Files
wasmtime/cranelift/codegen/src/isa/aarch64/inst/emit.rs
Benjamin Bouvier b7cfd39b53 aarch64: split emit tests into its own file;
This is done to satisfy a check done on the maximal file's size when
vendoring Rust source code into Mozilla central's repository.
2020-04-30 13:50:45 +02:00

1380 lines
54 KiB
Rust

//! AArch64 ISA: binary code emission.
use crate::binemit::{CodeOffset, Reloc};
use crate::ir::constant::ConstantData;
use crate::ir::types::*;
use crate::ir::TrapCode;
use crate::isa::aarch64::{inst::regs::PINNED_REG, inst::*};
use regalloc::{Reg, RegClass, Writable};
use alloc::vec::Vec;
use core::convert::TryFrom;
/// Memory label/reference finalization: convert a MemLabel to a PC-relative
/// offset, possibly emitting relocation(s) as necessary.
pub fn memlabel_finalize(_insn_off: CodeOffset, label: &MemLabel) -> i32 {
match label {
&MemLabel::PCRel(rel) => rel,
}
}
/// Memory addressing mode finalization: convert "special" modes (e.g.,
/// generic arbitrary stack offset) into real addressing modes, possibly by
/// emitting some helper instructions that come immediately before the use
/// of this amode.
pub fn mem_finalize(insn_off: CodeOffset, mem: &MemArg) -> (Vec<Inst>, MemArg) {
match mem {
&MemArg::SPOffset(off) | &MemArg::FPOffset(off) => {
let basereg = match mem {
&MemArg::SPOffset(..) => stack_reg(),
&MemArg::FPOffset(..) => fp_reg(),
_ => unreachable!(),
};
if let Some(simm9) = SImm9::maybe_from_i64(off) {
let mem = MemArg::Unscaled(basereg, simm9);
(vec![], mem)
} else {
// In an addition, x31 is the zero register, not sp; we have only one temporary
// so we can't do the proper add here.
debug_assert_ne!(
basereg,
stack_reg(),
"should have diverted SP before mem_finalize"
);
let tmp = writable_spilltmp_reg();
let mut const_insts = Inst::load_constant(tmp, off as u64);
let add_inst = Inst::AluRRR {
alu_op: ALUOp::Add64,
rd: tmp,
rn: tmp.to_reg(),
rm: basereg,
};
const_insts.push(add_inst);
(const_insts.to_vec(), MemArg::reg(tmp.to_reg()))
}
}
&MemArg::Label(ref label) => {
let off = memlabel_finalize(insn_off, label);
(vec![], MemArg::Label(MemLabel::PCRel(off)))
}
_ => (vec![], mem.clone()),
}
}
/// Helper: get a ConstantData from a u64.
pub fn u64_constant(bits: u64) -> ConstantData {
let data = bits.to_le_bytes();
ConstantData::from(&data[..])
}
//=============================================================================
// Instructions and subcomponents: emission
fn machreg_to_gpr(m: Reg) -> u32 {
assert!(m.get_class() == RegClass::I64);
u32::try_from(m.to_real_reg().get_hw_encoding()).unwrap()
}
fn machreg_to_vec(m: Reg) -> u32 {
assert!(m.get_class() == RegClass::V128);
u32::try_from(m.to_real_reg().get_hw_encoding()).unwrap()
}
fn machreg_to_gpr_or_vec(m: Reg) -> u32 {
u32::try_from(m.to_real_reg().get_hw_encoding()).unwrap()
}
fn enc_arith_rrr(bits_31_21: u32, bits_15_10: u32, rd: Writable<Reg>, rn: Reg, rm: Reg) -> u32 {
(bits_31_21 << 21)
| (bits_15_10 << 10)
| machreg_to_gpr(rd.to_reg())
| (machreg_to_gpr(rn) << 5)
| (machreg_to_gpr(rm) << 16)
}
fn enc_arith_rr_imm12(
bits_31_24: u32,
immshift: u32,
imm12: u32,
rn: Reg,
rd: Writable<Reg>,
) -> u32 {
(bits_31_24 << 24)
| (immshift << 22)
| (imm12 << 10)
| (machreg_to_gpr(rn) << 5)
| machreg_to_gpr(rd.to_reg())
}
fn enc_arith_rr_imml(bits_31_23: u32, imm_bits: u32, rn: Reg, rd: Writable<Reg>) -> u32 {
(bits_31_23 << 23) | (imm_bits << 10) | (machreg_to_gpr(rn) << 5) | machreg_to_gpr(rd.to_reg())
}
fn enc_arith_rrrr(top11: u32, rm: Reg, bit15: u32, ra: Reg, rn: Reg, rd: Writable<Reg>) -> u32 {
(top11 << 21)
| (machreg_to_gpr(rm) << 16)
| (bit15 << 15)
| (machreg_to_gpr(ra) << 10)
| (machreg_to_gpr(rn) << 5)
| machreg_to_gpr(rd.to_reg())
}
fn enc_jump26(op_31_26: u32, off_26_0: u32) -> u32 {
assert!(off_26_0 < (1 << 26));
(op_31_26 << 26) | off_26_0
}
fn enc_cmpbr(op_31_24: u32, off_18_0: u32, reg: Reg) -> u32 {
assert!(off_18_0 < (1 << 19));
(op_31_24 << 24) | (off_18_0 << 5) | machreg_to_gpr(reg)
}
fn enc_cbr(op_31_24: u32, off_18_0: u32, op_4: u32, cond: u32) -> u32 {
assert!(off_18_0 < (1 << 19));
assert!(cond < (1 << 4));
(op_31_24 << 24) | (off_18_0 << 5) | (op_4 << 4) | cond
}
const MOVE_WIDE_FIXED: u32 = 0x92800000;
#[repr(u32)]
enum MoveWideOpcode {
MOVN = 0b00,
MOVZ = 0b10,
MOVK = 0b11,
}
fn enc_move_wide(op: MoveWideOpcode, rd: Writable<Reg>, imm: MoveWideConst) -> u32 {
assert!(imm.shift <= 0b11);
MOVE_WIDE_FIXED
| (op as u32) << 29
| u32::from(imm.shift) << 21
| u32::from(imm.bits) << 5
| machreg_to_gpr(rd.to_reg())
}
fn enc_ldst_pair(op_31_22: u32, simm7: SImm7Scaled, rn: Reg, rt: Reg, rt2: Reg) -> u32 {
(op_31_22 << 22)
| (simm7.bits() << 15)
