Files
wasmtime/cranelift
Alex Crichton de0e0bea3f Legalize b{and,or,xor}_not into component instructions (#5709)
* Remove trailing whitespace in `lower.isle` files

* Legalize the `band_not` instruction into simpler form

This commit legalizes the `band_not` instruction into `band`-of-`bnot`,
or two instructions. This is intended to assist with egraph-based
optimizations where the `band_not` instruction doesn't have to be
specifically included in other bit-operation-patterns.

Lowerings of the `band_not` instruction have been moved to a
specialization of the `band` instruction.

* Legalize `bor_not` into components

Same as prior commit, but for the `bor_not` instruction.

* Legalize bxor_not into bxor-of-bnot

Same as prior commits. I think this also ended up fixing a bug in the
s390x backend where `bxor_not x y` was actually translated as `bnot
(bxor x y)` by accident given the test update changes.

* Simplify not-fused operands for riscv64

Looks like some delegated-to rules have special-cases for "if this
feature is enabled use the fused instruction" so move the clause for
testing the feature up to the lowering phase to help trigger other rules
if the feature isn't enabled. This should make the riscv64 backend more
consistent with how other backends are implemented.

* Remove B{and,or,xor}Not from cost of egraph metrics

These shouldn't ever reach egraphs now that they're legalized away.

* Add an egraph optimization for `x^-1 => ~x`

This adds a simplification node to translate xor-against-minus-1 to a
`bnot` instruction. This helps trigger various other optimizations in
the egraph implementation and also various backend lowering rules for
instructions. This is chiefly useful as wasm doesn't have a `bnot`
equivalent, so it's encoded as `x^-1`.

* Add a wasm test for end-to-end bitwise lowerings

Test that end-to-end various optimizations are being applied for input
wasm modules.

* Specifically don't self-update rustup on CI

I forget why this was here originally, but this is failing on Windows
CI. In general there's no need to update rustup, so leave it as-is.

* Cleanup some aarch64 lowering rules

Previously a 32/64 split was necessary due to the `ALUOp` being different
but that's been refactored away no so there's no longer any need for
duplicate rules.

* Narrow a x64 lowering rule

This previously made more sense when it was `band_not` and rarely used,
but be more specific in the type-filter on this rule that it's only
applicable to SIMD types with lanes.

* Simplify xor-against-minus-1 rule

No need to have the commutative version since constants are already
shuffled right for egraphs

* Optimize band-of-bnot when bnot is on the left

Use some more rules in the egraph algebraic optimizations to
canonicalize band/bor/bxor with a `bnot` operand to put the operand on
the right. That way the lowerings in the backends only have to list the
rule once, with the operand on the right, to optimize both styles of
input.

* Add commutative lowering rules

* Update cranelift/codegen/src/isa/x64/lower.isle

Co-authored-by: Jamey Sharp <jamey@minilop.net>

---------

Co-authored-by: Jamey Sharp <jamey@minilop.net>
2023-02-06 13:53:40 -06:00
..
2023-02-06 09:10:19 -06:00
2023-02-06 09:10:19 -06:00
2023-02-06 09:10:19 -06:00
2023-02-06 09:10:19 -06:00
2023-02-06 09:10:19 -06:00
2023-02-06 09:10:19 -06:00
2023-02-06 09:10:19 -06:00
2023-02-06 09:10:19 -06:00
2023-02-06 09:10:19 -06:00
2023-02-06 09:10:19 -06:00
2023-02-06 09:10:19 -06:00
2023-02-06 09:10:19 -06:00

Cranelift Code Generator

A Bytecode Alliance project

Cranelift is a low-level retargetable code generator. It translates a target-independent intermediate representation into executable machine code.

Build Status Chat Minimum rustc 1.37 Documentation Status

For more information, see the documentation.

For an example of how to use the JIT, see the JIT Demo, which implements a toy language.

For an example of how to use Cranelift to run WebAssembly code, see Wasmtime, which implements a standalone, embeddable, VM using Cranelift.

Status

Cranelift currently supports enough functionality to run a wide variety of programs, including all the functionality needed to execute WebAssembly (MVP and various extensions like SIMD), although it needs to be used within an external WebAssembly embedding such as Wasmtime to be part of a complete WebAssembly implementation. It is also usable as a backend for non-WebAssembly use cases: for example, there is an effort to build a Rust compiler backend using Cranelift.

Cranelift is production-ready, and is used in production in several places, all within the context of Wasmtime. It is carefully fuzzed as part of Wasmtime with differential comparison against V8 and the executable Wasm spec, and the register allocator is separately fuzzed with symbolic verification. There is an active effort to formally verify Cranelift's instruction-selection backends. We take security seriously and have a security policy as a part of Bytecode Alliance.

Cranelift has three backends: x86-64, aarch64 (aka ARM64), and s390x (aka IBM Z). All three backends fully support enough functionality for Wasm MVP, and x86-64 and aarch64 fully support SIMD as well. On x86-64, Cranelift supports both the System V AMD64 ABI calling convention used on many platforms and the Windows x64 calling convention. On aarch64, Cranelift supports the standard Linux calling convention and also has specific support for macOS (i.e., M1 / Apple Silicon).

Cranelift's code quality is within range of competitiveness to browser JIT engines' optimizing tiers. A recent paper includes third-party benchmarks of Cranelift, driven by Wasmtime, against V8 and an LLVM-based Wasm engine, WAVM (Fig 22). The speed of Cranelift's generated code is ~2% slower than that of V8 (TurboFan), and ~14% slower than WAVM (LLVM). Its compilation speed, in the same paper, is measured as approximately an order of magnitude faster than WAVM (LLVM). We continue to work to improve both measures.

The core codegen crates have minimal dependencies and are carefully written to handle malicious or arbitrary compiler input: in particular, they do not use callstack recursion.

Cranelift performs some basic mitigations for Spectre attacks on heap bounds checks, table bounds checks, and indirect branch bounds checks; see #1032 for more.

Cranelift's APIs are not yet considered stable, though we do follow semantic-versioning (semver) with minor-version patch releases.

Cranelift generally requires the latest stable Rust to build as a policy, and is tested as such, but we can incorporate fixes for compilation with older Rust versions on a best-effort basis.

Contributing

If you're interested in contributing to Cranelift: thank you! We have a contributing guide which will help you getting involved in the Cranelift project.

Planned uses

Cranelift is designed to be a code generator for WebAssembly, but it is general enough to be useful elsewhere too. The initial planned uses that affected its design were:

  • Wasmtime non-Web wasm engine.
  • Debug build backend for the Rust compiler.
  • WebAssembly compiler for the SpiderMonkey engine in Firefox (currently not planned anymore; SpiderMonkey team may re-assess in the future).
  • Backend for the IonMonkey JavaScript JIT compiler in Firefox (currently not planned anymore; SpiderMonkey team may re-assess in the future).

Building Cranelift

Cranelift uses a conventional Cargo build process.

Cranelift consists of a collection of crates, and uses a Cargo Workspace, so for some cargo commands, such as cargo test, the --all is needed to tell cargo to visit all of the crates.

test-all.sh at the top level is a script which runs all the cargo tests and also performs code format, lint, and documentation checks.

Log configuration

Cranelift uses the log crate to log messages at various levels. It doesn't specify any maximal logging level, so embedders can choose what it should be; however, this can have an impact of Cranelift's code size. You can use log features to reduce the maximum logging level. For instance if you want to limit the level of logging to warn messages and above in release mode:

[dependency.log]
...
features = ["release_max_level_warn"]

Editor Support

Editor support for working with Cranelift IR (clif) files: