Files
wasmtime/cranelift/codegen/src/machinst/abi_impl.rs
Nick Fitzgerald e0d4934ef4 Cranelift: Remove the ABICaller trait (#4711)
* Cranelift: Remove the `ABICaller` trait

It has only one implementation: the `ABICallerImpl` struct. We can just use that
directly rather than having extra, unnecessary layers of generics and abstractions.

* Cranelift: Rename `ABICallerImpl` to `Caller`
2022-08-15 20:41:08 +00:00

1961 lines
77 KiB
Rust

//! Implementation of a vanilla ABI, shared between several machines. The
//! implementation here assumes that arguments will be passed in registers
//! first, then additional args on the stack; that the stack grows downward,
//! contains a standard frame (return address and frame pointer), and the
//! compiler is otherwise free to allocate space below that with its choice of
//! layout; and that the machine has some notion of caller- and callee-save
//! registers. Most modern machines, e.g. x86-64 and AArch64, should fit this
//! mold and thus both of these backends use this shared implementation.
//!
//! See the documentation in specific machine backends for the "instantiation"
//! of this generic ABI, i.e., which registers are caller/callee-save, arguments
//! and return values, and any other special requirements.
//!
//! For now the implementation here assumes a 64-bit machine, but we intend to
//! make this 32/64-bit-generic shortly.
//!
//! # Vanilla ABI
//!
//! First, arguments and return values are passed in registers up to a certain
//! fixed count, after which they overflow onto the stack. Multiple return
//! values either fit in registers, or are returned in a separate return-value
//! area on the stack, given by a hidden extra parameter.
//!
//! Note that the exact stack layout is up to us. We settled on the
//! below design based on several requirements. In particular, we need
//! to be able to generate instructions (or instruction sequences) to
//! access arguments, stack slots, and spill slots before we know how
//! many spill slots or clobber-saves there will be, because of our
//! pass structure. We also prefer positive offsets to negative
//! offsets because of an asymmetry in some machines' addressing modes
//! (e.g., on AArch64, positive offsets have a larger possible range
//! without a long-form sequence to synthesize an arbitrary
//! offset). We also need clobber-save registers to be "near" the
//! frame pointer: Windows unwind information requires it to be within
//! 240 bytes of RBP. Finally, it is not allowed to access memory
//! below the current SP value.
//!
//! We assume that a prologue first pushes the frame pointer (and
//! return address above that, if the machine does not do that in
//! hardware). We set FP to point to this two-word frame record. We
//! store all other frame slots below this two-word frame record, with
//! the stack pointer remaining at or below this fixed frame storage
//! for the rest of the function. We can then access frame storage
//! slots using positive offsets from SP. In order to allow codegen
//! for the latter before knowing how SP might be adjusted around
//! callsites, we implement a "nominal SP" tracking feature by which a
//! fixup (distance between actual SP and a "nominal" SP) is known at
//! each instruction.
//!
//! Note that if we ever support dynamic stack-space allocation (for
//! `alloca`), we will need a way to reference spill slots and stack
//! slots without "nominal SP", because we will no longer be able to
//! know a static offset from SP to the slots at any particular
//! program point. Probably the best solution at that point will be to
//! revert to using the frame pointer as the reference for all slots,
//! and creating a "nominal FP" synthetic addressing mode (analogous
//! to "nominal SP" today) to allow generating spill/reload and
//! stackslot accesses before we know how large the clobber-saves will
//! be.
//!
//! # Stack Layout
//!
//! The stack looks like:
//!
//! ```plain
//! (high address)
//!
//! +---------------------------+
//! | ... |
//! | stack args |
//! | (accessed via FP) |
//! +---------------------------+
//! SP at function entry -----> | return address |