| (machreg_to_gpr(rt2) << 10)
| (machreg_to_gpr(rn) << 5)
| machreg_to_gpr(rt)
}
fn enc_ldst_simm9(op_31_22: u32, simm9: SImm9, op_11_10: u32, rn: Reg, rd: Reg) -> u32 {
(op_31_22 << 22)
| (simm9.bits() << 12)
| (op_11_10 << 10)
| (machreg_to_gpr(rn) << 5)
| machreg_to_gpr_or_vec(rd)
}
fn enc_ldst_uimm12(op_31_22: u32, uimm12: UImm12Scaled, rn: Reg, rd: Reg) -> u32 {
(op_31_22 << 22)
| (0b1 << 24)
| (uimm12.bits() << 10)
| (machreg_to_gpr(rn) << 5)
| machreg_to_gpr_or_vec(rd)
}
fn enc_ldst_reg(
op_31_22: u32,
rn: Reg,
rm: Reg,
s_bit: bool,
extendop: Option<ExtendOp>,
rd: Reg,
) -> u32 {
let s_bit = if s_bit { 1 } else { 0 };
let extend_bits = match extendop {
Some(ExtendOp::UXTW) => 0b010,
Some(ExtendOp::SXTW) => 0b110,
Some(ExtendOp::SXTX) => 0b111,
None => 0b011, // LSL
_ => panic!("bad extend mode for ld/st MemArg"),
};
(op_31_22 << 22)
| (1 << 21)
| (machreg_to_gpr(rm) << 16)
| (extend_bits << 13)
| (s_bit << 12)
| (0b10 << 10)
| (machreg_to_gpr(rn) << 5)
| machreg_to_gpr_or_vec(rd)
}
fn enc_ldst_imm19(op_31_24: u32, imm19: u32, rd: Reg) -> u32 {
(op_31_24 << 24) | (imm19 << 5) | machreg_to_gpr_or_vec(rd)
}
fn enc_extend(top22: u32, rd: Writable<Reg>, rn: Reg) -> u32 {
(top22 << 10) | (machreg_to_gpr(rn) << 5) | machreg_to_gpr(rd.to_reg())
}
fn enc_vec_rrr(top11: u32, rm: Reg, bit15_10: u32, rn: Reg, rd: Writable<Reg>) -> u32 {
(top11 << 21)
| (machreg_to_vec(rm) << 16)
| (bit15_10 << 10)
| (machreg_to_vec(rn) << 5)
| machreg_to_vec(rd.to_reg())
}
fn enc_bit_rr(size: u32, opcode2: u32, opcode1: u32, rn: Reg, rd: Writable<Reg>) -> u32 {
(0b01011010110 << 21)
| size << 31
| opcode2 << 16
| opcode1 << 10
| machreg_to_gpr(rn) << 5
| machreg_to_gpr(rd.to_reg())
}
fn enc_br(rn: Reg) -> u32 {
0b1101011_0000_11111_000000_00000_00000 | (machreg_to_gpr(rn) << 5)
}
fn enc_adr(off: i32, rd: Writable<Reg>) -> u32 {
let off = u32::try_from(off).unwrap();
let immlo = off & 3;
let immhi = (off >> 2) & ((1 << 19) - 1);
(0b00010000 << 24) | (immlo << 29) | (immhi << 5) | machreg_to_gpr(rd.to_reg())
}
fn enc_csel(rd: Writable<Reg>, rn: Reg, rm: Reg, cond: Cond) -> u32 {
0b100_11010100_00000_0000_00_00000_00000
| (machreg_to_gpr(rm) << 16)
| (machreg_to_gpr(rn) << 5)
| machreg_to_gpr(rd.to_reg())
| (cond.bits() << 12)
}
fn enc_fcsel(rd: Writable<Reg>, rn: Reg, rm: Reg, cond: Cond, size: InstSize) -> u32 {
let ty_bit = if size.is32() { 0 } else { 1 };
0b000_11110_00_1_00000_0000_11_00000_00000
| (machreg_to_vec(rm) << 16)
| (machreg_to_vec(rn) << 5)
| machreg_to_vec(rd.to_reg())
| (cond.bits() << 12)
| (ty_bit << 22)
}
fn enc_cset(rd: Writable<Reg>, cond: Cond) -> u32 {
0b100_11010100_11111_0000_01_11111_00000
| machreg_to_gpr(rd.to_reg())
| (cond.invert().bits() << 12)
}
fn enc_ccmp_imm(size: InstSize, rn: Reg, imm: UImm5, nzcv: NZCV, cond: Cond) -> u32 {
0b0_1_1_11010010_00000_0000_10_00000_0_0000
| size.sf_bit() << 31
| imm.bits() << 16
| cond.bits() << 12
| machreg_to_gpr(rn) << 5
| nzcv.bits()
}
fn enc_vecmov(is_16b: bool, rd: Writable<Reg>, rn: Reg) -> u32 {
debug_assert!(!is_16b); // to be supported later.
0b00001110_101_00000_00011_1_00000_00000
| machreg_to_vec(rd.to_reg())
| (machreg_to_vec(rn) << 16)
| (machreg_to_vec(rn) << 5)
}
fn enc_fpurr(top22: u32, rd: Writable<Reg>, rn: Reg) -> u32 {
(top22 << 10) | (machreg_to_vec(rn) << 5) | machreg_to_vec(rd.to_reg())
}
fn enc_fpurrr(top22: u32, rd: Writable<Reg>, rn: Reg, rm: Reg) -> u32 {
(top22 << 10)
| (machreg_to_vec(rm) << 16)
| (machreg_to_vec(rn) << 5)
| machreg_to_vec(rd.to_reg())
}
fn enc_fpurrrr(top17: u32, rd: Writable<Reg>, rn: Reg, rm: Reg, ra: Reg) -> u32 {
(top17 << 15)
| (machreg_to_vec(rm) << 16)
| (machreg_to_vec(ra) << 10)
| (machreg_to_vec(rn) << 5)
| machreg_to_vec(rd.to_reg())
}
fn enc_fcmp(size: InstSize, rn: Reg, rm: Reg) -> u32 {
let bits = if size.is32() {
0b000_11110_00_1_00000_00_1000_00000_00000
} else {
0b000_11110_01_1_00000_00_1000_00000_00000
};
bits | (machreg_to_vec(rm) << 16) | (machreg_to_vec(rn) << 5)
}
fn enc_fputoint(top16: u32, rd: Writable<Reg>, rn: Reg) -> u32 {
(top16 << 16) | (machreg_to_vec(rn) << 5) | machreg_to_gpr(rd.to_reg())
}
fn enc_inttofpu(top16: u32, rd: Writable<Reg>, rn: Reg) -> u32 {
(top16 << 16) | (machreg_to_gpr(rn) << 5) | machreg_to_vec(rd.to_reg())
}
fn enc_fround(top22: u32, rd: Writable<Reg>, rn: Reg) -> u32 {
(top22 << 10) | (machreg_to_vec(rn) << 5) | machreg_to_vec(rd.to_reg())
}
impl<O: MachSectionOutput> MachInstEmit<O> for Inst {
fn emit(&self, sink: &mut O, flags: &settings::Flags) {
match self {
&Inst::AluRRR { alu_op, rd, rn, rm } => {
let top11 = match alu_op {
ALUOp::Add32 => 0b00001011_000,
ALUOp::Add64 => 0b10001011_000,
ALUOp::Sub32 => 0b01001011_000,
