Files
wasmtime/cranelift/codegen/src/isa/x64/lower.rs
Johnnie Birch dd6ba5f9d7 Lower packed integer add instructions (v128)
Adds lowering support for packed integer add instructions and helper
function for determining if a type for an instruction indicates it is
packed.
2020-08-06 22:25:18 -07:00

2166 lines
82 KiB
Rust

//! Lowering rules for X64.
#![allow(non_snake_case)]
use crate::ir::{
condcodes::FloatCC, condcodes::IntCC, types, AbiParam, ArgumentPurpose, ExternalName,
Inst as IRInst, InstructionData, LibCall, Opcode, Signature, TrapCode, Type,
};
use crate::isa::x64::abi::*;
use crate::isa::x64::inst::args::*;
use crate::isa::x64::inst::*;
use crate::isa::{x64::X64Backend, CallConv};
use crate::machinst::lower::*;
use crate::machinst::*;
use crate::result::CodegenResult;
use crate::settings::Flags;
use alloc::boxed::Box;
use alloc::vec::Vec;
use cranelift_codegen_shared::condcodes::CondCode;
use log::trace;
use regalloc::{Reg, RegClass, Writable};
use smallvec::SmallVec;
use std::convert::TryFrom;
use target_lexicon::Triple;
/// Context passed to all lowering functions.
type Ctx<'a> = &'a mut dyn LowerCtx<I = Inst>;
//=============================================================================
// Helpers for instruction lowering.
fn is_int_ty(ty: Type) -> bool {
match ty {
types::I8 | types::I16 | types::I32 | types::I64 | types::R64 => true,
types::R32 => panic!("shouldn't have 32-bits refs on x64"),
_ => false,
}
}
fn is_bool_ty(ty: Type) -> bool {
match ty {
types::B1 | types::B8 | types::B16 | types::B32 | types::B64 => true,
types::R32 => panic!("shouldn't have 32-bits refs on x64"),
_ => false,
}
}
fn iri_to_u64_imm(ctx: Ctx, inst: IRInst) -> Option<u64> {
ctx.get_constant(inst)
}
fn inst_trapcode(data: &InstructionData) -> Option<TrapCode> {
match data {
&InstructionData::Trap { code, .. }
| &InstructionData::CondTrap { code, .. }
| &InstructionData::IntCondTrap { code, .. }
| &InstructionData::FloatCondTrap { code, .. } => Some(code),
_ => None,
}
}
fn inst_condcode(data: &InstructionData) -> IntCC {
match data {
&InstructionData::IntCond { cond, .. }
| &InstructionData::BranchIcmp { cond, .. }
| &InstructionData::IntCompare { cond, .. }
| &InstructionData::IntCondTrap { cond, .. }
| &InstructionData::BranchInt { cond, .. }
| &InstructionData::IntSelect { cond, .. }
| &InstructionData::IntCompareImm { cond, .. } => cond,
_ => panic!("inst_condcode(x64): unhandled: {:?}", data),
}
}
fn inst_fp_condcode(data: &InstructionData) -> Option<FloatCC> {
match data {
&InstructionData::BranchFloat { cond, .. }
| &InstructionData::FloatCompare { cond, .. }
| &InstructionData::FloatCond { cond, .. }
| &InstructionData::FloatCondTrap { cond, .. } => Some(cond),
_ => None,
}
}
fn ldst_offset(data: &InstructionData) -> Option<i32> {
match data {
&InstructionData::Load { offset, .. }
| &InstructionData::StackLoad { offset, .. }
| &InstructionData::LoadComplex { offset, .. }
| &InstructionData::Store { offset, .. }
| &InstructionData::StackStore { offset, .. }
| &InstructionData::StoreComplex { offset, .. } => Some(offset.into()),
_ => None,
}
}
/// Identifier for a particular input of an instruction.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct InsnInput {
insn: IRInst,
input: usize,
}
/// Identifier for a particular output of an instruction.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct InsnOutput {
insn: IRInst,
output: usize,
}
fn matches_input<C: LowerCtx<I = Inst>>(c: &mut C, input: InsnInput, op: Opcode) -> Option<IRInst> {
let inputs = c.get_input(input.insn, input.input);
if let Some((src_inst, _)) = inputs.inst {
let data = c.data(src_inst);
if data.opcode() == op {
return Some(src_inst);
}
}
None
}
fn input_to_reg(ctx: Ctx, spec: InsnInput) -> Reg {
let inputs = ctx.get_input(spec.insn, spec.input);
ctx.use_input_reg(inputs);
inputs.reg
}
enum ExtSpec {
ZeroExtendTo32,
ZeroExtendTo64,
SignExtendTo32,
SignExtendTo64,
}
fn extend_input_to_reg(ctx: Ctx, spec: InsnInput, ext_spec: ExtSpec) -> Reg {
let requested_size = match ext_spec {
ExtSpec::ZeroExtendTo32 | ExtSpec::SignExtendTo32 => 32,
ExtSpec::ZeroExtendTo64 | ExtSpec::SignExtendTo64 => 64,
};
let input_size = ctx.input_ty(spec.insn, spec.input).bits();
let ext_mode = match (input_size, requested_size) {
(a, b) if a == b => return input_to_reg(ctx, spec),
(a, 32) if a == 1 || a == 8 => ExtMode::BL,
(a, 64) if a == 1 || a == 8 => ExtMode::BQ,
(16, 32) => ExtMode::WL,
(16, 64) => ExtMode::WQ,
(32, 64) => ExtMode::LQ,
_ => unreachable!(),
};
let requested_ty = if requested_size == 32 {
types::I32
} else {
types::I64
};
let src = input_to_reg_mem(ctx, spec);
let dst = ctx.alloc_tmp(RegClass::I64, requested_ty);
match ext_spec {
ExtSpec::ZeroExtendTo32 | ExtSpec::ZeroExtendTo64 => {
ctx.emit(Inst::movzx_rm_r(
ext_mode, src, dst, /* infallible */ None,
))
}
ExtSpec::SignExtendTo32 | ExtSpec::SignExtendTo64 => {
ctx.emit(Inst::movsx_rm_r(
ext_mode, src, dst, /* infallible */ None,
))
}
}
dst.to_reg()
}
fn input_to_reg_mem(ctx: Ctx, spec: InsnInput) -> RegMem {
// TODO handle memory.
RegMem::reg(input_to_reg(ctx, spec))
}
/// Try to use an immediate for constant inputs, and a register otherwise.
/// TODO: handle memory as well!
fn input_to_reg_mem_imm(ctx: Ctx, spec: InsnInput) -> RegMemImm {
let imm = ctx.get_input(spec.insn, spec.input).constant.and_then(|x| {
// For i64 instructions (prefixed with REX.W), require that the immediate will sign-extend
// to 64 bits. For other sizes, it doesn't matter and we can just use the plain
// constant.
if ctx.input_ty(spec.insn, spec.input).bytes() != 8 || low32_will_sign_extend_to_64(x) {
Some(x as u32)
} else {
None
}
});
match imm {
Some(x) => RegMemImm::imm(x),
None => RegMemImm::reg(input_to_reg(ctx, spec)),
}
}
fn output_to_reg(ctx: Ctx, spec: InsnOutput) -> Writable<Reg> {
ctx.get_output(spec.insn, spec.output)
}
fn emit_cmp(ctx: Ctx, insn: IRInst) {
let ty = ctx.input_ty(insn, 0);
let inputs = [InsnInput { insn, input: 0 }, InsnInput { insn, input: 1 }];
// TODO Try to commute the operands (and invert the condition) if one is an immediate.
let lhs = input_to_reg(ctx, inputs[0]);
let rhs = input_to_reg_mem_imm(ctx, inputs[1]);
// Cranelift's icmp semantics want to compare lhs - rhs, while Intel gives
// us dst - src at the machine instruction level, so invert operands.
ctx.emit(Inst::cmp_rmi_r(ty.bytes() as u8, rhs, lhs));
}
fn emit_fcmp(ctx: Ctx, insn: IRInst) {
// The only valid CC constructed with `from_floatcc` can be put in the flag
// register with a direct float comparison; do this here.
let input_ty = ctx.input_ty(insn, 0);
let op = match input_ty {
types::F32 => SseOpcode::Ucomiss,
types::F64 => SseOpcode::Ucomisd,
_ => panic!("Bad input type to Fcmp"),
};
let inputs = &[InsnInput { insn, input: 0 }, InsnInput { insn, input: 1 }];
let lhs = input_to_reg(ctx, inputs[0]);
let rhs = input_to_reg_mem(ctx, inputs[1]);
ctx.emit(Inst::xmm_cmp_rm_r(op, rhs, lhs));
}
fn make_libcall_sig(ctx: Ctx, insn: IRInst, call_conv: CallConv, ptr_ty: Type) -> Signature {
let mut sig = Signature::new(call_conv);
for i in 0..ctx.num_inputs(insn) {
sig.params.push(AbiParam::new(ctx.input_ty(insn, i)));
}
for i in 0..ctx.num_outputs(insn) {
sig.returns.push(AbiParam::new(ctx.output_ty(insn, i)));
}
if call_conv.extends_baldrdash() {
// Adds the special VMContext parameter to the signature.
