Files
wasmtime/fuzz/fuzz_targets/cranelift-fuzzgen.rs
Jamey Sharp dd81e5a64f Don't let fuzz targets import arbitrary directly (#4806)
The version of the `arbitrary` crate used in fuzz targets needs to be
the same as the version used in `libfuzzer-sys`. That's why the latter
crate re-exports the former.

But we need to make sure to consistently use the re-exported version.
That's most easily done if that's the only version we have available.
However, `fuzz/Cargo.toml` declared a direct dependency on `arbitrary`,
making it available for import, and leading to that version being used
in a couple places.

There were two copies of `arbitrary` built before, even though they were
the same version: one with the `derive` feature turned on, through the
direct dependency, and one with it turned off when imported through
`libfuzzer-sys`. So I haven't specifically tested this but fuzzer builds
might be slightly faster now.

I have not removed the build-dep on `arbitrary`, because `build.rs` is
not invoked by libFuzzer and so it doesn't matter what version of
`arbitrary` it uses.

Our other crates, like `cranelift-fuzzgen` and `wasmtime-fuzzing`, can
still accidentally use a different version of `arbitrary` than the fuzz
targets which rely on them. This commit only fixes the direct cases
within `fuzz/**`.
2022-08-29 23:06:41 +00:00

129 lines
4.7 KiB
Rust

#![no_main]
use libfuzzer_sys::fuzz_target;
use cranelift_codegen::data_value::DataValue;
use cranelift_codegen::ir::LibCall;
use cranelift_codegen::settings;
use cranelift_codegen::settings::Configurable;
use cranelift_filetests::function_runner::{TestFileCompiler, Trampoline};
use cranelift_fuzzgen::*;
use cranelift_interpreter::environment::FuncIndex;
use cranelift_interpreter::environment::FunctionStore;
use cranelift_interpreter::interpreter::{
Interpreter, InterpreterError, InterpreterState, LibCallValues,
};
use cranelift_interpreter::step::ControlFlow;
use cranelift_interpreter::step::CraneliftTrap;
use smallvec::smallvec;
const INTERPRETER_FUEL: u64 = 4096;
#[derive(Debug)]
enum RunResult {
Success(Vec<DataValue>),
Trap(CraneliftTrap),
Timeout,
Error(Box<dyn std::error::Error>),
}
impl RunResult {
pub fn unwrap(self) -> Vec<DataValue> {
match self {
RunResult::Success(d) => d,
_ => panic!("Expected RunResult::Success in unwrap but got: {:?}", self),
}
}
}
fn run_in_interpreter(interpreter: &mut Interpreter, args: &[DataValue]) -> RunResult {
// The entrypoint function is always 0
let index = FuncIndex::from_u32(0);
let res = interpreter.call_by_index(index, args);
match res {
Ok(ControlFlow::Return(results)) => RunResult::Success(results.to_vec()),
Ok(ControlFlow::Trap(trap)) => RunResult::Trap(trap),
Ok(cf) => RunResult::Error(format!("Unrecognized exit ControlFlow: {:?}", cf).into()),
Err(InterpreterError::FuelExhausted) => RunResult::Timeout,
Err(e) => RunResult::Error(e.into()),
}
}
fn run_in_host(trampoline: &Trampoline, args: &[DataValue]) -> RunResult {
let res = trampoline.call(args);
RunResult::Success(res)
}
fn build_interpreter(testcase: &TestCase) -> Interpreter {
let mut env = FunctionStore::default();
env.add(testcase.func.name.to_string(), &testcase.func);
let state = InterpreterState::default()
.with_function_store(env)
.with_libcall_handler(|libcall: LibCall, args: LibCallValues<DataValue>| {
use LibCall::*;
Ok(smallvec![match (libcall, &args[..]) {
(CeilF32, [DataValue::F32(a)]) => DataValue::F32(a.ceil()),
(CeilF64, [DataValue::F64(a)]) => DataValue::F64(a.ceil()),
(FloorF32, [DataValue::F32(a)]) => DataValue::F32(a.floor()),
(FloorF64, [DataValue::F64(a)]) => DataValue::F64(a.floor()),
(TruncF32, [DataValue::F32(a)]) => DataValue::F32(a.trunc()),
(TruncF64, [DataValue::F64(a)]) => DataValue::F64(a.trunc()),
_ => unreachable!(),
}])
});
let interpreter = Interpreter::new(state).with_fuel(Some(INTERPRETER_FUEL));
interpreter
}
fuzz_target!(|testcase: TestCase| {
// Native fn
let flags = {
let mut builder = settings::builder();
// We need llvm ABI extensions for i128 values on x86
builder.set("enable_llvm_abi_extensions", "true").unwrap();
settings::Flags::new(builder)
};
let mut compiler = TestFileCompiler::with_host_isa(flags).unwrap();
compiler.declare_function(&testcase.func).unwrap();
compiler.define_function(testcase.func.clone()).unwrap();
compiler
.create_trampoline_for_function(&testcase.func)
.unwrap();
let compiled = compiler.compile().unwrap();
let trampoline = compiled.get_trampoline(&testcase.func).unwrap();
for args in &testcase.inputs {
// We rebuild the interpreter every run so that we don't accidentally carry over any state
// between runs, such as fuel remaining.
let mut interpreter = build_interpreter(&testcase);
let int_res = run_in_interpreter(&mut interpreter, args);
match int_res {
RunResult::Success(_) => {}
RunResult::Trap(_) => {
// We currently ignore inputs that trap the interpreter
// We could catch traps in the host run and compare them to the
// interpreter traps, but since we already test trap cases with
// wasm tests and wasm-level fuzzing, the amount of effort does
// not justify implementing it again here.
return;
}
RunResult::Timeout => {
// We probably generated an infinite loop, we can ignore this
return;
}
RunResult::Error(_) => panic!("interpreter failed: {:?}", int_res),
}
let host_res = run_in_host(&trampoline, args);
match host_res {
RunResult::Success(_) => {}
_ => panic!("host failed: {:?}", host_res),
}
assert_eq!(int_res.unwrap(), host_res.unwrap());
}
});