ALUOp::Sub64 => 0b11001011_000,
ALUOp::Orr32 => 0b00101010_000,
ALUOp::Orr64 => 0b10101010_000,
ALUOp::And32 => 0b00001010_000,
ALUOp::And64 => 0b10001010_000,
ALUOp::Eor32 => 0b01001010_000,
ALUOp::Eor64 => 0b11001010_000,
ALUOp::OrrNot32 => 0b00101010_001,
ALUOp::OrrNot64 => 0b10101010_001,
ALUOp::AndNot32 => 0b00001010_001,
ALUOp::AndNot64 => 0b10001010_001,
ALUOp::EorNot32 => 0b01001010_001,
ALUOp::EorNot64 => 0b11001010_001,
ALUOp::AddS32 => 0b00101011_000,
ALUOp::AddS64 => 0b10101011_000,
ALUOp::SubS32 => 0b01101011_000,
ALUOp::SubS64 => 0b11101011_000,
ALUOp::SubS64XR => 0b11101011_001,
ALUOp::SDiv64 => 0b10011010_110,
ALUOp::UDiv64 => 0b10011010_110,
ALUOp::RotR32 | ALUOp::Lsr32 | ALUOp::Asr32 | ALUOp::Lsl32 => 0b00011010_110,
ALUOp::RotR64 | ALUOp::Lsr64 | ALUOp::Asr64 | ALUOp::Lsl64 => 0b10011010_110,
ALUOp::MAdd32
| ALUOp::MAdd64
| ALUOp::MSub32
| ALUOp::MSub64
| ALUOp::SMulH
| ALUOp::UMulH => {
//// RRRR ops.
panic!("Bad ALUOp {:?} in RRR form!", alu_op);
}
};
let bit15_10 = match alu_op {
ALUOp::SDiv64 => 0b000011,
ALUOp::UDiv64 => 0b000010,
ALUOp::RotR32 | ALUOp::RotR64 => 0b001011,
ALUOp::Lsr32 | ALUOp::Lsr64 => 0b001001,
ALUOp::Asr32 | ALUOp::Asr64 => 0b001010,
ALUOp::Lsl32 | ALUOp::Lsl64 => 0b001000,
ALUOp::SubS64XR => 0b011000,
_ => 0b000000,
};
debug_assert_ne!(writable_stack_reg(), rd);
// The stack pointer is the zero register if this instruction
// doesn't have access to extended registers, so this might be
// an indication that something is wrong.
if alu_op != ALUOp::SubS64XR {
debug_assert_ne!(stack_reg(), rn);
}
debug_assert_ne!(stack_reg(), rm);
sink.put4(enc_arith_rrr(top11, bit15_10, rd, rn, rm));
}
&Inst::AluRRRR {
alu_op,
rd,
rm,
rn,
ra,
} => {
let (top11, bit15) = match alu_op {
ALUOp::MAdd32 => (0b0_00_11011_000, 0),
ALUOp::MSub32 => (0b0_00_11011_000, 1),
ALUOp::MAdd64 => (0b1_00_11011_000, 0),
ALUOp::MSub64 => (0b1_00_11011_000, 1),
ALUOp::SMulH => (0b1_00_11011_010, 0),
ALUOp::UMulH => (0b1_00_11011_110, 0),
_ => unimplemented!("{:?}", alu_op),
};
sink.put4(enc_arith_rrrr(top11, rm, bit15, ra, rn, rd));
}
&Inst::AluRRImm12 {
alu_op,
rd,
rn,
ref imm12,
} => {
let top8 = match alu_op {
ALUOp::Add32 => 0b000_10001,
ALUOp::Add64 => 0b100_10001,
ALUOp::Sub32 => 0b010_10001,
ALUOp::Sub64 => 0b110_10001,
ALUOp::AddS32 => 0b001_10001,
ALUOp::AddS64 => 0b101_10001,
ALUOp::SubS32 => 0b011_10001,
ALUOp::SubS64 => 0b111_10001,
_ => unimplemented!("{:?}", alu_op),
};
sink.put4(enc_arith_rr_imm12(
top8,
imm12.shift_bits(),
imm12.imm_bits(),
rn,
rd,
));
}
&Inst::AluRRImmLogic {
alu_op,
rd,
rn,
ref imml,
} => {
let (top9, inv) = match alu_op {
ALUOp::Orr32 => (0b001_100100, false),
ALUOp::Orr64 => (0b101_100100, false),
ALUOp::And32 => (0b000_100100, false),
ALUOp::And64 => (0b100_100100, false),
ALUOp::Eor32 => (0b010_100100, false),
ALUOp::Eor64 => (0b110_100100, false),
ALUOp::OrrNot32 => (0b001_100100, true),
ALUOp::OrrNot64 => (0b101_100100, true),
ALUOp::AndNot32 => (0b000_100100, true),
ALUOp::AndNot64 => (0b100_100100, true),
ALUOp::EorNot32 => (0b010_100100, true),
ALUOp::EorNot64 => (0b110_100100, true),
_ => unimplemented!("{:?}", alu_op),
};
let imml = if inv { imml.invert() } else { imml.clone() };
sink.put4(enc_arith_rr_imml(top9, imml.enc_bits(), rn, rd));
}
&Inst::AluRRImmShift {
alu_op,
rd,
rn,
ref immshift,
} => {
let amt = immshift.value();
let (top10, immr, imms) = match alu_op {
ALUOp::RotR32 => (0b0001001110, machreg_to_gpr(rn), u32::from(amt)),
ALUOp::RotR64 => (0b1001001111, machreg_to_gpr(rn), u32::from(amt)),
ALUOp::Lsr32 => (0b0101001100, u32::from(amt), 0b011111),
ALUOp::Lsr64 => (0b1101001101, u32::from(amt), 0b111111),
ALUOp::Asr32 => (0b0001001100, u32::from(amt), 0b011111),
ALUOp::Asr64 => (0b1001001101, u32::from(amt), 0b111111),
ALUOp::Lsl32 => (0b0101001100, u32::from(32 - amt), u32::from(31 - amt)),
ALUOp::Lsl64 => (0b1101001101, u32::from(64 - amt), u32::from(63 - amt)),
_ => unimplemented!("{:?}", alu_op),
};
sink.put4(
(top10 << 22)
| (immr << 16)
| (imms << 10)
| (machreg_to_gpr(rn) << 5)
| machreg_to_gpr(rd.to_reg()),
);
}
&Inst::AluRRRShift {
alu_op,
rd,
rn,
rm,
ref shiftop,
} => {
let top11: u32 = match alu_op {
ALUOp::Add32 => 0b000_01011000,
ALUOp::Add64 => 0b100_01011000,
ALUOp::AddS32 => 0b001_01011000,
ALUOp::AddS64 => 0b101_01011000,
ALUOp::Sub32 => 0b010_01011000,
ALUOp::Sub64 => 0b110_01011000,
ALUOp::SubS32 => 0b011_01011000,
ALUOp::SubS64 => 0b111_01011000,
ALUOp::Orr32 => 0b001_01010000,
ALUOp::Orr64 => 0b101_01010000,
ALUOp::And32 => 0b000_01010000,
ALUOp::And64 => 0b100_01010000,
ALUOp::Eor32 => 0b010_01010000,
ALUOp::Eor64 => 0b110_01010000,
ALUOp::OrrNot32 => 0b001_01010001,