sig.params
.push(AbiParam::special(ptr_ty, ArgumentPurpose::VMContext));
}
sig
}
fn emit_vm_call<C: LowerCtx<I = Inst>>(
ctx: &mut C,
flags: &Flags,
triple: &Triple,
libcall: LibCall,
insn: IRInst,
inputs: SmallVec<[InsnInput; 4]>,
outputs: SmallVec<[InsnOutput; 2]>,
) -> CodegenResult<()> {
let extname = ExternalName::LibCall(libcall);
let dist = if flags.use_colocated_libcalls() {
RelocDistance::Near
} else {
RelocDistance::Far
};
// TODO avoid recreating signatures for every single Libcall function.
let call_conv = CallConv::for_libcall(flags, CallConv::triple_default(triple));
let sig = make_libcall_sig(ctx, insn, call_conv, types::I64);
let loc = ctx.srcloc(insn);
let mut abi = X64ABICall::from_func(&sig, &extname, dist, loc)?;
abi.emit_stack_pre_adjust(ctx);
let vm_context = if call_conv.extends_baldrdash() { 1 } else { 0 };
assert_eq!(inputs.len() + vm_context, abi.num_args());
for (i, input) in inputs.iter().enumerate() {
let arg_reg = input_to_reg(ctx, *input);
abi.emit_copy_reg_to_arg(ctx, i, arg_reg);
}
if call_conv.extends_baldrdash() {
let vm_context_vreg = ctx
.get_vm_context()
.expect("should have a VMContext to pass to libcall funcs");
abi.emit_copy_reg_to_arg(ctx, inputs.len(), vm_context_vreg);
}
abi.emit_call(ctx);
for (i, output) in outputs.iter().enumerate() {
let retval_reg = output_to_reg(ctx, *output);
abi.emit_copy_retval_to_reg(ctx, i, retval_reg);
}
abi.emit_stack_post_adjust(ctx);
Ok(())
}
//=============================================================================
// Top-level instruction lowering entry point, for one instruction.
/// Actually codegen an instruction's results into registers.
fn lower_insn_to_regs<C: LowerCtx<I = Inst>>(
ctx: &mut C,
insn: IRInst,
flags: &Flags,
triple: &Triple,
) -> CodegenResult<()> {
let op = ctx.data(insn).opcode();
let inputs: SmallVec<[InsnInput; 4]> = (0..ctx.num_inputs(insn))
.map(|i| InsnInput { insn, input: i })
.collect();
let outputs: SmallVec<[InsnOutput; 2]> = (0..ctx.num_outputs(insn))
.map(|i| InsnOutput { insn, output: i })
.collect();
let ty = if outputs.len() > 0 {
Some(ctx.output_ty(insn, 0))
} else {
None
};
match op {
Opcode::Iconst | Opcode::Bconst | Opcode::Null => {
if let Some(w64) = iri_to_u64_imm(ctx, insn) {
let dst_is_64 = w64 > 0x7fffffff;
let dst = output_to_reg(ctx, outputs[0]);
ctx.emit(Inst::imm_r(dst_is_64, w64, dst));
} else {
unimplemented!();
}
}
Opcode::Iadd
| Opcode::IaddIfcout
| Opcode::Isub
| Opcode::Imul
| Opcode::Band
| Opcode::Bor
| Opcode::Bxor => {
// TODO For commutative operations (add, mul, and, or, xor), try to commute the
// operands if one is an immediate.
let ty = ty.unwrap();
println!("Type: {}, Ops: {}", ty, op);
if ty.lane_count() > 1 {
let sse_op = match op {
Opcode::Iadd => match ty {
I8x16 => SseOpcode::Paddb,
I16x8 => SseOpcode::Paddw,
I32x4 => SseOpcode::Paddd,
I64x2 => SseOpcode::Paddq,
_ => panic!("Unsupported type for packed Iadd instruction"),
},
_ => panic!("Unsupported packed instruction"),
};
let lhs = input_to_reg(ctx, inputs[0]);
let rhs = input_to_reg_mem(ctx, inputs[1]);
let dst = output_to_reg(ctx, outputs[0]);
// Move the `lhs` to the same register as `dst`.
ctx.emit(Inst::gen_move(dst, lhs, ty));
ctx.emit(Inst::xmm_rm_r(sse_op, rhs, dst));
} else {
let is_64 = ty == types::I64;
let alu_op = match op {
Opcode::Iadd | Opcode::IaddIfcout => AluRmiROpcode::Add,
Opcode::Isub => AluRmiROpcode::Sub,
Opcode::Imul => AluRmiROpcode::Mul,
Opcode::Band => AluRmiROpcode::And,
Opcode::Bor => AluRmiROpcode::Or,
Opcode::Bxor => AluRmiROpcode::Xor,
_ => unreachable!(),
};
let lhs = input_to_reg(ctx, inputs[0]);
let rhs = input_to_reg_mem_imm(ctx, inputs[1]);
let dst = output_to_reg(ctx, outputs[0]);
ctx.emit(Inst::mov_r_r(true, lhs, dst));
ctx.emit(Inst::alu_rmi_r(is_64, alu_op, rhs, dst));
}
}
Opcode::Ishl | Opcode::Ushr | Opcode::Sshr | Opcode::Rotl | Opcode::Rotr => {
let dst_ty = ctx.output_ty(insn, 0);
debug_assert_eq!(ctx.input_ty(insn, 0), dst_ty);
debug_assert!(dst_ty == types::I32 || dst_ty == types::I64);
let lhs = input_to_reg(ctx, inputs[0]);
let (count, rhs) = if let Some(cst) = ctx.get_constant(inputs[1].insn) {
let cst = if op == Opcode::Rotl || op == Opcode::Rotr {
// Mask rotation count, according to Cranelift's semantics.
(cst as u8) & (dst_ty.bits() as u8 - 1)
} else {
cst as u8
};
(Some(cst), None)
} else {
(None, Some(input_to_reg(ctx, inputs[1])))
};
let dst = output_to_reg(ctx, outputs[0]);
let shift_kind = match op {
Opcode::Ishl => ShiftKind::ShiftLeft,
Opcode::Ushr => ShiftKind::ShiftRightLogical,
Opcode::Sshr => ShiftKind::ShiftRightArithmetic,
Opcode::Rotl => ShiftKind::RotateLeft,
Opcode::Rotr => ShiftKind::RotateRight,
_ => unreachable!(),
};
let is_64 = dst_ty == types::I64;
let w_rcx = Writable::from_reg(regs::rcx());
ctx.emit(Inst::mov_r_r(true, lhs, dst));
if count.is_none() {
ctx.emit(Inst::mov_r_r(true, rhs.unwrap(), w_rcx));
}
ctx.emit(Inst::shift_r(is_64, shift_kind, count, dst));
}
Opcode::Clz => {
// TODO when the x86 flags have use_lzcnt, we can use LZCNT.
// General formula using bit-scan reverse (BSR):
// mov -1, %dst
// bsr %src, %tmp
// cmovz %dst, %tmp
// mov $(size_bits - 1), %dst
// sub %tmp, %dst
let (ext_spec, ty) = match ctx.input_ty(insn, 0) {
types::I8 | types::I16 => (Some(ExtSpec::ZeroExtendTo32), types::I32),
a if a == types::I32 || a == types::I64 => (None, a),
_ => unreachable!(),
};
let src = if let Some(ext_spec) = ext_spec {
RegMem::reg(extend_input_to_reg(ctx, inputs[0], ext_spec))
} else {
input_to_reg_mem(ctx, inputs[0])
};
let dst = output_to_reg(ctx, outputs[0]);
let tmp = ctx.alloc_tmp(RegClass::I64, ty);
ctx.emit(Inst::imm_r(ty == types::I64, u64::max_value(), dst));
ctx.emit(Inst::unary_rm_r(
ty.bytes() as u8,
UnaryRmROpcode::Bsr,
src,
tmp,
));
ctx.emit(Inst::cmove(
ty.bytes() as u8,
CC::Z,
RegMem::reg(dst.to_reg()),
tmp,
));
ctx.emit(Inst::imm_r(ty == types::I64, ty.bits() as u64 - 1, dst));
ctx.emit(Inst::alu_rmi_r(
ty == types::I64,
AluRmiROpcode::Sub,
RegMemImm::reg(tmp.to_reg()),
dst,
));
}
Opcode::Ctz => {
// TODO when the x86 flags have use_bmi1, we can use TZCNT.
// General formula using bit-scan forward (BSF):
// bsf %src, %dst
// mov $(size_bits), %tmp
// cmovz %tmp, %dst
let ty = ctx.input_ty(insn, 0);
let ty = if ty.bits() < 32 { types::I32 } else { ty };
debug_assert!(ty == types::I32 || ty == types::I64);
let src = input_to_reg_mem(ctx, inputs[0]);
let dst = output_to_reg(ctx, outputs[0]);
let tmp = ctx.alloc_tmp(RegClass::I64, ty);
ctx.emit(Inst::imm_r(false /* 64 bits */, ty.bits() as u64, tmp));
ctx.emit(Inst::unary_rm_r(
ty.bytes() as u8,
UnaryRmROpcode::Bsf,
src,
dst,
));
ctx.emit(Inst::cmove(
ty.bytes() as u8,
CC::Z,
RegMem::reg(tmp.to_reg()),
dst,
));
}
Opcode::Popcnt => {
// TODO when the x86 flags have use_popcnt, we can use the popcnt instruction.
let (ext_spec, ty) = match ctx.input_ty(insn, 0) {
types::I8 | types::I16 => (Some(ExtSpec::ZeroExtendTo32), types::I32),
a if a == types::I32 || a == types::I64 => (None, a),
_ => unreachable!(),
};
let src = if let Some(ext_spec) = ext_spec {
RegMem::reg(extend_input_to_reg(ctx, inputs[0], ext_spec))
} else {
input_to_reg_mem(ctx, inputs[0])
};
let dst = output_to_reg(ctx, outputs[0]);
if ty == types::I64 {
let is_64 = true;
let tmp1 = ctx.alloc_tmp(RegClass::I64, types::I64);
let tmp2 = ctx.alloc_tmp(RegClass::I64, types::I64);
let cst = ctx.alloc_tmp(RegClass::I64, types::I64);
// mov src, tmp1
ctx.emit(Inst::mov64_rm_r(src.clone(), tmp1, None));
// shr $1, tmp1
ctx.emit(Inst::shift_r(
is_64,
ShiftKind::ShiftRightLogical,
Some(1),
tmp1,
));
// mov 0x7777_7777_7777_7777, cst
ctx.emit(Inst::imm_r(is_64, 0x7777777777777777, cst));
// andq cst, tmp1
ctx.emit(Inst::alu_rmi_r(
is_64,
AluRmiROpcode::And,
RegMemImm::reg(cst.to_reg()),
tmp1,
));
// mov src, tmp2
ctx.emit(Inst::mov64_rm_r(src, tmp2, None));
// sub tmp1, tmp2
ctx.emit(Inst::alu_rmi_r(
is_64,
AluRmiROpcode::Sub,
RegMemImm::reg(tmp1.to_reg()),
tmp2,
));
// shr $1, tmp1
ctx.emit(Inst::shift_r(
is_64,
ShiftKind::ShiftRightLogical,
Some(1),
tmp1,
));
// and cst, tmp1
ctx.emit(Inst::alu_rmi_r(
is_64,
AluRmiROpcode::And,
RegMemImm::reg(cst.to_reg()),
tmp1,
));
// sub tmp1, tmp2
ctx.emit(Inst::alu_rmi_r(
is_64,
AluRmiROpcode::Sub,
RegMemImm::reg(tmp1.to_reg()),
tmp2,
));
// shr $1, tmp1
ctx.emit(Inst::shift_r(
is_64,
ShiftKind::ShiftRightLogical,
Some(1),
tmp1,
));
// and cst, tmp1
ctx.emit(Inst::alu_rmi_r(
is_64,
AluRmiROpcode::And,
RegMemImm::reg(cst.to_reg()),
tmp1,
));
// sub tmp1, tmp2
ctx.emit(Inst::alu_rmi_r(
is_64,
AluRmiROpcode::Sub,
RegMemImm::reg(tmp1.to_reg()),
tmp2,
));
// mov tmp2, dst
ctx.emit(Inst::mov64_rm_r(RegMem::reg(tmp2.to_reg()), dst, None));
// shr $4, dst
ctx.emit(Inst::shift_r(
is_64,
ShiftKind::ShiftRightLogical,
Some(4),
dst,
));
// add tmp2, dst
ctx.emit(Inst::alu_rmi_r(
is_64,
AluRmiROpcode::Add,
RegMemImm::reg(tmp2.to_reg()),
dst,
));
// mov $0x0F0F_0F0F_0F0F_0F0F, cst
ctx.emit(Inst::imm_r(is_64, 0x0F0F0F0F0F0F0F0F, cst));
// and cst, dst
ctx.emit(Inst::alu_rmi_r(
is_64,
AluRmiROpcode::And,
RegMemImm::reg(cst.to_reg()),
dst,
));
// mov $0x0101_0101_0101_0101, cst
ctx.emit(Inst::imm_r(is_64, 0x0101010101010101, cst));
// mul cst, dst
ctx.emit(Inst::alu_rmi_r(
is_64,
AluRmiROpcode::Mul,
RegMemImm::reg(cst.to_reg()),
dst,
));
// shr $56, dst
ctx.emit(Inst::shift_r(
is_64,
ShiftKind::ShiftRightLogical,
Some(56),
dst,
));
} else {
assert_eq!(ty, types::I32);
let is_64 = false;
let tmp1 = ctx.alloc_tmp(RegClass::I64, types::I64);
let tmp2 = ctx.alloc_tmp(RegClass::I64, types::I64);
// mov src, tmp1
ctx.emit(Inst::mov64_rm_r(src.clone(), tmp1, None));
// shr $1, tmp1
ctx.emit(Inst::shift_r(
is_64,
ShiftKind::ShiftRightLogical,
Some(1),
tmp1,
));
// andq $0x7777_7777, tmp1
ctx.emit(Inst::alu_rmi_r(
is_64,
AluRmiROpcode::And,
RegMemImm::imm(0x77777777),
tmp1,
));
// mov src, tmp2
ctx.emit(Inst::mov64_rm_r(src, tmp2, None));
// sub tmp1, tmp2
ctx.emit(Inst::alu_rmi_r(
is_64,
AluRmiROpcode::Sub,
RegMemImm::reg(tmp1.to_reg()),
tmp2,
));
// shr $1, tmp1
ctx.emit(Inst::shift_r(
is_64,
ShiftKind::ShiftRightLogical,
Some(1),
tmp1,
));
// and 0x7777_7777, tmp1
ctx.emit(Inst::alu_rmi_r(
is_64,
AluRmiROpcode::And,
RegMemImm::imm(0x77777777),
tmp1,
));
// sub tmp1, tmp2
ctx.emit(Inst::alu_rmi_r(
is_64,
AluRmiROpcode::Sub,
RegMemImm::reg(tmp1.to_reg()),
tmp2,
));
// shr $1, tmp1
ctx.emit(Inst::shift_r(
is_64,
ShiftKind::ShiftRightLogical,
Some(1),
tmp1,
));
// and $0x7777_7777, tmp1
ctx.emit(Inst::alu_rmi_r(
is_64,
AluRmiROpcode::And,
RegMemImm::imm(0x77777777),
tmp1,
));
// sub tmp1, tmp2
ctx.emit(Inst::alu_rmi_r(
is_64,
AluRmiROpcode::Sub,
RegMemImm::reg(tmp1.to_reg()),
tmp2,
));
// mov tmp2, dst
ctx.emit(Inst::mov64_rm_r(RegMem::reg(tmp2.to_reg()), dst, None));
// shr $4, dst
ctx.emit(Inst::shift_r(
is_64,
ShiftKind::ShiftRightLogical,
Some(4),
dst,
));
// add tmp2, dst
ctx.emit(Inst::alu_rmi_r(
is_64,
AluRmiROpcode::Add,
RegMemImm::reg(tmp2.to_reg()),
dst,
));
// and $0x0F0F_0F0F, dst
ctx.emit(Inst::alu_rmi_r(
is_64,
AluRmiROpcode::And,
RegMemImm::imm(0x0F0F0F0F),
dst,
));
// mul $0x0101_0101, dst
ctx.emit(Inst::alu_rmi_r(
is_64,
AluRmiROpcode::Mul,
RegMemImm::imm(0x01010101),
dst,
));
// shr $24, dst
ctx.emit(Inst::shift_r(
is_64,
ShiftKind::ShiftRightLogical,
Some(24),
dst,
));
}
}
Opcode::IsNull | Opcode::IsInvalid => {
// Null references are represented by the constant value 0; invalid references are
// represented by the constant value -1. See `define_reftypes()` in
// `meta/src/isa/x86/encodings.rs` to confirm.
let src = input_to_reg(ctx, inputs[0]);
let dst = output_to_reg(ctx, outputs[0]);
let ty = ctx.input_ty(insn, 0);
let imm = match op {
Opcode::IsNull => {
// TODO could use tst src, src for IsNull
0
}
Opcode::IsInvalid => {
// We can do a 32-bit comparison even in 64-bits mode, as the constant is then
// sign-extended.
0xffffffff
}
_ => unreachable!(),
};
ctx.emit(Inst::cmp_rmi_r(ty.bytes() as u8, RegMemImm::imm(imm), src));
ctx.emit(Inst::setcc(CC::Z, dst));
}
Opcode::Uextend
| Opcode::Sextend
| Opcode::Bint
| Opcode::Breduce
| Opcode::Bextend
| Opcode::Ireduce => {
let src_ty = ctx.input_ty(insn, 0);
let dst_ty = ctx.output_ty(insn, 0);
let src = input_to_reg_mem(ctx, inputs[0]);
let dst = output_to_reg(ctx, outputs[0]);
let ext_mode = match (src_ty.bits(), dst_ty.bits()) {
(1, 32) | (8, 32) => Some(ExtMode::BL),
(1, 64) | (8, 64) => Some(ExtMode::BQ),
(16, 32) => Some(ExtMode::WL),
(16, 64) => Some(ExtMode::WQ),
(32, 64) => Some(ExtMode::LQ),
(x, y) if x >= y => None,
_ => unreachable!(
"unexpected extension kind from {:?} to {:?}",
src_ty, dst_ty
),
};
// All of these other opcodes are simply a move from a zero-extended source. Here
// is why this works, in each case:
//
// - Bint: Bool-to-int. We always represent a bool as a 0 or 1, so we
// merely need to zero-extend here.
//
// - Breduce, Bextend: changing width of a boolean. We represent a
// bool as a 0 or 1, so again, this is a zero-extend / no-op.
//
// - Ireduce: changing width of an integer. Smaller ints are stored
// with undefined high-order bits, so we can simply do a copy.
if let Some(ext_mode) = ext_mode {
if op == Opcode::Sextend {
ctx.emit(Inst::movsx_rm_r(
ext_mode, src, dst, /* infallible */ None,
));
} else {
ctx.emit(Inst::movzx_rm_r(
ext_mode, src, dst, /* infallible */ None,
));
}
} else {
ctx.emit(Inst::mov64_rm_r(src, dst, /* infallible */ None));
}
}
Opcode::Icmp => {
emit_cmp(ctx, insn);
let condcode = inst_condcode(ctx.data(insn));
let cc = CC::from_intcc(condcode);
let dst = output_to_reg(ctx, outputs[0]);
ctx.emit(Inst::setcc(cc, dst));
}
Opcode::Fcmp => {
let condcode = inst_fp_condcode(ctx.data(insn)).unwrap();
let input_ty = ctx.input_ty(insn, 0);
if !input_ty.is_vector() {
let op = match input_ty {
types::F32 => SseOpcode::Ucomiss,
types::F64 => SseOpcode::Ucomisd,
_ => panic!("Bad input type to fcmp: {}", input_ty),
};
// Unordered is returned by setting ZF, PF, CF <- 111
// Greater than by ZF, PF, CF <- 000
// Less than by ZF, PF, CF <- 001
// Equal by ZF, PF, CF <- 100
//
// Checking the result of comiss is somewhat annoying because you don't have setcc
// instructions that explicitly check simultaneously for the condition (i.e. eq, le,
// gt, etc) *and* orderedness.
//
// So that might mean we need more than one setcc check and then a logical "and" or
// "or" to determine both, in some cases. However knowing that if the parity bit is
// set, then the result was considered unordered and knowing that if the parity bit is
// set, then both the ZF and CF flag bits must also be set we can get away with using
// one setcc for most condition codes.
match condcode {
FloatCC::LessThan
| FloatCC::LessThanOrEqual
| FloatCC::UnorderedOrGreaterThan
| FloatCC::UnorderedOrGreaterThanOrEqual => {
// setb and setbe for ordered LessThan and LessThanOrEqual check if CF = 1
// which doesn't exclude unorderdness. To get around this we can reverse the
// operands and the cc test to instead check if CF and ZF are 0 which would
// also excludes unorderedness. Using similiar logic we also reverse
// UnorderedOrGreaterThan and UnorderedOrGreaterThanOrEqual and assure that ZF
// or CF is 1 to exclude orderedness.
let lhs = input_to_reg_mem(ctx, inputs[0]);
let rhs = input_to_reg(ctx, inputs[1]);
let dst = output_to_reg(ctx, outputs[0]);
ctx.emit(Inst::xmm_cmp_rm_r(op, lhs, rhs));
let condcode = condcode.reverse();
let cc = CC::from_floatcc(condcode);
ctx.emit(Inst::setcc(cc, dst));
}
FloatCC::Equal => {
// Outlier case: equal means both the operands are ordered and equal; we cannot
// get around checking the parity bit to determine if the result was ordered.
let lhs = input_to_reg(ctx, inputs[0]);
let rhs = input_to_reg_mem(ctx, inputs[1]);
let dst = output_to_reg(ctx, outputs[0]);
let tmp_gpr1 = ctx.alloc_tmp(RegClass::I64, types::I32);
ctx.emit(Inst::xmm_cmp_rm_r(op, rhs, lhs));
ctx.emit(Inst::setcc(CC::NP, tmp_gpr1));
ctx.emit(Inst::setcc(CC::Z, dst));
ctx.emit(Inst::alu_rmi_r(
false,
AluRmiROpcode::And,
RegMemImm::reg(tmp_gpr1.to_reg()),
dst,
));
}
FloatCC::NotEqual => {
// Outlier case: not equal means either the operands are unordered, or they're
// not the same value.
let lhs = input_to_reg(ctx, inputs[0]);
let rhs = input_to_reg_mem(ctx, inputs[1]);
let dst = output_to_reg(ctx, outputs[0]);
let tmp_gpr1 = ctx.alloc_tmp(RegClass::I64, types::I32);
ctx.emit(Inst::xmm_cmp_rm_r(op, rhs, lhs));
ctx.emit(Inst::setcc(CC::P, tmp_gpr1));
ctx.emit(Inst::setcc(CC::NZ, dst));
ctx.emit(Inst::alu_rmi_r(
false,
AluRmiROpcode::Or,
RegMemImm::reg(tmp_gpr1.to_reg()),
dst,
));
}
_ => {
// For all remaining condition codes we can handle things with one check.
let lhs = input_to_reg(ctx, inputs[0]);
let rhs = input_to_reg_mem(ctx, inputs[1]);
let dst = output_to_reg(ctx, outputs[0]);
let cc = CC::from_floatcc(condcode);
ctx.emit(Inst::xmm_cmp_rm_r(op, rhs, lhs));
ctx.emit(Inst::setcc(cc, dst));
}
}
} else {
let op = match input_ty {
types::F32X4 => SseOpcode::Cmpps,
types::F64X2 => SseOpcode::Cmppd,
_ => panic!("Bad input type to fcmp: {}", input_ty),
};
// Since some packed comparisons are not available, some of the condition codes
// must be inverted, with a corresponding `flip` of the operands.
let (imm, flip) = match condcode {
FloatCC::GreaterThan => (FcmpImm::LessThan, true),
FloatCC::GreaterThanOrEqual => (FcmpImm::LessThanOrEqual, true),
FloatCC::UnorderedOrLessThan => (FcmpImm::UnorderedOrGreaterThan, true),
FloatCC::UnorderedOrLessThanOrEqual => {
(FcmpImm::UnorderedOrGreaterThanOrEqual, true)
}
FloatCC::OrderedNotEqual | FloatCC::UnorderedOrEqual => {
panic!("unsupported float condition code: {}", condcode)
}
_ => (FcmpImm::from(condcode), false),
};
// Determine the operands of the comparison, possibly by flipping them.
let (lhs, rhs) = if flip {
(
input_to_reg(ctx, inputs[1]),
input_to_reg_mem(ctx, inputs[0]),
)
} else {
(
input_to_reg(ctx, inputs[0]),
input_to_reg_mem(ctx, inputs[1]),
)
};
// Move the `lhs` to the same register as `dst`; this may not emit an actual move
// but ensures that the registers are the same to match x86's read-write operand
// encoding.
let dst = output_to_reg(ctx, outputs[0]);
ctx.emit(Inst::gen_move(dst, lhs, input_ty));
// Emit the comparison.
ctx.emit(Inst::xmm_rm_r_imm(op, rhs, dst, imm.encode()));
}
}
Opcode::FallthroughReturn | Opcode::Return => {
for i in 0..ctx.num_inputs(insn) {
let src_reg = input_to_reg(ctx, inputs[i]);
let retval_reg = ctx.retval(i);
let ty = ctx.input_ty(insn, i);
ctx.emit(Inst::gen_move(retval_reg, src_reg, ty));
}
// N.B.: the Ret itself is generated by the ABI.
}
Opcode::Call | Opcode::CallIndirect => {
let loc = ctx.srcloc(insn);
let (mut abi, inputs) = match op {
Opcode::Call => {
let (extname, dist) = ctx.call_target(insn).unwrap();
let sig = ctx.call_sig(insn).unwrap();
assert_eq!(inputs.len(), sig.params.len());
assert_eq!(outputs.len(), sig.returns.len());
(
X64ABICall::from_func(sig, &extname, dist, loc)?,
&inputs[..],
)
}
Opcode::CallIndirect => {
let ptr = input_to_reg(ctx, inputs[0]);
let sig = ctx.call_sig(insn).unwrap();
assert_eq!(inputs.len() - 1, sig.params.len());
assert_eq!(outputs.len(), sig.returns.len());
(X64ABICall::from_ptr(sig, ptr, loc, op)?, &inputs[1..])
}
_ => unreachable!(),
};
abi.emit_stack_pre_adjust(ctx);
assert_eq!(inputs.len(), abi.num_args());
for (i, input) in inputs.iter().enumerate() {
let arg_reg = input_to_reg(ctx, *input);
abi.emit_copy_reg_to_arg(ctx, i, arg_reg);
}
abi.emit_call(ctx);
for (i, output) in outputs.iter().enumerate() {
let retval_reg = output_to_reg(ctx, *output);
abi.emit_copy_retval_to_reg(ctx, i, retval_reg);
}
abi.emit_stack_post_adjust(ctx);
}
Opcode::Debugtrap => {
ctx.emit(Inst::Hlt);
}
Opcode::Trap | Opcode::ResumableTrap => {
let trap_info = (ctx.srcloc(insn), inst_trapcode(ctx.data(insn)).unwrap());
ctx.emit_safepoint(Inst::Ud2 { trap_info });
}
Opcode::Trapif | Opcode::Trapff => {
let srcloc = ctx.srcloc(insn);
let trap_code = inst_trapcode(ctx.data(insn)).unwrap();
let cc = if matches_input(ctx, inputs[0], Opcode::IaddIfcout).is_some() {
let condcode = inst_condcode(ctx.data(insn));
// The flags must not have been clobbered by any other instruction between the
// iadd_ifcout and this instruction, as verified by the CLIF validator; so we can
// simply use the flags here.
