We've adopted this pattern in Cranelift's instruction definitions where we let-bind some calls to `Operand::new` and then later use them in one or more calls to `Inst::new`. That pattern has two problems: - It puts the type of each operand somewhere potentially far removed from the instruction in which it's used. - We let-bind the same name for many different operands, compounding the first problem by making it harder to find _which_ definition is used. So instead this commit removes all let-bindings for operand definitions and constructs a new `Operand` every time. Constructing an `Operand` at every use means we duplicate some documentation strings, but not all that many of them as it turns out. I've left the let-bound type-sets alone, so those are currently still shared across many instructions. They have some of the same problems and should be reviewed as well.
495 lines
15 KiB
Rust
495 lines
15 KiB
Rust
use std::fmt;
|
|
use std::rc::Rc;
|
|
|
|
use crate::cdsl::camel_case;
|
|
use crate::cdsl::formats::InstructionFormat;
|
|
use crate::cdsl::operands::Operand;
|
|
use crate::cdsl::typevar::TypeVar;
|
|
|
|
pub(crate) type AllInstructions = Vec<Instruction>;
|
|
|
|
pub(crate) struct InstructionGroupBuilder<'all_inst> {
|
|
all_instructions: &'all_inst mut AllInstructions,
|
|
}
|
|
|
|
impl<'all_inst> InstructionGroupBuilder<'all_inst> {
|
|
pub fn new(all_instructions: &'all_inst mut AllInstructions) -> Self {
|
|
Self { all_instructions }
|
|
}
|
|
|
|
pub fn push(&mut self, builder: InstructionBuilder) {
|
|
let inst = builder.build();
|
|
self.all_instructions.push(inst);
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub(crate) struct PolymorphicInfo {
|
|
pub use_typevar_operand: bool,
|
|
pub ctrl_typevar: TypeVar,
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub(crate) struct InstructionContent {
|
|
/// Instruction mnemonic, also becomes opcode name.
|
|
pub name: String,
|
|
pub camel_name: String,
|
|
|
|
/// Documentation string.
|
|
pub doc: String,
|
|
|
|
/// Input operands. This can be a mix of SSA value operands and other operand kinds.
|
|
pub operands_in: Vec<Operand>,
|
|
/// Output operands. The output operands must be SSA values or `variable_args`.
|
|
pub operands_out: Vec<Operand>,
|
|
|
|
/// Instruction format.
|
|
pub format: Rc<InstructionFormat>,
|
|
|
|
/// One of the input or output operands is a free type variable. None if the instruction is not
|
|
/// polymorphic, set otherwise.
|
|
pub polymorphic_info: Option<PolymorphicInfo>,
|
|
|
|
/// Indices in operands_in of input operands that are values.
|
|
pub value_opnums: Vec<usize>,
|
|
/// Indices in operands_in of input operands that are immediates or entities.
|
|
pub imm_opnums: Vec<usize>,
|
|
/// Indices in operands_out of output operands that are values.
|
|
pub value_results: Vec<usize>,
|
|
|
|
/// True for instructions that terminate the block.
|
|
pub is_terminator: bool,
|
|
/// True for all branch or jump instructions.
|
|
pub is_branch: bool,
|
|
/// Is this a call instruction?
|
|
pub is_call: bool,
|
|
/// Is this a return instruction?
|
|
pub is_return: bool,
|
|
/// Can this instruction read from memory?
|
|
pub can_load: bool,
|
|
/// Can this instruction write to memory?
|
|
pub can_store: bool,
|
|
/// Can this instruction cause a trap?
|
|
pub can_trap: bool,
|
|
/// Does this instruction have other side effects besides can_* flags?
|
|
pub other_side_effects: bool,
|
|
/// Despite having other side effects, is this instruction okay to GVN?
|
|
pub side_effects_idempotent: bool,
|
|
}
|
|
|
|
impl InstructionContent {
|
|
pub fn snake_name(&self) -> &str {
|
|
if &self.name == "return" {
|
|
"return_"
|
|
} else {
|
|
&self.name
|
|
}
|
|
}
|
|
}
|
|
|
|
pub(crate) type Instruction = Rc<InstructionContent>;
|
|
|
|
impl fmt::Display for InstructionContent {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter) -> Result<(), fmt::Error> {
|
|
if !self.operands_out.is_empty() {
|
|
let operands_out = self
|
|
.operands_out
|
|
.iter()
|
|
.map(|op| op.name)
|
|
.collect::<Vec<_>>()
|
|
.join(", ");
|
|
fmt.write_str(&operands_out)?;
|
|
fmt.write_str(" = ")?;
|
|
}
|
|
|
|
fmt.write_str(&self.name)?;
|
|
|
|
if !self.operands_in.is_empty() {
|
|
let operands_in = self
|
|
.operands_in
|
|
.iter()
|
|
.map(|op| op.name)
|
|
.collect::<Vec<_>>()
|
|
.join(", ");
|
|
fmt.write_str(" ")?;
|
|
fmt.write_str(&operands_in)?;
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
pub(crate) struct InstructionBuilder {
|
|
name: String,
|
|
doc: String,
|
|
format: Rc<InstructionFormat>,
|
|
operands_in: Option<Vec<Operand>>,
|
|
operands_out: Option<Vec<Operand>>,
|
|
|
|
// See Instruction comments for the meaning of these fields.