ALUOp::OrrNot64 => 0b101_01010001,
ALUOp::EorNot32 => 0b010_01010001,
ALUOp::EorNot64 => 0b110_01010001,
ALUOp::AndNot32 => 0b000_01010001,
ALUOp::AndNot64 => 0b100_01010001,
_ => unimplemented!("{:?}", alu_op),
};
let top11 = top11 | (u32::from(shiftop.op().bits()) << 1);
let bits_15_10 = u32::from(shiftop.amt().value());
sink.put4(enc_arith_rrr(top11, bits_15_10, rd, rn, rm));
}
&Inst::AluRRRExtend {
alu_op,
rd,
rn,
rm,
extendop,
} => {
let top11: u32 = match alu_op {
ALUOp::Add32 => 0b00001011001,
ALUOp::Add64 => 0b10001011001,
ALUOp::Sub32 => 0b01001011001,
ALUOp::Sub64 => 0b11001011001,
ALUOp::AddS32 => 0b00101011001,
ALUOp::AddS64 => 0b10101011001,
ALUOp::SubS32 => 0b01101011001,
ALUOp::SubS64 => 0b11101011001,
_ => unimplemented!("{:?}", alu_op),
};
let bits_15_10 = u32::from(extendop.bits()) << 3;
sink.put4(enc_arith_rrr(top11, bits_15_10, rd, rn, rm));
}
&Inst::BitRR { op, rd, rn, .. } => {
let size = if op.inst_size().is32() { 0b0 } else { 0b1 };
let (op1, op2) = match op {
BitOp::RBit32 | BitOp::RBit64 => (0b00000, 0b000000),
BitOp::Clz32 | BitOp::Clz64 => (0b00000, 0b000100),
BitOp::Cls32 | BitOp::Cls64 => (0b00000, 0b000101),
};
sink.put4(enc_bit_rr(size, op1, op2, rn, rd))
}
&Inst::ULoad8 {
rd,
ref mem,
srcloc,
}
| &Inst::SLoad8 {
rd,
ref mem,
srcloc,
}
| &Inst::ULoad16 {
rd,
ref mem,
srcloc,
}
| &Inst::SLoad16 {
rd,
ref mem,
srcloc,
}
| &Inst::ULoad32 {
rd,
ref mem,
srcloc,
}
| &Inst::SLoad32 {
rd,
ref mem,
srcloc,
}
| &Inst::ULoad64 {
rd,
ref mem,
srcloc,
..
}
| &Inst::FpuLoad32 {
rd,
ref mem,
srcloc,
}
| &Inst::FpuLoad64 {
rd,
ref mem,
srcloc,
}
| &Inst::FpuLoad128 {
rd,
ref mem,
srcloc,
} => {
let (mem_insts, mem) = mem_finalize(sink.cur_offset_from_start(), mem);
for inst in mem_insts.into_iter() {
inst.emit(sink, flags);
}
// ldst encoding helpers take Reg, not Writable<Reg>.
let rd = rd.to_reg();
// This is the base opcode (top 10 bits) for the "unscaled
// immediate" form (Unscaled). Other addressing modes will OR in
// other values for bits 24/25 (bits 1/2 of this constant).
let op = match self {
&Inst::ULoad8 { .. } => 0b0011100001,
&Inst::SLoad8 { .. } => 0b0011100010,
&Inst::ULoad16 { .. } => 0b0111100001,
&Inst::SLoad16 { .. } => 0b0111100010,
&Inst::ULoad32 { .. } => 0b1011100001,
&Inst::SLoad32 { .. } => 0b1011100010,
&Inst::ULoad64 { .. } => 0b1111100001,
&Inst::FpuLoad32 { .. } => 0b1011110001,
&Inst::FpuLoad64 { .. } => 0b1111110001,
&Inst::FpuLoad128 { .. } => 0b0011110011,
_ => unreachable!(),
};
if let Some(srcloc) = srcloc {
// Register the offset at which the actual load instruction starts.
sink.add_trap(srcloc, TrapCode::HeapOutOfBounds);
}
match &mem {
&MemArg::Unscaled(reg, simm9) => {
sink.put4(enc_ldst_simm9(op, simm9, 0b00, reg, rd));
}
&MemArg::UnsignedOffset(reg, uimm12scaled) => {
sink.put4(enc_ldst_uimm12(op, uimm12scaled, reg, rd));
}
&MemArg::RegReg(r1, r2) => {
sink.put4(enc_ldst_reg(
op, r1, r2, /* scaled = */ false, /* extendop = */ None, rd,
));
}
&MemArg::RegScaled(r1, r2, ty) | &MemArg::RegScaledExtended(r1, r2, ty, _) => {
match (ty, self) {
(I8, &Inst::ULoad8 { .. }) => {}
(I8, &Inst::SLoad8 { .. }) => {}
(I16, &Inst::ULoad16 { .. }) => {}
(I16, &Inst::SLoad16 { .. }) => {}
(I32, &Inst::ULoad32 { .. }) => {}
(I32, &Inst::SLoad32 { .. }) => {}
(I64, &Inst::ULoad64 { .. }) => {}
(F32, &Inst::FpuLoad32 { .. }) => {}
(F64, &Inst::FpuLoad64 { .. }) => {}
(I128, &Inst::FpuLoad128 { .. }) => {}
_ => panic!("Mismatching reg-scaling type in MemArg"),
}
let extendop = match &mem {
&MemArg::RegScaled(..) => None,
&MemArg::RegScaledExtended(_, _, _, op) => Some(op),
_ => unreachable!(),
};
sink.put4(enc_ldst_reg(
op, r1, r2, /* scaled = */ true, extendop, rd,
));
}
&MemArg::Label(ref label) => {
let offset = match label {
// cast i32 to u32 (two's-complement)
&MemLabel::PCRel(off) => off as u32,
} / 4;
assert!(offset < (1 << 19));
match self {
&Inst::ULoad32 { .. } => {
sink.put4(enc_ldst_imm19(0b00011000, offset, rd));
}
&Inst::SLoad32 { .. } => {
sink.put4(enc_ldst_imm19(0b10011000, offset, rd));
}
&Inst::FpuLoad32 { .. } => {
sink.put4(enc_ldst_imm19(0b00011100, offset, rd));
}
&Inst::ULoad64 { .. } => {
sink.put4(enc_ldst_imm19(0b01011000, offset, rd));
}
&Inst::FpuLoad64 { .. } => {
sink.put4(enc_ldst_imm19(0b01011100, offset, rd));
}
&Inst::FpuLoad128 { .. } => {
sink.put4(enc_ldst_imm19(0b10011100, offset, rd));
}
_ => panic!("Unspported size for LDR from constant pool!"),
}
}
&MemArg::PreIndexed(reg, simm9) => {
sink.put4(enc_ldst_simm9(op, simm9, 0b11, reg.to_reg(), rd));
}
&MemArg::PostIndexed(reg, simm9) => {
sink.put4(enc_ldst_simm9(op, simm9, 0b01, reg.to_reg(), rd));
}
// Eliminated by `mem_finalize()` above.