CC::from_intcc(condcode)
} else if op == Opcode::Trapif {
let condcode = inst_condcode(ctx.data(insn));
let cc = CC::from_intcc(condcode);
// Verification ensures that the input is always a single-def ifcmp.
let ifcmp_insn = matches_input(ctx, inputs[0], Opcode::Ifcmp).unwrap();
emit_cmp(ctx, ifcmp_insn);
cc
} else {
let condcode = inst_fp_condcode(ctx.data(insn)).unwrap();
let cc = CC::from_floatcc(condcode);
// Verification ensures that the input is always a single-def ffcmp.
let ffcmp_insn = matches_input(ctx, inputs[0], Opcode::Ffcmp).unwrap();
emit_fcmp(ctx, ffcmp_insn);
cc
};
ctx.emit_safepoint(Inst::TrapIf {
trap_code,
srcloc,
cc,
});
}
Opcode::F64const => {
// TODO use cmpeqpd for all 1s.
let value = ctx.get_constant(insn).unwrap();
let dst = output_to_reg(ctx, outputs[0]);
for inst in Inst::gen_constant(dst, value, types::F64, |reg_class, ty| {
ctx.alloc_tmp(reg_class, ty)
}) {
ctx.emit(inst);
}
}
Opcode::F32const => {
// TODO use cmpeqps for all 1s.
let value = ctx.get_constant(insn).unwrap();
let dst = output_to_reg(ctx, outputs[0]);
for inst in Inst::gen_constant(dst, value, types::F32, |reg_class, ty| {
ctx.alloc_tmp(reg_class, ty)
}) {
ctx.emit(inst);
}
}
Opcode::Fadd | Opcode::Fsub | Opcode::Fmul | Opcode::Fdiv => {
let lhs = input_to_reg(ctx, inputs[0]);
let rhs = input_to_reg_mem(ctx, inputs[1]);
let dst = output_to_reg(ctx, outputs[0]);
let ty = ty.unwrap();
// Move the `lhs` to the same register as `dst`; this may not emit an actual move
// but ensures that the registers are the same to match x86's read-write operand
// encoding.
ctx.emit(Inst::gen_move(dst, lhs, ty));
// Note: min and max can't be handled here, because of the way Cranelift defines them:
// if any operand is a NaN, they must return the NaN operand, while the x86 machine
// instruction will return the second operand if either operand is a NaN.
let sse_op = match ty {
types::F32 => match op {
Opcode::Fadd => SseOpcode::Addss,
Opcode::Fsub => SseOpcode::Subss,
Opcode::Fmul => SseOpcode::Mulss,
Opcode::Fdiv => SseOpcode::Divss,
_ => unreachable!(),
},
types::F64 => match op {
Opcode::Fadd => SseOpcode::Addsd,
Opcode::Fsub => SseOpcode::Subsd,
Opcode::Fmul => SseOpcode::Mulsd,
Opcode::Fdiv => SseOpcode::Divsd,
_ => unreachable!(),
},
types::F32X4 => match op {
Opcode::Fadd => SseOpcode::Addps,
Opcode::Fsub => SseOpcode::Subps,
Opcode::Fmul => SseOpcode::Mulps,
Opcode::Fdiv => SseOpcode::Divps,
_ => unreachable!(),
},
types::F64X2 => match op {
Opcode::Fadd => SseOpcode::Addpd,
Opcode::Fsub => SseOpcode::Subpd,
Opcode::Fmul => SseOpcode::Mulpd,
Opcode::Fdiv => SseOpcode::Divpd,
_ => unreachable!(),
},
_ => panic!(
"invalid type: expected one of [F32, F64, F32X4, F64X2], found {}",
ty
),
};
ctx.emit(Inst::xmm_rm_r(sse_op, rhs, dst));
}
Opcode::Fmin | Opcode::Fmax => {
let lhs = input_to_reg(ctx, inputs[0]);
let rhs = input_to_reg(ctx, inputs[1]);
let dst = output_to_reg(ctx, outputs[0]);
let is_min = op == Opcode::Fmin;
let output_ty = ty.unwrap();
ctx.emit(Inst::gen_move(dst, rhs, output_ty));
let op_size = match output_ty {
types::F32 => OperandSize::Size32,
types::F64 => OperandSize::Size64,
_ => panic!("unexpected type {:?} for fmin/fmax", output_ty),
};
ctx.emit(Inst::xmm_min_max_seq(op_size, is_min, lhs, dst));
}
Opcode::Sqrt => {
let src = input_to_reg_mem(ctx, inputs[0]);
let dst = output_to_reg(ctx, outputs[0]);
let ty = ty.unwrap();
let sse_op = match ty {
types::F32 => SseOpcode::Sqrtss,
types::F64 => SseOpcode::Sqrtsd,
types::F32X4 => SseOpcode::Sqrtps,
types::F64X2 => SseOpcode::Sqrtpd,
_ => panic!(
"invalid type: expected one of [F32, F64, F32X4, F64X2], found {}",
ty
),
};
ctx.emit(Inst::xmm_unary_rm_r(sse_op, src, dst));
}
Opcode::Fpromote => {
let src = input_to_reg_mem(ctx, inputs[0]);
let dst = output_to_reg(ctx, outputs[0]);
ctx.emit(Inst::xmm_unary_rm_r(SseOpcode::Cvtss2sd, src, dst));
}
Opcode::Fdemote => {
let src = input_to_reg_mem(ctx, inputs[0]);
let dst = output_to_reg(ctx, outputs[0]);
ctx.emit(Inst::xmm_unary_rm_r(SseOpcode::Cvtsd2ss, src, dst));
}
Opcode::FcvtFromSint => {
let (ext_spec, src_size) = match ctx.input_ty(insn, 0) {
types::I8 | types::I16 => (Some(ExtSpec::SignExtendTo32), OperandSize::Size32),
types::I32 => (None, OperandSize::Size32),
types::I64 => (None, OperandSize::Size64),
_ => unreachable!(),
};
let src = match ext_spec {
Some(ext_spec) => RegMem::reg(extend_input_to_reg(ctx, inputs[0], ext_spec)),
None => input_to_reg_mem(ctx, inputs[0]),
};
let output_ty = ty.unwrap();
let opcode = if output_ty == types::F32 {
SseOpcode::Cvtsi2ss
} else {
assert_eq!(output_ty, types::F64);
SseOpcode::Cvtsi2sd
};
let dst = output_to_reg(ctx, outputs[0]);
ctx.emit(Inst::gpr_to_xmm(opcode, src, src_size, dst));
}
Opcode::FcvtFromUint => {
let dst = output_to_reg(ctx, outputs[0]);
let ty = ty.unwrap();
let input_ty = ctx.input_ty(insn, 0);
match input_ty {
types::I8 | types::I16 | types::I32 => {
// Conversion from an unsigned int smaller than 64-bit is easy: zero-extend +
// do a signed conversion (which won't overflow).
let opcode = if ty == types::F32 {
SseOpcode::Cvtsi2ss
} else {
assert_eq!(ty, types::F64);
SseOpcode::Cvtsi2sd
};
let src =
RegMem::reg(extend_input_to_reg(ctx, inputs[0], ExtSpec::ZeroExtendTo64));
ctx.emit(Inst::gpr_to_xmm(opcode, src, OperandSize::Size64, dst));
}
types::I64 => {
let src = input_to_reg(ctx, inputs[0]);
let src_copy = ctx.alloc_tmp(RegClass::I64, types::I64);
ctx.emit(Inst::gen_move(src_copy, src, types::I64));
let tmp_gpr1 = ctx.alloc_tmp(RegClass::I64, types::I64);
let tmp_gpr2 = ctx.alloc_tmp(RegClass::I64, types::I64);
ctx.emit(Inst::cvt_u64_to_float_seq(
ty == types::F64,
src_copy,
tmp_gpr1,
tmp_gpr2,
dst,
));
}
_ => panic!("unexpected input type for FcvtFromUint: {:?}", input_ty),
};
}
Opcode::FcvtToUint | Opcode::FcvtToUintSat | Opcode::FcvtToSint | Opcode::FcvtToSintSat => {
let src = input_to_reg(ctx, inputs[0]);
let dst = output_to_reg(ctx, outputs[0]);
let input_ty = ctx.input_ty(insn, 0);
let src_size = if input_ty == types::F32 {
OperandSize::Size32
} else {
assert_eq!(input_ty, types::F64);
OperandSize::Size64
};
let output_ty = ty.unwrap();
let dst_size = if output_ty == types::I32 {
OperandSize::Size32
} else {
assert_eq!(output_ty, types::I64);
OperandSize::Size64
};
let to_signed = op == Opcode::FcvtToSint || op == Opcode::FcvtToSintSat;
let is_sat = op == Opcode::FcvtToUintSat || op == Opcode::FcvtToSintSat;
let src_copy = ctx.alloc_tmp(RegClass::V128, input_ty);
ctx.emit(Inst::gen_move(src_copy, src, input_ty));
let tmp_xmm = ctx.alloc_tmp(RegClass::V128, input_ty);
let tmp_gpr = ctx.alloc_tmp(RegClass::I64, output_ty);
let srcloc = ctx.srcloc(insn);
if to_signed {
ctx.emit(Inst::cvt_float_to_sint_seq(
src_size, dst_size, is_sat, src_copy, dst, tmp_gpr, tmp_xmm, srcloc,
));
} else {
ctx.emit(Inst::cvt_float_to_uint_seq(
src_size, dst_size, is_sat, src_copy, dst, tmp_gpr, tmp_xmm, srcloc,
));
}
}
Opcode::Bitcast => {
let input_ty = ctx.input_ty(insn, 0);
let output_ty = ctx.output_ty(insn, 0);
match (input_ty, output_ty) {
(types::F32, types::I32) => {
let src = input_to_reg(ctx, inputs[0]);
let dst = output_to_reg(ctx, outputs[0]);
ctx.emit(Inst::xmm_to_gpr(
SseOpcode::Movd,
src,
dst,
OperandSize::Size32,
));
}
(types::I32, types::F32) => {
let src = input_to_reg_mem(ctx, inputs[0]);
let dst = output_to_reg(ctx, outputs[0]);
ctx.emit(Inst::gpr_to_xmm(
SseOpcode::Movd,
src,
OperandSize::Size32,
dst,
));
}
(types::F64, types::I64) => {
let src = input_to_reg(ctx, inputs[0]);
let dst = output_to_reg(ctx, outputs[0]);
ctx.emit(Inst::xmm_to_gpr(
SseOpcode::Movq,
src,
dst,
OperandSize::Size64,
));
}
(types::I64, types::F64) => {
let src = input_to_reg_mem(ctx, inputs[0]);
let dst = output_to_reg(ctx, outputs[0]);
ctx.emit(Inst::gpr_to_xmm(
SseOpcode::Movq,
src,
OperandSize::Size64,
dst,
));
}
_ => unreachable!("invalid bitcast from {:?} to {:?}", input_ty, output_ty),
}
}
Opcode::Fabs | Opcode::Fneg => {
let src = input_to_reg_mem(ctx, inputs[0]);
let dst = output_to_reg(ctx, outputs[0]);
// In both cases, generate a constant and apply a single binary instruction:
// - to compute the absolute value, set all bits to 1 but the MSB to 0, and bit-AND the
// src with it.