|
|
is_terminator: bool,
|
|
is_branch: bool,
|
|
is_call: bool,
|
|
is_return: bool,
|
|
can_load: bool,
|
|
can_store: bool,
|
|
can_trap: bool,
|
|
other_side_effects: bool,
|
|
side_effects_idempotent: bool,
|
|
}
|
|
|
|
impl InstructionBuilder {
|
|
pub fn new<S: Into<String>>(name: S, doc: S, format: &Rc<InstructionFormat>) -> Self {
|
|
Self {
|
|
name: name.into(),
|
|
doc: doc.into(),
|
|
format: format.clone(),
|
|
operands_in: None,
|
|
operands_out: None,
|
|
|
|
is_terminator: false,
|
|
is_branch: false,
|
|
is_call: false,
|
|
is_return: false,
|
|
can_load: false,
|
|
can_store: false,
|
|
can_trap: false,
|
|
other_side_effects: false,
|
|
side_effects_idempotent: false,
|
|
}
|
|
}
|
|
|
|
pub fn operands_in(mut self, operands: Vec<Operand>) -> Self {
|
|
assert!(self.operands_in.is_none());
|
|
self.operands_in = Some(operands);
|
|
self
|
|
}
|
|
|
|
pub fn operands_out(mut self, operands: Vec<Operand>) -> Self {
|
|
assert!(self.operands_out.is_none());
|
|
self.operands_out = Some(operands);
|
|
self
|
|
}
|
|
|
|
/// Mark this instruction as a block terminator.
|
|
pub fn terminates_block(mut self) -> Self {
|
|
self.is_terminator = true;
|
|
self
|
|
}
|
|
|
|
/// Mark this instruction as a branch instruction. This also implies that the instruction is a
|
|
/// block terminator.
|
|
pub fn branches(mut self) -> Self {
|
|
self.is_branch = true;
|
|
self.terminates_block()
|
|
}
|
|
|
|
/// Mark this instruction as a call instruction.
|
|
pub fn call(mut self) -> Self {
|
|
self.is_call = true;
|
|
self
|
|
}
|
|
|
|
/// Mark this instruction as a return instruction. This also implies that the instruction is a
|
|
/// block terminator.
|
|
pub fn returns(mut self) -> Self {
|
|
self.is_return = true;
|
|
self.terminates_block()
|
|
}
|
|
|
|
/// Mark this instruction as one that can load from memory.
|
|
pub fn can_load(mut self) -> Self {
|
|
self.can_load = true;
|
|
self
|
|
}
|
|
|
|
/// Mark this instruction as one that can store to memory.
|
|
pub fn can_store(mut self) -> Self {
|
|
self.can_store = true;
|
|
self
|
|
}
|
|
|
|
/// Mark this instruction as possibly trapping.
|
|
pub fn can_trap(mut self) -> Self {
|
|
self.can_trap = true;
|
|
self
|
|
}
|
|
|
|
/// Mark this instruction as one that has side-effects.
|
|
pub fn other_side_effects(mut self) -> Self {
|
|
self.other_side_effects = true;
|
|
self
|
|
}
|
|
|
|
/// Mark this instruction as one whose side-effects may be de-duplicated.