&MemArg::SPOffset(..) | &MemArg::FPOffset(..) => {
panic!("Should not see stack-offset here!")
}
}
}
&Inst::Store8 {
rd,
ref mem,
srcloc,
}
| &Inst::Store16 {
rd,
ref mem,
srcloc,
}
| &Inst::Store32 {
rd,
ref mem,
srcloc,
}
| &Inst::Store64 {
rd,
ref mem,
srcloc,
..
}
| &Inst::FpuStore32 {
rd,
ref mem,
srcloc,
}
| &Inst::FpuStore64 {
rd,
ref mem,
srcloc,
}
| &Inst::FpuStore128 {
rd,
ref mem,
srcloc,
} => {
let (mem_insts, mem) = mem_finalize(sink.cur_offset_from_start(), mem);
for inst in mem_insts.into_iter() {
inst.emit(sink, flags);
}
let op = match self {
&Inst::Store8 { .. } => 0b0011100000,
&Inst::Store16 { .. } => 0b0111100000,
&Inst::Store32 { .. } => 0b1011100000,
&Inst::Store64 { .. } => 0b1111100000,
&Inst::FpuStore32 { .. } => 0b1011110000,
&Inst::FpuStore64 { .. } => 0b1111110000,
&Inst::FpuStore128 { .. } => 0b0011110010,
_ => unreachable!(),
};
if let Some(srcloc) = srcloc {
// Register the offset at which the actual load instruction starts.
sink.add_trap(srcloc, TrapCode::HeapOutOfBounds);
}
match &mem {
&MemArg::Unscaled(reg, simm9) => {
sink.put4(enc_ldst_simm9(op, simm9, 0b00, reg, rd));
}
&MemArg::UnsignedOffset(reg, uimm12scaled) => {
sink.put4(enc_ldst_uimm12(op, uimm12scaled, reg, rd));
}
&MemArg::RegReg(r1, r2) => {
sink.put4(enc_ldst_reg(
op, r1, r2, /* scaled = */ false, /* extendop = */ None, rd,
));
}
&MemArg::RegScaled(r1, r2, _ty)
| &MemArg::RegScaledExtended(r1, r2, _ty, _) => {
let extendop = match &mem {
&MemArg::RegScaled(..) => None,
&MemArg::RegScaledExtended(_, _, _, op) => Some(op),
_ => unreachable!(),
};
sink.put4(enc_ldst_reg(
op, r1, r2, /* scaled = */ true, extendop, rd,
));
}
&MemArg::Label(..) => {
panic!("Store to a MemLabel not implemented!");
}
&MemArg::PreIndexed(reg, simm9) => {
sink.put4(enc_ldst_simm9(op, simm9, 0b11, reg.to_reg(), rd));
}
&MemArg::PostIndexed(reg, simm9) => {
sink.put4(enc_ldst_simm9(op, simm9, 0b01, reg.to_reg(), rd));
}
// Eliminated by `mem_finalize()` above.
&MemArg::SPOffset(..) | &MemArg::FPOffset(..) => {
panic!("Should not see stack-offset here!")
}
}
}
&Inst::StoreP64 { rt, rt2, ref mem } => match mem {
&PairMemArg::SignedOffset(reg, simm7) => {
assert_eq!(simm7.scale_ty, I64);
sink.put4(enc_ldst_pair(0b1010100100, simm7, reg, rt, rt2));
}
&PairMemArg::PreIndexed(reg, simm7) => {
assert_eq!(simm7.scale_ty, I64);
sink.put4(enc_ldst_pair(0b1010100110, simm7, reg.to_reg(), rt, rt2));
}
&PairMemArg::PostIndexed(reg, simm7) => {
assert_eq!(simm7.scale_ty, I64);
sink.put4(enc_ldst_pair(0b1010100010, simm7, reg.to_reg(), rt, rt2));
}
},
&Inst::LoadP64 { rt, rt2, ref mem } => {
let rt = rt.to_reg();
let rt2 = rt2.to_reg();
match mem {
&PairMemArg::SignedOffset(reg, simm7) => {
assert_eq!(simm7.scale_ty, I64);
sink.put4(enc_ldst_pair(0b1010100101, simm7, reg, rt, rt2));
}
&PairMemArg::PreIndexed(reg, simm7) => {
assert_eq!(simm7.scale_ty, I64);
sink.put4(enc_ldst_pair(0b1010100111, simm7, reg.to_reg(), rt, rt2));
}
&PairMemArg::PostIndexed(reg, simm7) => {
assert_eq!(simm7.scale_ty, I64);
sink.put4(enc_ldst_pair(0b1010100011, simm7, reg.to_reg(), rt, rt2));
}
}
}
&Inst::Mov { rd, rm } => {
assert!(rd.to_reg().get_class() == rm.get_class());
assert!(rm.get_class() == RegClass::I64);
// MOV to SP is interpreted as MOV to XZR instead. And our codegen
// should never MOV to XZR.
assert!(rd.to_reg() != stack_reg());
if rm == stack_reg() {
// We can't use ORR here, so use an `add rd, sp, #0` instead.
let imm12 = Imm12::maybe_from_u64(0).unwrap();
sink.put4(enc_arith_rr_imm12(
0b100_10001,
imm12.shift_bits(),
imm12.imm_bits(),
rm,
rd,
));
} else {
// Encoded as ORR rd, rm, zero.