// - to compute the negated value, set all bits to 0 but the MSB to 1, and bit-XOR the
// src with it.
let output_ty = ty.unwrap();
if !output_ty.is_vector() {
let (val, opcode) = match output_ty {
types::F32 => match op {
Opcode::Fabs => (0x7fffffff, SseOpcode::Andps),
Opcode::Fneg => (0x80000000, SseOpcode::Xorps),
_ => unreachable!(),
},
types::F64 => match op {
Opcode::Fabs => (0x7fffffffffffffff, SseOpcode::Andpd),
Opcode::Fneg => (0x8000000000000000, SseOpcode::Xorpd),
_ => unreachable!(),
},
_ => panic!("unexpected type {:?} for Fabs", output_ty),
};
for inst in Inst::gen_constant(dst, val, output_ty, |reg_class, ty| {
ctx.alloc_tmp(reg_class, ty)
}) {
ctx.emit(inst);
}
ctx.emit(Inst::xmm_rm_r(opcode, src, dst));
} else {
// Eventually vector constants should be available in `gen_constant` and this block
// can be merged with the one above (TODO).
if output_ty.bits() == 128 {
// Move the `lhs` to the same register as `dst`; this may not emit an actual move
// but ensures that the registers are the same to match x86's read-write operand
// encoding.
let src = input_to_reg(ctx, inputs[0]);
ctx.emit(Inst::gen_move(dst, src, output_ty));
// Generate an all 1s constant in an XMM register. This uses CMPPS but could
// have used CMPPD with the same effect.
let tmp = ctx.alloc_tmp(RegClass::V128, output_ty);
let cond = FcmpImm::from(FloatCC::Equal);
let cmpps = Inst::xmm_rm_r_imm(
SseOpcode::Cmpps,
RegMem::reg(tmp.to_reg()),
tmp,
cond.encode(),
);
ctx.emit(cmpps);
// Shift the all 1s constant to generate the mask.
let lane_bits = output_ty.lane_bits();
let (shift_opcode, opcode, shift_by) = match (op, lane_bits) {
(Opcode::Fabs, 32) => (SseOpcode::Psrld, SseOpcode::Andps, 1),
(Opcode::Fabs, 64) => (SseOpcode::Psrlq, SseOpcode::Andpd, 1),
(Opcode::Fneg, 32) => (SseOpcode::Pslld, SseOpcode::Xorps, 31),
(Opcode::Fneg, 64) => (SseOpcode::Psllq, SseOpcode::Xorpd, 63),
_ => unreachable!(
"unexpected opcode and lane size: {:?}, {} bits",
op, lane_bits
),
};
let shift = Inst::xmm_rmi_reg(shift_opcode, RegMemImm::imm(shift_by), tmp);
ctx.emit(shift);
// Apply shifted mask (XOR or AND).
let mask = Inst::xmm_rm_r(opcode, RegMem::reg(tmp.to_reg()), dst);
ctx.emit(mask);
} else {
panic!("unexpected type {:?} for Fabs", output_ty);
}
}
}
Opcode::Fcopysign => {
let dst = output_to_reg(ctx, outputs[0]);
let lhs = input_to_reg(ctx, inputs[0]);
let rhs = input_to_reg(ctx, inputs[1]);
let ty = ty.unwrap();
// We're going to generate the following sequence:
//
// movabs $INT_MIN, tmp_gpr1
// mov{d,q} tmp_gpr1, tmp_xmm1
// movap{s,d} tmp_xmm1, dst
// andnp{s,d} src_1, dst
// movap{s,d} src_2, tmp_xmm2
// andp{s,d} tmp_xmm1, tmp_xmm2
// orp{s,d} tmp_xmm2, dst
let tmp_xmm1 = ctx.alloc_tmp(RegClass::V128, types::F32);
let tmp_xmm2 = ctx.alloc_tmp(RegClass::V128, types::F32);
let (sign_bit_cst, mov_op, and_not_op, and_op, or_op) = match ty {
types::F32 => (
0x8000_0000,
SseOpcode::Movaps,
SseOpcode::Andnps,
SseOpcode::Andps,
SseOpcode::Orps,
),
types::F64 => (
0x8000_0000_0000_0000,
SseOpcode::Movapd,
SseOpcode::Andnpd,
SseOpcode::Andpd,
SseOpcode::Orpd,
),
_ => {
panic!("unexpected type {:?} for copysign", ty);
}
};
for inst in Inst::gen_constant(tmp_xmm1, sign_bit_cst, ty, |reg_class, ty| {
ctx.alloc_tmp(reg_class, ty)
}) {
ctx.emit(inst);
}
ctx.emit(Inst::xmm_mov(
mov_op,
RegMem::reg(tmp_xmm1.to_reg()),
dst,
None,
));
ctx.emit(Inst::xmm_rm_r(and_not_op, RegMem::reg(lhs), dst));
ctx.emit(Inst::xmm_mov(mov_op, RegMem::reg(rhs), tmp_xmm2, None));
ctx.emit(Inst::xmm_rm_r(
and_op,
RegMem::reg(tmp_xmm1.to_reg()),
tmp_xmm2,
));
ctx.emit(Inst::xmm_rm_r(or_op, RegMem::reg(tmp_xmm2.to_reg()), dst));
}
Opcode::Ceil | Opcode::Floor | Opcode::Nearest | Opcode::Trunc => {
// TODO use ROUNDSS/ROUNDSD after sse4.1.
// Lower to VM calls when there's no access to SSE4.1.
let ty = ty.unwrap();
let libcall = match (ty, op) {
(types::F32, Opcode::Ceil) => LibCall::CeilF32,
(types::F64, Opcode::Ceil) => LibCall::CeilF64,
(types::F32, Opcode::Floor) => LibCall::FloorF32,
(types::F64, Opcode::Floor) => LibCall::FloorF64,
(types::F32, Opcode::Nearest) => LibCall::NearestF32,
(types::F64, Opcode::Nearest) => LibCall::NearestF64,
(types::F32, Opcode::Trunc) => LibCall::TruncF32,
(types::F64, Opcode::Trunc) => LibCall::TruncF64,
_ => panic!(
"unexpected type/opcode {:?}/{:?} in Ceil/Floor/Nearest/Trunc",
ty, op
),
};
emit_vm_call(ctx, flags, triple, libcall, insn, inputs, outputs)?;
}
Opcode::Load
| Opcode::Uload8
| Opcode::Sload8
| Opcode::Uload16
| Opcode::Sload16
| Opcode::Uload32
| Opcode::Sload32
| Opcode::LoadComplex
| Opcode::Uload8Complex
| Opcode::Sload8Complex
| Opcode::Uload16Complex
| Opcode::Sload16Complex
| Opcode::Uload32Complex
| Opcode::Sload32Complex => {
let offset = ldst_offset(ctx.data(insn)).unwrap();
let elem_ty = match op {
Opcode::Sload8 | Opcode::Uload8 | Opcode::Sload8Complex | Opcode::Uload8Complex => {
types::I8
}
Opcode::Sload16
| Opcode::Uload16
| Opcode::Sload16Complex
| Opcode::Uload16Complex => types::I16,
Opcode::Sload32
| Opcode::Uload32
| Opcode::Sload32Complex
| Opcode::Uload32Complex => types::I32,
Opcode::Load | Opcode::LoadComplex => ctx.output_ty(insn, 0),
_ => unimplemented!(),
};
let ext_mode = match elem_ty.bytes() {
1 => Some(ExtMode::BQ),
2 => Some(ExtMode::WQ),
4 => Some(ExtMode::LQ),
_ => None,
};
let sign_extend = match op {
Opcode::Sload8
| Opcode::Sload8Complex
| Opcode::Sload16
| Opcode::Sload16Complex
| Opcode::Sload32
| Opcode::Sload32Complex => true,
_ => false,
};
let addr = match op {
Opcode::Load
| Opcode::Uload8
| Opcode::Sload8
| Opcode::Uload16
| Opcode::Sload16
| Opcode::Uload32
| Opcode::Sload32 => {
assert_eq!(inputs.len(), 1, "only one input for load operands");
let base = input_to_reg(ctx, inputs[0]);
Amode::imm_reg(offset as u32, base)
}
Opcode::LoadComplex
| Opcode::Uload8Complex
| Opcode::Sload8Complex
| Opcode::Uload16Complex
| Opcode::Sload16Complex
| Opcode::Uload32Complex
| Opcode::Sload32Complex => {
assert_eq!(
inputs.len(),
2,
"can't handle more than two inputs in complex load"
);
let base = input_to_reg(ctx, inputs[0]);
let index = input_to_reg(ctx, inputs[1]);
let shift = 0;
Amode::imm_reg_reg_shift(offset as u32, base, index, shift)
}
_ => unreachable!(),
};
let srcloc = Some(ctx.srcloc(insn));
let dst = output_to_reg(ctx, outputs[0]);
let is_xmm = elem_ty.is_float() || elem_ty.is_vector();
match (sign_extend, is_xmm) {
(true, false) => {
// The load is sign-extended only when the output size is lower than 64 bits,
// so ext-mode is defined in this case.
