var, I32, block);
assert_eq!(func.dfg.num_ebb_params(ebb0), 1);
ssa.seal_ebb_header_block(ebb0, &mut func);
assert_eq!(func.dfg.num_ebb_params(ebb0), 0);
assert_eq!(
func.dfg[func.layout.first_inst(ebb0).unwrap()].opcode(),
Opcode::Iconst
);
}
#[test]
fn unreachable_use() {
let mut func = Function::new();
let mut ssa: SSABuilder<Variable> = SSABuilder::new();
let ebb0 = func.dfg.make_ebb();
let ebb1 = func.dfg.make_ebb();
// Here is the pseudo-program we want to translate:
// ebb0:
// return
// ebb1:
// brz v1, ebb1
// jump ebb1
let _block0 = ssa.declare_ebb_header_block(ebb0);
ssa.seal_ebb_header_block(ebb0, &mut func);
let block1 = ssa.declare_ebb_header_block(ebb1);
let block2 = ssa.declare_ebb_body_block(block1);
{
let mut cur = FuncCursor::new(&mut func);
cur.insert_ebb(ebb0);
cur.insert_ebb(ebb1);
cur.goto_bottom(ebb0);
cur.ins().return_(&[]);
let x_var = Variable::new(0);
cur.goto_bottom(ebb1);
let val = ssa.use_var(&mut cur.func, x_var, I32, block1).0;
let brz = cur.ins().brz(val, ebb1, &[]);
ssa.declare_ebb_predecessor(ebb1, block1, brz);
let j = cur.ins().jump(ebb1, &[]);
ssa.declare_ebb_predecessor(ebb1, block2, j);
}
ssa.seal_ebb_header_block(ebb1, &mut func);
let flags = settings::Flags::new(settings::builder());
match verify_function(&func, &flags) {
Ok(()) => {}
Err(_err) => {
#[cfg(feature = "std")]
panic!(_err.message);
#[cfg(not(feature = "std"))]
panic!("function failed to verify");
}
}
}
#[test]
fn unreachable_use_with_multiple_preds() {
let mut func = Function::new();
let mut ssa: SSABuilder<Variable> = SSABuilder::new();
let ebb0 = func.dfg.make_ebb();
let ebb1 = func.dfg.make_ebb();
let ebb2 = func.dfg.make_ebb();
// Here is the pseudo-program we want to translate:
// ebb0:
// return
// ebb1:
// brz v1, ebb2
// jump ebb1
// ebb2:
// jump ebb1
let _block0 = ssa.declare_ebb_header_block(ebb0);
ssa.seal_ebb_header_block(ebb0, &mut func);
let block1 = ssa.declare_ebb_header_block(ebb1);
let block2 = ssa.declare_ebb_header_block(ebb2);
{
let mut cur = FuncCursor::new(&mut func);
let x_var = Variable::new(0);
cur.insert_ebb(ebb0);
cur.insert_ebb(ebb1);
cur.insert_ebb(ebb2);
cur.goto_bottom(ebb0);
cur.ins().return_(&[]);
cur.goto_bottom(ebb1);
let v = ssa.use_var(&mut cur.func, x_var, I32, block1).0;
let brz = cur.ins().brz(v, ebb2, &[]);
let j0 = cur.ins().jump(ebb1, &[]);
cur.goto_bottom(ebb2);
let j1 = cur.ins().jump(ebb1, &[]);
ssa.declare_ebb_predecessor(ebb1, block2, brz);
ssa.declare_ebb_predecessor(ebb1, block1, j0);
ssa.declare_ebb_predecessor(ebb2, block1, j1);
}
ssa.seal_ebb_header_block(ebb1, &mut func);
ssa.seal_ebb_header_block(ebb2, &mut func);
let flags = settings::Flags::new(settings::builder());
match verify_function(&func, &flags) {
Ok(()) => {}
Err(_err) => {
#[cfg(feature = "std")]
panic!(_err.message);
#[cfg(not(feature = "std"))]
panic!("function failed to verify");
}
}
}
}