sink.put4(enc_arith_rrr(0b10101010_000, 0b000_000, rd, zero_reg(), rm));
}
}
&Inst::Mov32 { rd, rm } => {
// MOV to SP is interpreted as MOV to XZR instead. And our codegen
// should never MOV to XZR.
assert!(machreg_to_gpr(rd.to_reg()) != 31);
// Encoded as ORR rd, rm, zero.
sink.put4(enc_arith_rrr(0b00101010_000, 0b000_000, rd, zero_reg(), rm));
}
&Inst::MovZ { rd, imm } => sink.put4(enc_move_wide(MoveWideOpcode::MOVZ, rd, imm)),
&Inst::MovN { rd, imm } => sink.put4(enc_move_wide(MoveWideOpcode::MOVN, rd, imm)),
&Inst::MovK { rd, imm } => sink.put4(enc_move_wide(MoveWideOpcode::MOVK, rd, imm)),
&Inst::CSel { rd, rn, rm, cond } => {
sink.put4(enc_csel(rd, rn, rm, cond));
}
&Inst::CSet { rd, cond } => {
sink.put4(enc_cset(rd, cond));
}
&Inst::CCmpImm {
size,
rn,
imm,
nzcv,
cond,
} => {
sink.put4(enc_ccmp_imm(size, rn, imm, nzcv, cond));
}
&Inst::FpuMove64 { rd, rn } => {
sink.put4(enc_vecmov(/* 16b = */ false, rd, rn));
}
&Inst::FpuRR { fpu_op, rd, rn } => {
let top22 = match fpu_op {
FPUOp1::Abs32 => 0b000_11110_00_1_000001_10000,
FPUOp1::Abs64 => 0b000_11110_01_1_000001_10000,
FPUOp1::Neg32 => 0b000_11110_00_1_000010_10000,
FPUOp1::Neg64 => 0b000_11110_01_1_000010_10000,
FPUOp1::Sqrt32 => 0b000_11110_00_1_000011_10000,
FPUOp1::Sqrt64 => 0b000_11110_01_1_000011_10000,
FPUOp1::Cvt32To64 => 0b000_11110_00_1_000101_10000,
FPUOp1::Cvt64To32 => 0b000_11110_01_1_000100_10000,
};
sink.put4(enc_fpurr(top22, rd, rn));
}
&Inst::FpuRRR { fpu_op, rd, rn, rm } => {
let top22 = match fpu_op {
FPUOp2::Add32 => 0b000_11110_00_1_00000_001010,
FPUOp2::Add64 => 0b000_11110_01_1_00000_001010,
FPUOp2::Sub32 => 0b000_11110_00_1_00000_001110,
FPUOp2::Sub64 => 0b000_11110_01_1_00000_001110,
FPUOp2::Mul32 => 0b000_11110_00_1_00000_000010,
FPUOp2::Mul64 => 0b000_11110_01_1_00000_000010,
FPUOp2::Div32 => 0b000_11110_00_1_00000_000110,
FPUOp2::Div64 => 0b000_11110_01_1_00000_000110,
FPUOp2::Max32 => 0b000_11110_00_1_00000_010010,
FPUOp2::Max64 => 0b000_11110_01_1_00000_010010,
FPUOp2::Min32 => 0b000_11110_00_1_00000_010110,
FPUOp2::Min64 => 0b000_11110_01_1_00000_010110,
};
sink.put4(enc_fpurrr(top22, rd, rn, rm));
}
&Inst::FpuRRRR {
fpu_op,
rd,
rn,
rm,
ra,
} => {
let top17 = match fpu_op {
FPUOp3::MAdd32 => 0b000_11111_00_0_00000_0,
FPUOp3::MAdd64 => 0b000_11111_01_0_00000_0,
};
sink.put4(enc_fpurrrr(top17, rd, rn, rm, ra));
}
&Inst::FpuCmp32 { rn, rm } => {
sink.put4(enc_fcmp(InstSize::Size32, rn, rm));
}
&Inst::FpuCmp64 { rn, rm } => {
sink.put4(enc_fcmp(InstSize::Size64, rn, rm));
}
&Inst::FpuToInt { op, rd, rn } => {
let top16 = match op {
// FCVTZS (32/32-bit)
FpuToIntOp::F32ToI32 => 0b000_11110_00_1_11_000,
// FCVTZU (32/32-bit)
FpuToIntOp::F32ToU32 => 0b000_11110_00_1_11_001,
// FCVTZS (32/64-bit)
FpuToIntOp::F32ToI64 => 0b100_11110_00_1_11_000,
// FCVTZU (32/64-bit)
FpuToIntOp::F32ToU64 => 0b100_11110_00_1_11_001,
// FCVTZS (64/32-bit)
FpuToIntOp::F64ToI32 => 0b000_11110_01_1_11_000,
// FCVTZU (64/32-bit)
FpuToIntOp::F64ToU32 => 0b000_11110_01_1_11_001,
// FCVTZS (64/64-bit)
FpuToIntOp::F64ToI64 => 0b100_11110_01_1_11_000,
// FCVTZU (64/64-bit)
FpuToIntOp::F64ToU64 => 0b100_11110_01_1_11_001,
};
sink.put4(enc_fputoint(top16, rd, rn));
}
&Inst::IntToFpu { op, rd, rn } => {
let top16 = match op {
// SCVTF (32/32-bit)
IntToFpuOp::I32ToF32 => 0b000_11110_00_1_00_010,
// UCVTF (32/32-bit)
IntToFpuOp::U32ToF32 => 0b000_11110_00_1_00_011,
// SCVTF (64/32-bit)
IntToFpuOp::I64ToF32 => 0b100_11110_00_1_00_010,
// UCVTF (64/32-bit)
IntToFpuOp::U64ToF32 => 0b100_11110_00_1_00_011,
// SCVTF (32/64-bit)
IntToFpuOp::I32ToF64 => 0b000_11110_01_1_00_010,
// UCVTF (32/64-bit)
IntToFpuOp::U32ToF64 => 0b000_11110_01_1_00_011,
// SCVTF (64/64-bit)
IntToFpuOp::I64ToF64 => 0b100_11110_01_1_00_010,
// UCVTF (64/64-bit)
IntToFpuOp::U64ToF64 => 0b100_11110_01_1_00_011,
};
sink.put4(enc_inttofpu(top16, rd, rn));
}
&Inst::LoadFpuConst32 { rd, const_data } => {
let inst = Inst::FpuLoad32 {
rd,
mem: MemArg::Label(MemLabel::PCRel(8)),
srcloc: None,
};
inst.emit(sink, flags);
let inst = Inst::Jump {
dest: BranchTarget::ResolvedOffset(8),
};
inst.emit(sink, flags);
sink.put4(const_data.to_bits());
}
&Inst::LoadFpuConst64 { rd, const_data } => {
let inst = Inst::FpuLoad64 {
rd,
mem: MemArg::Label(MemLabel::PCRel(8)),
srcloc: None,
};
inst.emit(sink, flags);
let inst = Inst::Jump {
dest: BranchTarget::ResolvedOffset(12),
};