ctx.emit(Inst::movsx_rm_r(
ext_mode.unwrap(),
RegMem::mem(addr),
dst,
srcloc,
));
}
(false, false) => {
if elem_ty.bytes() == 8 {
// Use a plain load.
ctx.emit(Inst::mov64_m_r(addr, dst, srcloc))
} else {
// Use a zero-extended load.
ctx.emit(Inst::movzx_rm_r(
ext_mode.unwrap(),
RegMem::mem(addr),
dst,
srcloc,
))
}
}
(_, true) => {
ctx.emit(match elem_ty {
types::F32 => {
Inst::xmm_mov(SseOpcode::Movss, RegMem::mem(addr), dst, srcloc)
}
types::F64 => {
Inst::xmm_mov(SseOpcode::Movsd, RegMem::mem(addr), dst, srcloc)
}
_ if elem_ty.is_vector() && elem_ty.bits() == 128 => {
Inst::xmm_mov(SseOpcode::Movups, RegMem::mem(addr), dst, srcloc)
} // TODO Specialize for different types: MOVUPD, MOVDQU
_ => unreachable!("unexpected type for load: {:?}", elem_ty),
});
}
}
}
Opcode::Store
| Opcode::Istore8
| Opcode::Istore16
| Opcode::Istore32
| Opcode::StoreComplex
| Opcode::Istore8Complex
| Opcode::Istore16Complex
| Opcode::Istore32Complex => {
let offset = ldst_offset(ctx.data(insn)).unwrap();
let elem_ty = match op {
Opcode::Istore8 | Opcode::Istore8Complex => types::I8,
Opcode::Istore16 | Opcode::Istore16Complex => types::I16,
Opcode::Istore32 | Opcode::Istore32Complex => types::I32,
Opcode::Store | Opcode::StoreComplex => ctx.input_ty(insn, 0),
_ => unreachable!(),
};
let addr = match op {
Opcode::Store | Opcode::Istore8 | Opcode::Istore16 | Opcode::Istore32 => {
assert_eq!(inputs.len(), 2, "only one input for store memory operands");
let base = input_to_reg(ctx, inputs[1]);
// TODO sign?
Amode::imm_reg(offset as u32, base)
}
Opcode::StoreComplex
| Opcode::Istore8Complex
| Opcode::Istore16Complex
| Opcode::Istore32Complex => {
assert_eq!(
inputs.len(),
3,
"can't handle more than two inputs in complex store"
);
let base = input_to_reg(ctx, inputs[1]);
let index = input_to_reg(ctx, inputs[2]);
let shift = 0;
Amode::imm_reg_reg_shift(offset as u32, base, index, shift)
}
_ => unreachable!(),
};
let src = input_to_reg(ctx, inputs[0]);
let srcloc = Some(ctx.srcloc(insn));
ctx.emit(match elem_ty {
types::F32 => Inst::xmm_mov_r_m(SseOpcode::Movss, src, addr, srcloc),
types::F64 => Inst::xmm_mov_r_m(SseOpcode::Movsd, src, addr, srcloc),
_ if elem_ty.is_vector() && elem_ty.bits() == 128 => {
// TODO Specialize for different types: MOVUPD, MOVDQU, etc.
Inst::xmm_mov_r_m(SseOpcode::Movups, src, addr, srcloc)
}
_ => Inst::mov_r_m(elem_ty.bytes() as u8, src, addr, srcloc),
});
}
Opcode::FuncAddr => {
let dst = output_to_reg(ctx, outputs[0]);
let (extname, _) = ctx.call_target(insn).unwrap();
let extname = extname.clone();
let loc = ctx.srcloc(insn);
ctx.emit(Inst::LoadExtName {
dst,
name: Box::new(extname),
srcloc: loc,
offset: 0,
});
}
Opcode::SymbolValue => {
let dst = output_to_reg(ctx, outputs[0]);
let (extname, _, offset) = ctx.symbol_value(insn).unwrap();
let extname = extname.clone();
let loc = ctx.srcloc(insn);
ctx.emit(Inst::LoadExtName {
dst,
name: Box::new(extname),
srcloc: loc,
offset,
});
}
Opcode::StackAddr => {
let (stack_slot, offset) = match *ctx.data(insn) {
InstructionData::StackLoad {
opcode: Opcode::StackAddr,
stack_slot,
offset,
} => (stack_slot, offset),
_ => unreachable!(),
};
let dst = output_to_reg(ctx, outputs[0]);
let offset: i32 = offset.into();
let inst = ctx
.abi()
.stackslot_addr(stack_slot, u32::try_from(offset).unwrap(), dst);
ctx.emit(inst);
}
Opcode::Select | Opcode::Selectif | Opcode::SelectifSpectreGuard => {
let cc = if op == Opcode::Select {
// The input is a boolean value, compare it against zero.
let size = ctx.input_ty(insn, 0).bytes() as u8;
let test = input_to_reg(ctx, inputs[0]);
ctx.emit(Inst::cmp_rmi_r(size, RegMemImm::imm(0), test));
CC::NZ
} else {
// Verification ensures that the input is always a single-def ifcmp.
let cmp_insn = ctx
.get_input(inputs[0].insn, inputs[0].input)
.inst
.unwrap()
.0;
debug_assert_eq!(ctx.data(cmp_insn).opcode(), Opcode::Ifcmp);
emit_cmp(ctx, cmp_insn);
CC::from_intcc(inst_condcode(ctx.data(insn)))
};
let lhs = input_to_reg_mem(ctx, inputs[1]);
let rhs = input_to_reg(ctx, inputs[2]);
let dst = output_to_reg(ctx, outputs[0]);
let ty = ctx.output_ty(insn, 0);
if is_int_ty(ty) {
let size = ty.bytes() as u8;
if size == 1 {
// Sign-extend operands to 32, then do a cmove of size 4.
let lhs_se = ctx.alloc_tmp(RegClass::I64, types::I32);
ctx.emit(Inst::movsx_rm_r(ExtMode::BL, lhs, lhs_se, None));
ctx.emit(Inst::movsx_rm_r(ExtMode::BL, RegMem::reg(rhs), dst, None));
ctx.emit(Inst::cmove(4, cc, RegMem::reg(lhs_se.to_reg()), dst));
} else {
ctx.emit(Inst::gen_move(dst, rhs, ty));
ctx.emit(Inst::cmove(size, cc, lhs, dst));
}
} else {
debug_assert!(ty == types::F32 || ty == types::F64);
ctx.emit(Inst::gen_move(dst, rhs, ty));
ctx.emit(Inst::xmm_cmove(ty == types::F64, cc, lhs, dst));
}
}
Opcode::Udiv | Opcode::Urem | Opcode::Sdiv | Opcode::Srem => {
let kind = match op {
Opcode::Udiv => DivOrRemKind::UnsignedDiv,
Opcode::Sdiv => DivOrRemKind::SignedDiv,
Opcode::Urem => DivOrRemKind::UnsignedRem,
Opcode::Srem => DivOrRemKind::SignedRem,
_ => unreachable!(),
};
let is_div = kind.is_div();
let input_ty = ctx.input_ty(insn, 0);
let size = input_ty.bytes() as u8;
let dividend = input_to_reg(ctx, inputs[0]);
let dst = output_to_reg(ctx, outputs[0]);
let srcloc = ctx.srcloc(insn);
ctx.emit(Inst::gen_move(
Writable::from_reg(regs::rax()),
dividend,
input_ty,
));
if flags.avoid_div_traps() {
// A vcode meta-instruction is used to lower the inline checks, since they embed
// pc-relative offsets that must not change, thus requiring regalloc to not
// interfere by introducing spills and reloads.