|
|
pub fn side_effects_idempotent(mut self) -> Self {
|
|
self.side_effects_idempotent = true;
|
|
self
|
|
}
|
|
|
|
fn build(self) -> Instruction {
|
|
let operands_in = self.operands_in.unwrap_or_else(Vec::new);
|
|
let operands_out = self.operands_out.unwrap_or_else(Vec::new);
|
|
|
|
let mut value_opnums = Vec::new();
|
|
let mut imm_opnums = Vec::new();
|
|
for (i, op) in operands_in.iter().enumerate() {
|
|
if op.is_value() {
|
|
value_opnums.push(i);
|
|
} else if op.is_immediate_or_entityref() {
|
|
imm_opnums.push(i);
|
|
} else {
|
|
assert!(op.is_varargs());
|
|
}
|
|
}
|
|
|
|
let value_results = operands_out
|
|
.iter()
|
|
.enumerate()
|
|
.filter_map(|(i, op)| if op.is_value() { Some(i) } else { None })
|
|
.collect();
|
|
|
|
verify_format(&self.name, &operands_in, &self.format);
|
|
|
|
let polymorphic_info =
|
|
verify_polymorphic(&operands_in, &operands_out, &self.format, &value_opnums);
|
|
|
|
let camel_name = camel_case(&self.name);
|
|
|
|
Rc::new(InstructionContent {
|
|
name: self.name,
|
|
camel_name,
|
|
doc: self.doc,
|
|
operands_in,
|
|
operands_out,
|
|
format: self.format,
|
|
polymorphic_info,
|
|
value_opnums,
|
|
value_results,
|
|
imm_opnums,
|
|
is_terminator: self.is_terminator,
|
|
is_branch: self.is_branch,
|
|
is_call: self.is_call,
|
|
is_return: self.is_return,
|
|
can_load: self.can_load,
|
|
can_store: self.can_store,
|
|
can_trap: self.can_trap,
|
|
other_side_effects: self.other_side_effects,
|
|
side_effects_idempotent: self.side_effects_idempotent,
|
|
})
|
|
}
|
|
}
|
|
|
|
/// Checks that the input operands actually match the given format.
|
|
fn verify_format(inst_name: &str, operands_in: &[Operand], format: &InstructionFormat) {
|
|
// A format is defined by:
|
|
// - its number of input value operands,
|
|
// - its number and names of input immediate operands,
|
|
// - whether it has a value list or not.
|
|
let mut num_values = 0;
|
|
let mut num_blocks = 0;
|
|
let mut num_immediates = 0;
|
|
|
|
for operand in operands_in.iter() {
|
|
if operand.is_varargs() {
|
|
assert!(
|
|
format.has_value_list,
|
|
"instruction {} has varargs, but its format {} doesn't have a value list; you may \
|
|
need to use a different format.",
|
|
inst_name, format.name
|
|
);
|
|
}
|
|
if operand.is_value() {
|
|
num_values += 1;
|
|
}
|
|
if operand.kind.is_block() {
|
|
num_blocks += 1;
|
|
} else if operand.is_immediate_or_entityref() {
|
|
if let Some(format_field) = format.imm_fields.get(num_immediates) {
|
|
assert_eq!(
|
|
format_field.kind.rust_field_name,
|
|
operand.kind.rust_field_name,
|
|
"{}th operand of {} should be {} (according to format), not {} (according to \
|
|
inst definition). You may need to use a different format.",
|
|
num_immediates,
|
|
inst_name,
|
|
format_field.kind.rust_field_name,
|
|
operand.kind.rust_field_name
|
|
);
|
|
num_immediates += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
assert_eq!(
|
|
num_values, format.num_value_operands,
|
|
"inst {} doesn't have as many value input operands as its format {} declares; you may need \
|
|
to use a different format.",
|
|
inst_name, format.name
|
|
);
|
|
|
|
assert_eq!(
|
|
num_blocks, format.num_block_operands,
|
|
"inst {} doesn't have as many block input operands as its format {} declares; you may need \
|
|
to use a different format.",
|
|
inst_name, format.name,
|
|
);
|
|
|
|
assert_eq!(
|
|
num_immediates,
|
|
format.imm_fields.len(),
|
|
"inst {} doesn't have as many immediate input \
|
|
operands as its format {} declares; you may need to use a different format.",
|
|
inst_name,
|
|
format.name
|
|
);
|
|
}
|
|
|
|
/// Check if this instruction is polymorphic, and verify its use of type variables.
|
|
fn verify_polymorphic(
|
|
operands_in: &[Operand],
|
|
operands_out: &[Operand],
|
|
format: &InstructionFormat,
|
|
value_opnums: &[usize],
|
|
) -> Option<PolymorphicInfo> {
|
|
// The instruction is polymorphic if it has one free input or output operand.
|
|
let is_polymorphic = operands_in
|
|
.iter()
|
|
.any(|op| op.is_value() && op.type_var().unwrap().free_typevar().is_some())
|
|
|| operands_out
|
|
.iter()
|
|
.any(|op| op.is_value() && op.type_var().unwrap().free_typevar().is_some());
|
|
|
|
if !is_polymorphic {
|
|
return None;
|
|
}
|
|
|
|
// Verify the use of type variables.