inst.emit(sink, flags);
sink.put8(const_data.to_bits());
}
&Inst::FpuCSel32 { rd, rn, rm, cond } => {
sink.put4(enc_fcsel(rd, rn, rm, cond, InstSize::Size32));
}
&Inst::FpuCSel64 { rd, rn, rm, cond } => {
sink.put4(enc_fcsel(rd, rn, rm, cond, InstSize::Size64));
}
&Inst::FpuRound { op, rd, rn } => {
let top22 = match op {
FpuRoundMode::Minus32 => 0b000_11110_00_1_001_010_10000,
FpuRoundMode::Minus64 => 0b000_11110_01_1_001_010_10000,
FpuRoundMode::Plus32 => 0b000_11110_00_1_001_001_10000,
FpuRoundMode::Plus64 => 0b000_11110_01_1_001_001_10000,
FpuRoundMode::Zero32 => 0b000_11110_00_1_001_011_10000,
FpuRoundMode::Zero64 => 0b000_11110_01_1_001_011_10000,
FpuRoundMode::Nearest32 => 0b000_11110_00_1_001_000_10000,
FpuRoundMode::Nearest64 => 0b000_11110_01_1_001_000_10000,
};
sink.put4(enc_fround(top22, rd, rn));
}
&Inst::MovToVec64 { rd, rn } => {
sink.put4(
0b010_01110000_01000_0_0011_1_00000_00000
| (machreg_to_gpr(rn) << 5)
| machreg_to_vec(rd.to_reg()),
);
}
&Inst::MovFromVec64 { rd, rn } => {
sink.put4(
0b010_01110000_01000_0_0111_1_00000_00000
| (machreg_to_vec(rn) << 5)
| machreg_to_gpr(rd.to_reg()),
);
}
&Inst::VecRRR { rd, rn, rm, alu_op } => {
let (top11, bit15_10) = match alu_op {
VecALUOp::SQAddScalar => (0b010_11110_11_1, 0b000011),
VecALUOp::SQSubScalar => (0b010_11110_11_1, 0b001011),
VecALUOp::UQAddScalar => (0b011_11110_11_1, 0b000011),
VecALUOp::UQSubScalar => (0b011_11110_11_1, 0b001011),
};
sink.put4(enc_vec_rrr(top11, rm, bit15_10, rn, rd));
}
&Inst::MovToNZCV { rn } => {
sink.put4(0xd51b4200 | machreg_to_gpr(rn));
}
&Inst::MovFromNZCV { rd } => {
sink.put4(0xd53b4200 | machreg_to_gpr(rd.to_reg()));
}
&Inst::CondSet { rd, cond } => {
sink.put4(
0b100_11010100_11111_0000_01_11111_00000
| (cond.invert().bits() << 12)
| machreg_to_gpr(rd.to_reg()),
);
}
&Inst::Extend {
rd,
rn,
signed,
from_bits,
to_bits,
} if from_bits >= 8 => {
let top22 = match (signed, from_bits, to_bits) {
(false, 8, 32) => 0b010_100110_0_000000_000111, // UXTB (32)
(false, 16, 32) => 0b010_100110_0_000000_001111, // UXTH (32)
(true, 8, 32) => 0b000_100110_0_000000_000111, // SXTB (32)
(true, 16, 32) => 0b000_100110_0_000000_001111, // SXTH (32)
// The 64-bit unsigned variants are the same as the 32-bit ones,
// because writes to Wn zero out the top 32 bits of Xn
(false, 8, 64) => 0b010_100110_0_000000_000111, // UXTB (64)
(false, 16, 64) => 0b010_100110_0_000000_001111, // UXTH (64)
(true, 8, 64) => 0b100_100110_1_000000_000111, // SXTB (64)
(true, 16, 64) => 0b100_100110_1_000000_001111, // SXTH (64)
// 32-to-64: the unsigned case is a 'mov' (special-cased below).
(false, 32, 64) => 0, // MOV
(true, 32, 64) => 0b100_100110_1_000000_011111, // SXTW (64)
_ => panic!(
"Unsupported extend combination: signed = {}, from_bits = {}, to_bits = {}",
signed, from_bits, to_bits
),
};
if top22 != 0 {
sink.put4(enc_extend(top22, rd, rn));
} else {
Inst::mov32(rd, rn).emit(sink, flags);
}
}
&Inst::Extend {
rd,
rn,
signed,
from_bits,
to_bits,
} if from_bits == 1 && signed => {
assert!(to_bits <= 64);
// Reduce sign-extend-from-1-bit to:
// - and rd, rn, #1
// - sub rd, zr, rd
// We don't have ImmLogic yet, so we just hardcode this. FIXME.
sink.put4(0x92400000 | (machreg_to_gpr(rn) << 5) | machreg_to_gpr(rd.to_reg()));
let sub_inst = Inst::AluRRR {
alu_op: ALUOp::Sub64,
rd,
rn: zero_reg(),
rm: rd.to_reg(),
};
sub_inst.emit(sink, flags);
}
&Inst::Extend {
rd,
rn,
signed,
from_bits,
to_bits,
} if from_bits == 1 && !signed => {
assert!(to_bits <= 64);
// Reduce zero-extend-from-1-bit to:
// - and rd, rn, #1
// We don't have ImmLogic yet, so we just hardcode this. FIXME.
sink.put4(0x92400000 | (machreg_to_gpr(rn) << 5) | machreg_to_gpr(rd.to_reg()));
}
&Inst::Extend { .. } => {
panic!("Unsupported extend variant");
}
&Inst::Jump { ref dest } => {
// TODO: differentiate between as_off26() returning `None` for
// out-of-range vs. not-yet-finalized. The latter happens when we
// do early (fake) emission for size computation.
sink.put4(enc_jump26(0b000101, dest.as_off26().unwrap()));
}
&Inst::Ret => {
sink.put4(0xd65f03c0);
}
&Inst::EpiloguePlaceholder => {
// Noop; this is just a placeholder for epilogues.
}
&Inst::Call {
ref dest,
loc,
opcode,
..
} => {
sink.add_reloc(loc, Reloc::Arm64Call, dest, 0);
sink.put4(enc_jump26(0b100101, 0));
if opcode.is_call() {
sink.add_call_site(loc, opcode);
}
}
&Inst::CallInd {
rn, loc, opcode, ..