//
// Note it keeps the result in $rax (for divide) or $rdx (for rem), so that
// regalloc is aware of the coalescing opportunity between rax/rdx and the
// destination register.
let divisor = input_to_reg(ctx, inputs[1]);
let divisor_copy = ctx.alloc_tmp(RegClass::I64, types::I64);
ctx.emit(Inst::gen_move(divisor_copy, divisor, types::I64));
let tmp = if op == Opcode::Sdiv && size == 8 {
Some(ctx.alloc_tmp(RegClass::I64, types::I64))
} else {
None
};
ctx.emit(Inst::imm_r(true, 0, Writable::from_reg(regs::rdx())));
ctx.emit(Inst::checked_div_or_rem_seq(
kind,
size,
divisor_copy,
tmp,
srcloc,
));
} else {
let divisor = input_to_reg_mem(ctx, inputs[1]);
// Fill in the high parts:
if kind.is_signed() {
// sign-extend the sign-bit of rax into rdx, for signed opcodes.
ctx.emit(Inst::sign_extend_rax_to_rdx(size));
} else {
// zero for unsigned opcodes.
ctx.emit(Inst::imm_r(
true, /* is_64 */
0,
Writable::from_reg(regs::rdx()),
));
}
// Emit the actual idiv.
ctx.emit(Inst::div(size, kind.is_signed(), divisor, ctx.srcloc(insn)));
}
// Move the result back into the destination reg.
if is_div {
// The quotient is in rax.
ctx.emit(Inst::gen_move(dst, regs::rax(), input_ty));
} else {
// The remainder is in rdx.
ctx.emit(Inst::gen_move(dst, regs::rdx(), input_ty));
}
}
Opcode::Umulhi | Opcode::Smulhi => {
let input_ty = ctx.input_ty(insn, 0);
let size = input_ty.bytes() as u8;
let lhs = input_to_reg(ctx, inputs[0]);
let rhs = input_to_reg_mem(ctx, inputs[1]);
let dst = output_to_reg(ctx, outputs[0]);
// Move lhs in %rax.
ctx.emit(Inst::gen_move(
Writable::from_reg(regs::rax()),
lhs,
input_ty,
));
// Emit the actual mul or imul.
let signed = op == Opcode::Smulhi;
ctx.emit(Inst::mul_hi(size, signed, rhs));
// Read the result from the high part (stored in %rdx).
ctx.emit(Inst::gen_move(dst, regs::rdx(), input_ty));
}
Opcode::GetPinnedReg => {
let dst = output_to_reg(ctx, outputs[0]);
ctx.emit(Inst::gen_move(dst, regs::pinned_reg(), types::I64));
}
Opcode::SetPinnedReg => {
let src = input_to_reg(ctx, inputs[0]);
ctx.emit(Inst::gen_move(
Writable::from_reg(regs::pinned_reg()),
src,
types::I64,
));
}
Opcode::Vconst => {
let val = if let &InstructionData::UnaryConst {
constant_handle, ..
} = ctx.data(insn)
{
ctx.get_constant_data(constant_handle).clone().into_vec()
} else {
unreachable!("vconst should always have unary_const format")
};
let dst = output_to_reg(ctx, outputs[0]);
let ty = ty.unwrap();
ctx.emit(Inst::xmm_load_const_seq(val, dst, ty));
}
Opcode::RawBitcast => {
// A raw_bitcast is just a mechanism for correcting the type of V128 values (see
// https://github.com/bytecodealliance/wasmtime/issues/1147). As such, this IR
// instruction should emit no machine code but a move is necessary to give the register
// allocator a definition for the output virtual register.
let src = input_to_reg(ctx, inputs[0]);
let dst = output_to_reg(ctx, outputs[0]);
let ty = ty.unwrap();
ctx.emit(Inst::gen_move(dst, src, ty));
}
Opcode::IaddImm
| Opcode::ImulImm
| Opcode::UdivImm
| Opcode::SdivImm
| Opcode::UremImm
| Opcode::SremImm
| Opcode::IrsubImm
| Opcode::IaddCin
| Opcode::IaddIfcin
| Opcode::IaddCout
| Opcode::IaddCarry
| Opcode::IaddIfcarry
| Opcode::IsubBin
| Opcode::IsubIfbin
| Opcode::IsubBout
| Opcode::IsubIfbout
| Opcode::IsubBorrow
| Opcode::IsubIfborrow
| Opcode::BandImm
| Opcode::BorImm
| Opcode::BxorImm
| Opcode::RotlImm
| Opcode::RotrImm
| Opcode::IshlImm
| Opcode::UshrImm
| Opcode::SshrImm => {
panic!("ALU+imm and ALU+carry ops should not appear here!");
}
_ => unimplemented!("unimplemented lowering for opcode {:?}", op),
}
Ok(())
}
//=============================================================================
// Lowering-backend trait implementation.
impl LowerBackend for X64Backend {
type MInst = Inst;
fn lower<C: LowerCtx<I = Inst>>(&self, ctx: &mut C, ir_inst: IRInst) -> CodegenResult<()> {
lower_insn_to_regs(ctx, ir_inst, &self.flags, &self.triple)
}
fn lower_branch_group<C: LowerCtx<I = Inst>>(
&self,
ctx: &mut C,
branches: &[IRInst],
targets: &[MachLabel],
fallthrough: Option<MachLabel>,
) -> CodegenResult<()> {
// A block should end with at most two branches. The first may be a
// conditional branch; a conditional branch can be followed only by an
// unconditional branch or fallthrough. Otherwise, if only one branch,
// it may be an unconditional branch, a fallthrough, a return, or a
// trap. These conditions are verified by `is_ebb_basic()` during the
// verifier pass.
assert!(branches.len() <= 2);
if branches.len() == 2 {
// Must be a conditional branch followed by an unconditional branch.
let op0 = ctx.data(branches[0]).opcode();
let op1 = ctx.data(branches[1]).opcode();
trace!(
"lowering two-branch group: opcodes are {:?} and {:?}",
op0,
op1
);
assert!(op1 == Opcode::Jump || op1 == Opcode::Fallthrough);
let taken = BranchTarget::Label(targets[0]);
let not_taken = match op1 {
Opcode::Jump => BranchTarget::Label(targets[1]),
Opcode::Fallthrough => BranchTarget::Label(fallthrough.unwrap()),
_ => unreachable!(), // assert above.
};
match op0 {
Opcode::Brz | Opcode::Brnz => {
let src_ty = ctx.input_ty(branches[0], 0);
if is_int_ty(src_ty) || is_bool_ty(src_ty) {
let src = input_to_reg(
ctx,
InsnInput {
insn: branches[0],
input: 0,
},
);
let cc = match op0 {
Opcode::Brz => CC::Z,
Opcode::Brnz => CC::NZ,
_ => unreachable!(),
};
let size_bytes = src_ty.bytes() as u8;
ctx.emit(Inst::cmp_rmi_r(size_bytes, RegMemImm::imm(0), src));
ctx.emit(Inst::jmp_cond(cc, taken, not_taken));
} else {
unimplemented!("brz/brnz with non-int type {:?}", src_ty);
}
}
Opcode::BrIcmp => {
let src_ty = ctx.input_ty(branches[0], 0);
if is_int_ty(src_ty) || is_bool_ty(src_ty) {
let lhs = input_to_reg(
ctx,
InsnInput {
insn: branches[0],
input: 0,
},
);
let rhs = input_to_reg_mem_imm(
ctx,
InsnInput {
insn: branches[0],
input: 1,
},
);
let cc = CC::from_intcc(inst_condcode(ctx.data(branches[0])));
let byte_size = src_ty.bytes() as u8;
// Cranelift's icmp semantics want to compare lhs - rhs, while Intel gives
// us dst - src at the machine instruction level, so invert operands.
ctx.emit(Inst::cmp_rmi_r(byte_size, rhs, lhs));
ctx.emit(Inst::jmp_cond(cc, taken, not_taken));
} else {
unimplemented!("bricmp with non-int type {:?}", src_ty);
}
}
// TODO: Brif/icmp, Brff/icmp, jump tables
_ => unimplemented!("branch opcode"),
}
} else {
assert_eq!(branches.len(), 1);
// Must be an unconditional branch or trap.
let op = ctx.data(branches[0]).opcode();
match op {
Opcode::Jump | Opcode::Fallthrough => {
ctx.emit(Inst::jmp_known(BranchTarget::Label(targets[0])));
}
Opcode::BrTable => {
let jt_size = targets.len() - 1;
assert!(jt_size <= u32::max_value() as usize);
let jt_size = jt_size as u32;
let idx = extend_input_to_reg(
ctx,
InsnInput {
insn: branches[0],
input: 0,
},
ExtSpec::ZeroExtendTo32,
);
// Bounds-check (compute flags from idx - jt_size) and branch to default.
ctx.emit(Inst::cmp_rmi_r(4, RegMemImm::imm(jt_size), idx));
// Emit the compound instruction that does:
//
// lea $jt, %rA
// movsbl [%rA, %rIndex, 2], %rB
// add %rB, %rA
// j *%rA
// [jt entries]
//
// This must be *one* instruction in the vcode because we cannot allow regalloc
// to insert any spills/fills in the middle of the sequence; otherwise, the
// lea PC-rel offset to the jumptable would be incorrect. (The alternative
// is to introduce a relocation pass for inlined jumptables, which is much
// worse.)
// This temporary is used as a signed integer of 64-bits (to hold addresses).
let tmp1 = ctx.alloc_tmp(RegClass::I64, types::I64);
// This temporary is used as a signed integer of 32-bits (for the wasm-table
// index) and then 64-bits (address addend). The small lie about the I64 type
// is benign, since the temporary is dead after this instruction (and its
// Cranelift type is thus unused).
let tmp2 = ctx.alloc_tmp(RegClass::I64, types::I64);
let targets_for_term: Vec<MachLabel> = targets.to_vec();
let default_target = BranchTarget::Label(targets[0]);
let jt_targets: Vec<BranchTarget> = targets
.iter()
.skip(1)
.map(|bix| BranchTarget::Label(*bix))
.collect();
ctx.emit(Inst::JmpTableSeq {
idx,
tmp1,
tmp2,
default_target,
targets: jt_targets,
targets_for_term,
});
}
_ => panic!("Unknown branch type {:?}", op),
}
}
Ok(())
}
fn maybe_pinned_reg(&self) -> Option<Reg> {
Some(regs::pinned_reg())
}
}