Files
wasmtime/lib/cretonne/src/isa/riscv/mod.rs
Jakob Stoklund Olesen e44a5a4391 Append link and sret arguments in legalize_signature.
These special-purpose arguments and return values are only relevant for
the function being compiled, so add a `current` flag to
legalize_signature().

- Add the necessary argument values to the entry block to represent
  the special-purpose arguments.
- Propagate the link and sret arguments to return instructions if the
  legalized signature asks for it.
2017-04-19 15:55:12 -07:00

234 lines
7.5 KiB
Rust

//! RISC-V Instruction Set Architecture.
pub mod settings;
mod abi;
mod binemit;
mod enc_tables;
mod registers;
use super::super::settings as shared_settings;
use binemit::CodeSink;
use isa::enc_tables::{self as shared_enc_tables, lookup_enclist, general_encoding};
use isa::Builder as IsaBuilder;
use isa::{TargetIsa, RegInfo, EncInfo, Encoding, Legalize};
use ir::{Function, Inst, InstructionData, DataFlowGraph, Signature, Type};
#[allow(dead_code)]
struct Isa {
shared_flags: shared_settings::Flags,
isa_flags: settings::Flags,
cpumode: &'static [shared_enc_tables::Level1Entry<u16>],
}
/// Get an ISA builder for creating RISC-V targets.
pub fn isa_builder() -> IsaBuilder {
IsaBuilder {
setup: settings::builder(),
constructor: isa_constructor,
}
}
fn isa_constructor(shared_flags: shared_settings::Flags,
builder: &shared_settings::Builder)
-> Box<TargetIsa> {
let level1 = if shared_flags.is_64bit() {
&enc_tables::LEVEL1_RV64[..]
} else {
&enc_tables::LEVEL1_RV32[..]
};
Box::new(Isa {
isa_flags: settings::Flags::new(&shared_flags, builder),
shared_flags: shared_flags,
cpumode: level1,
})
}
impl TargetIsa for Isa {
fn name(&self) -> &'static str {
"riscv"
}
fn flags(&self) -> &shared_settings::Flags {
&self.shared_flags
}
fn register_info(&self) -> RegInfo {
registers::INFO.clone()
}
fn encoding_info(&self) -> EncInfo {
enc_tables::INFO.clone()
}
fn encode(&self,
_dfg: &DataFlowGraph,
inst: &InstructionData,
ctrl_typevar: Type)
-> Result<Encoding, Legalize> {
lookup_enclist(ctrl_typevar,
inst.opcode(),
self.cpumode,
&enc_tables::LEVEL2[..])
.and_then(|enclist_offset| {
general_encoding(enclist_offset,
&enc_tables::ENCLISTS[..],
|instp| enc_tables::check_instp(inst, instp),
|isap| self.isa_flags.numbered_predicate(isap as usize))
.ok_or(Legalize::Expand)
})
}
fn legalize_signature(&self, sig: &mut Signature, current: bool) {
// We can pass in `self.isa_flags` too, if we need it.
abi::legalize_signature(sig, &self.shared_flags, current)
}
fn emit_inst(&self, func: &Function, inst: Inst, sink: &mut CodeSink) {
binemit::emit_inst(func, inst, sink)
}
fn reloc_names(&self) -> &'static [&'static str] {
&binemit::RELOC_NAMES
}
}
#[cfg(test)]
mod tests {
use settings::{self, Configurable};
use isa;
use ir::{DataFlowGraph, InstructionData, Opcode};
use ir::{types, immediates};
fn encstr(isa: &isa::TargetIsa, enc: isa::Encoding) -> String {
isa.encoding_info().display(enc).to_string()
}
#[test]
fn test_64bitenc() {
let mut shared_builder = settings::builder();
shared_builder.set_bool("is_64bit", true).unwrap();
let shared_flags = settings::Flags::new(&shared_builder);
let isa = isa::lookup("riscv").unwrap().finish(shared_flags);
let mut dfg = DataFlowGraph::new();
let ebb = dfg.make_ebb();