|
|
let tv_op = format.typevar_operand;
|
|
let mut maybe_error_message = None;
|
|
if let Some(tv_op) = tv_op {
|
|
if tv_op < value_opnums.len() {
|
|
let op_num = value_opnums[tv_op];
|
|
let tv = operands_in[op_num].type_var().unwrap();
|
|
let free_typevar = tv.free_typevar();
|
|
if (free_typevar.is_some() && tv == &free_typevar.unwrap())
|
|
|| tv.singleton_type().is_some()
|
|
{
|
|
match is_ctrl_typevar_candidate(tv, &operands_in, &operands_out) {
|
|
Ok(_other_typevars) => {
|
|
return Some(PolymorphicInfo {
|
|
use_typevar_operand: true,
|
|
ctrl_typevar: tv.clone(),
|
|
});
|
|
}
|
|
Err(error_message) => {
|
|
maybe_error_message = Some(error_message);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
// If we reached here, it means the type variable indicated as the typevar operand couldn't
|
|
// control every other input and output type variable. We need to look at the result type
|
|
// variables.
|
|
if operands_out.is_empty() {
|
|
// No result means no other possible type variable, so it's a type inference failure.
|
|
match maybe_error_message {
|
|
Some(msg) => panic!("{}", msg),
|
|
None => panic!("typevar_operand must be a free type variable"),
|
|
}
|
|
}
|
|
|
|
// Otherwise, try to infer the controlling type variable by looking at the first result.
|
|
let tv = operands_out[0].type_var().unwrap();
|
|
let free_typevar = tv.free_typevar();
|
|
if free_typevar.is_some() && tv != &free_typevar.unwrap() {
|
|
panic!("first result must be a free type variable");
|
|
}
|
|
|
|
// At this point, if the next unwrap() fails, it means the output type couldn't be used as a
|
|
// controlling type variable either; panicking is the right behavior.
|
|
is_ctrl_typevar_candidate(tv, &operands_in, &operands_out).unwrap();
|
|
|
|
Some(PolymorphicInfo {
|
|
use_typevar_operand: false,
|
|
ctrl_typevar: tv.clone(),
|
|
})
|
|
}
|
|
|
|
/// Verify that the use of TypeVars is consistent with `ctrl_typevar` as the controlling type
|
|
/// variable.
|
|
///
|
|
/// All polymorhic inputs must either be derived from `ctrl_typevar` or be independent free type
|
|
/// variables only used once.
|
|
///
|
|
/// All polymorphic results must be derived from `ctrl_typevar`.
|
|
///
|
|
/// Return a vector of other type variables used, or a string explaining what went wrong.
|
|
fn is_ctrl_typevar_candidate(
|
|
ctrl_typevar: &TypeVar,
|
|
operands_in: &[Operand],
|
|
operands_out: &[Operand],
|
|
) -> Result<Vec<TypeVar>, String> {
|
|
let mut other_typevars = Vec::new();
|
|
|
|
// Check value inputs.
|
|
for input in operands_in {
|
|
if !input.is_value() {
|
|
continue;
|
|
}
|
|
|
|
let typ = input.type_var().unwrap();
|
|
let free_typevar = typ.free_typevar();
|
|
|
|
// Non-polymorphic or derived from ctrl_typevar is OK.
|
|
if free_typevar.is_none() {
|
|
continue;
|
|
}
|
|
let free_typevar = free_typevar.unwrap();
|
|
if &free_typevar == ctrl_typevar {
|
|
continue;
|
|
}
|
|
|
|
// No other derived typevars allowed.
|
|
if typ != &free_typevar {
|
|
return Err(format!(
|
|
"{:?}: type variable {} must be derived from {:?} while it is derived from {:?}",
|
|
input, typ.name, ctrl_typevar, free_typevar
|
|
));
|
|
}
|
|
|
|
// Other free type variables can only be used once each.
|
|
for other_tv in &other_typevars {
|
|
if &free_typevar == other_tv {
|
|
return Err(format!(
|
|
"non-controlling type variable {} can't be used more than once",
|
|
free_typevar.name
|
|
));
|
|
}
|
|
}
|
|
|
|
other_typevars.push(free_typevar);
|
|
}
|
|
|
|
// Check outputs.
|
|
for result in operands_out {
|
|
if !result.is_value() {
|
|
continue;
|
|
}
|
|
|
|
let typ = result.type_var().unwrap();
|
|
let free_typevar = typ.free_typevar();
|
|
|
|
// Non-polymorphic or derived from ctrl_typevar is OK.
|
|
if free_typevar.is_none() || &free_typevar.unwrap() == ctrl_typevar {
|
|
continue;
|
|
}
|
|
|
|
return Err("type variable in output not derived from ctrl_typevar".into());
|
|
}
|
|
|
|
Ok(other_typevars)
|
|
}
|