} => {
sink.put4(0b1101011_0001_11111_000000_00000_00000 | (machreg_to_gpr(rn) << 5));
if opcode.is_call() {
sink.add_call_site(loc, opcode);
}
}
&Inst::CondBr { .. } => panic!("Unlowered CondBr during binemit!"),
&Inst::CondBrLowered { target, kind } => match kind {
// TODO: handle >2^19 case by emitting a compound sequence with
// an unconditional (26-bit) branch. We need branch-relaxation
// adjustment machinery to enable this (because we don't want to
// always emit the long form).
CondBrKind::Zero(reg) => {
sink.put4(enc_cmpbr(0b1_011010_0, target.as_off19().unwrap(), reg));
}
CondBrKind::NotZero(reg) => {
sink.put4(enc_cmpbr(0b1_011010_1, target.as_off19().unwrap(), reg));
}
CondBrKind::Cond(c) => {
sink.put4(enc_cbr(
0b01010100,
target.as_off19().unwrap_or(0),
0b0,
c.bits(),
));
}
},
&Inst::CondBrLoweredCompound {
taken,
not_taken,
kind,
} => {
// Conditional part first.
match kind {
CondBrKind::Zero(reg) => {
sink.put4(enc_cmpbr(0b1_011010_0, taken.as_off19().unwrap(), reg));
}
CondBrKind::NotZero(reg) => {
sink.put4(enc_cmpbr(0b1_011010_1, taken.as_off19().unwrap(), reg));
}
CondBrKind::Cond(c) => {
sink.put4(enc_cbr(
0b01010100,
taken.as_off19().unwrap_or(0),
0b0,
c.bits(),
));
}
}
// Unconditional part.
sink.put4(enc_jump26(0b000101, not_taken.as_off26().unwrap_or(0)));
}
&Inst::IndirectBr { rn, .. } => {
sink.put4(enc_br(rn));
}
&Inst::Nop0 => {}
&Inst::Nop4 => {
sink.put4(0xd503201f);
}
&Inst::Brk => {
sink.put4(0xd4200000);
}
&Inst::Udf { trap_info } => {
let (srcloc, code) = trap_info;
sink.add_trap(srcloc, code);
sink.put4(0xd4a00000);
}
&Inst::Adr { rd, ref label } => {
let off = memlabel_finalize(sink.cur_offset_from_start(), label);
assert!(off > -(1 << 20));
assert!(off < (1 << 20));
sink.put4(enc_adr(off, rd));
}
&Inst::Word4 { data } => {
sink.put4(data);
}
&Inst::Word8 { data } => {
sink.put8(data);
}
&Inst::JTSequence {
ridx,
rtmp1,
rtmp2,
ref targets,
..
} => {
// This sequence is *one* instruction in the vcode, and is expanded only here at
// emission time, because we cannot allow the regalloc to insert spills/reloads in
// the middle; we depend on hardcoded PC-rel addressing below.
//
// N.B.: if PC-rel addressing on ADR below is changed, also update
// `Inst::with_block_offsets()` in aarch64/inst/mod.rs.
// Save index in a tmp (the live range of ridx only goes to start of this
// sequence; rtmp1 or rtmp2 may overwrite it).
let inst = Inst::gen_move(rtmp2, ridx, I64);
inst.emit(sink, flags);
// Load address of jump table
let inst = Inst::Adr {
rd: rtmp1,
label: MemLabel::PCRel(16),
};
inst.emit(sink, flags);
// Load value out of jump table
let inst = Inst::SLoad32 {
rd: rtmp2,
mem: MemArg::reg_plus_reg_scaled_extended(
rtmp1.to_reg(),
rtmp2.to_reg(),
I32,
ExtendOp::UXTW,
),
srcloc: None, // can't cause a user trap.
};
inst.emit(sink, flags);
// Add base of jump table to jump-table-sourced block offset
let inst = Inst::AluRRR {
alu_op: ALUOp::Add64,
rd: rtmp1,
rn: rtmp1.to_reg(),
rm: rtmp2.to_reg(),
};
inst.emit(sink, flags);
// Branch to computed address. (`targets` here is only used for successor queries
// and is not needed for emission.)
let inst = Inst::IndirectBr {
rn: rtmp1.to_reg(),
targets: vec![],
};
inst.emit(sink, flags);
// Emit jump table (table of 32-bit offsets).
for target in targets {
let off = target.as_offset_words() * 4;
let off = i32::try_from(off).unwrap();
// cast i32 to u32 (two's-complement)
let off = off as u32;
sink.put4(off);
}
}
&Inst::LoadConst64 { rd, const_data } => {
let inst = Inst::ULoad64 {
rd,
mem: MemArg::Label(MemLabel::PCRel(8)),
srcloc: None, // can't cause a user trap.
};
inst.emit(sink, flags);
let inst = Inst::Jump {
dest: BranchTarget::ResolvedOffset(12),
};
inst.emit(sink, flags);
sink.put8(const_data);
}
&Inst::LoadExtName {
rd,
ref name,
offset,
srcloc,
} => {
let inst = Inst::ULoad64 {
rd,
mem: MemArg::Label(MemLabel::PCRel(8)),
srcloc: None, // can't cause a user trap.
};
inst.emit(sink, flags);
let inst = Inst::Jump {
dest: BranchTarget::ResolvedOffset(12),
};
inst.emit(sink, flags);
sink.add_reloc(srcloc, Reloc::Abs8, name, offset);
if flags.emit_all_ones_funcaddrs() {
sink.put8(u64::max_value());
} else {
sink.put8(0);
}
}
&Inst::LoadAddr { rd, ref mem } => match *mem {
MemArg::FPOffset(fp_off) => {
let alu_op = if fp_off < 0 {
ALUOp::Sub64
} else {
ALUOp::Add64
};
if let Some(imm12) = Imm12::maybe_from_u64(u64::try_from(fp_off.abs()).unwrap())
{
let inst = Inst::AluRRImm12 {
alu_op,
rd,
imm12,
rn: fp_reg(),
};
inst.emit(sink, flags);
} else {
let const_insts =
Inst::load_constant(rd, u64::try_from(fp_off.abs()).unwrap());
for inst in const_insts {
inst.emit(sink, flags);
}
let inst = Inst::AluRRR {
alu_op,
rd,
rn: fp_reg(),
rm: rd.to_reg(),
};
inst.emit(sink, flags);
}
}
_ => unimplemented!("{:?}", mem),
},
&Inst::GetPinnedReg { rd } => {
let inst = Inst::Mov {
rd,
rm: xreg(PINNED_REG),
};
inst.emit(sink, flags);
}
&Inst::SetPinnedReg { rm } => {
let inst = Inst::Mov {
rd: Writable::from_reg(xreg(PINNED_REG)),
rm,
};
inst.emit(sink, flags);
}
}
}
}