let arg64 = dfg.append_ebb_arg(ebb, types::I64);
let arg32 = dfg.append_ebb_arg(ebb, types::I32);
// Try to encode iadd_imm.i64 v1, -10.
let inst64 = InstructionData::BinaryImm {
opcode: Opcode::IaddImm,
arg: arg64,
imm: immediates::Imm64::new(-10),
};
// ADDI is I/0b00100
assert_eq!(encstr(&*isa, isa.encode(&dfg, &inst64, types::I64).unwrap()),
"I#04");
// Try to encode iadd_imm.i64 v1, -10000.
let inst64_large = InstructionData::BinaryImm {
opcode: Opcode::IaddImm,
arg: arg64,
imm: immediates::Imm64::new(-10000),
};
// Immediate is out of range for ADDI.
assert_eq!(isa.encode(&dfg, &inst64_large, types::I64),
Err(isa::Legalize::Expand));
// Create an iadd_imm.i32 which is encodable in RV64.
let inst32 = InstructionData::BinaryImm {
opcode: Opcode::IaddImm,
arg: arg32,
imm: immediates::Imm64::new(10),
};
// ADDIW is I/0b00110
assert_eq!(encstr(&*isa, isa.encode(&dfg, &inst32, types::I32).unwrap()),
"I#06");
}
// Same as above, but for RV32.
#[test]
fn test_32bitenc() {
let mut shared_builder = settings::builder();
shared_builder.set_bool("is_64bit", false).unwrap();
let shared_flags = settings::Flags::new(&shared_builder);
let isa = isa::lookup("riscv").unwrap().finish(shared_flags);
let mut dfg = DataFlowGraph::new();
let ebb = dfg.make_ebb();
let arg64 = dfg.append_ebb_arg(ebb, types::I64);
let arg32 = dfg.append_ebb_arg(ebb, types::I32);
// Try to encode iadd_imm.i64 v1, -10.
let inst64 = InstructionData::BinaryImm {
opcode: Opcode::IaddImm,
arg: arg64,
imm: immediates::Imm64::new(-10),
};
// In 32-bit mode, an i64 bit add should be narrowed.
assert_eq!(isa.encode(&dfg, &inst64, types::I64),
Err(isa::Legalize::Narrow));
// Try to encode iadd_imm.i64 v1, -10000.
let inst64_large = InstructionData::BinaryImm {
opcode: Opcode::IaddImm,
arg: arg64,
imm: immediates::Imm64::new(-10000),
};
// In 32-bit mode, an i64 bit add should be narrowed.
assert_eq!(isa.encode(&dfg, &inst64_large, types::I64),
Err(isa::Legalize::Narrow));
// Create an iadd_imm.i32 which is encodable in RV32.
let inst32 = InstructionData::BinaryImm {
opcode: Opcode::IaddImm,
arg: arg32,
imm: immediates::Imm64::new(10),
};
// ADDI is I/0b00100
assert_eq!(encstr(&*isa, isa.encode(&dfg, &inst32, types::I32).unwrap()),
"I#04");
// Create an imul.i32 which is encodable in RV32, but only when use_m is true.
let mul32 = InstructionData::Binary {
opcode: Opcode::Imul,
args: [arg32, arg32],
};
assert_eq!(isa.encode(&dfg, &mul32, types::I32),
Err(isa::Legalize::Expand));
}
#[test]
fn test_rv32m() {
let mut shared_builder = settings::builder();
shared_builder.set_bool("is_64bit", false).unwrap();
let shared_flags = settings::Flags::new(&shared_builder);
// Set the supports_m stting which in turn enables the use_m predicate that unlocks
// encodings for imul.
let mut isa_builder = isa::lookup("riscv").unwrap();
isa_builder.set_bool("supports_m", true).unwrap();
let isa = isa_builder.finish(shared_flags);
let mut dfg = DataFlowGraph::new();
let ebb = dfg.make_ebb();
let arg32 = dfg.append_ebb_arg(ebb, types::I32);
// Create an imul.i32 which is encodable in RV32M.
let mul32 = InstructionData::Binary {
opcode: Opcode::Imul,
args: [arg32, arg32],
};
assert_eq!(encstr(&*isa, isa.encode(&dfg, &mul32, types::I32).unwrap()),
"R#10c");
}
}