//! +---------------------------+
//! FP after prologue --------> | FP (pushed by prologue) |
//! +---------------------------+
//! | ... |
//! | clobbered callee-saves |
//! unwind-frame base ----> | (pushed by prologue) |
//! +---------------------------+
//! | ... |
//! | spill slots |
//! | (accessed via nominal SP) |
//! | ... |
//! | stack slots |
//! | (accessed via nominal SP) |
//! nominal SP ---------------> | (alloc'd by prologue) |
//! (SP at end of prologue) +---------------------------+
//! | [alignment as needed] |
//! | ... |
//! | args for call |
//! SP before making a call --> | (pushed at callsite) |
//! +---------------------------+
//!
//! (low address)
//! ```
//!
//! # Multi-value Returns
//!
//! We support multi-value returns by using multiple return-value
//! registers. In some cases this is an extension of the base system
//! ABI. See each platform's `abi.rs` implementation for details.
use super::abi::*;
use crate::binemit::StackMap;
use crate::ir::types::*;
use crate::ir::{ArgumentExtension, ArgumentPurpose, DynamicStackSlot, Signature, StackSlot};
use crate::isa::TargetIsa;
use crate::settings;
use crate::CodegenResult;
use crate::{ir, isa};
use crate::{machinst::*, trace};
use alloc::vec::Vec;
use regalloc2::{PReg, PRegSet};
use smallvec::{smallvec, SmallVec};
use std::convert::TryFrom;
use std::marker::PhantomData;
use std::mem;
use std::collections::HashMap;
/// A location for (part of) an argument or return value. These "storage slots"
/// are specified for each register-sized part of an argument.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ABIArgSlot {
/// In a real register.
Reg {
/// Register that holds this arg.
reg: RealReg,
/// Value type of this arg.
ty: ir::Type,
/// Should this arg be zero- or sign-extended?
extension: ir::ArgumentExtension,
},
/// Arguments only: on stack, at given offset from SP at entry.
Stack {
/// Offset of this arg relative to the base of stack args.
offset: i64,
/// Value type of this arg.
ty: ir::Type,
/// Should this arg be zero- or sign-extended?
extension: ir::ArgumentExtension,
},
}
impl ABIArgSlot {
/// The type of the value that will be stored in this slot.
pub fn get_type(&self) -> ir::Type {
match self {
ABIArgSlot::Reg { ty, .. } => *ty,
ABIArgSlot::Stack { ty, .. } => *ty,
}
}
}
/// A vector of `ABIArgSlot`s. Inline capacity for one element because basically
/// 100% of values use one slot. Only `i128`s need multiple slots, and they are
/// super rare (and never happen with Wasm).
pub type ABIArgSlotVec = SmallVec<[ABIArgSlot; 1]>;
/// An ABIArg is composed of one or more parts. This allows for a CLIF-level
/// Value to be passed with its parts in more than one location at the ABI
/// level. For example, a 128-bit integer may be passed in two 64-bit registers,
/// or even a 64-bit register and a 64-bit stack slot, on a 64-bit machine. The
/// number of "parts" should correspond to the number of registers used to store
/// this type according to the machine backend.
///
/// As an invariant, the `purpose` for every part must match. As a further
/// invariant, a `StructArg` part cannot appear with any other part.
#[derive(Clone, Debug)]
pub enum ABIArg {
/// Storage slots (registers or stack locations) for each part of the
/// argument value. The number of slots must equal the number of register
/// parts used to store a value of this type.
Slots {
/// Slots, one per register part.
slots: ABIArgSlotVec,
/// Purpose of this arg.
purpose: ir::ArgumentPurpose,
},
/// Structure argument. We reserve stack space for it, but the CLIF-level
/// semantics are a little weird: the value passed to the call instruction,
/// and received in the corresponding block param, is a *pointer*. On the
/// caller side, we memcpy the data from the passed-in pointer to the stack
/// area; on the callee side, we compute a pointer to this stack area and
/// provide that as the argument's value.
StructArg {
/// Register or stack slot holding a pointer to the buffer as passed
/// by the caller to the callee. If None, the ABI defines the buffer
/// to reside at a well-known location (i.e. at `offset` below).
pointer: Option<ABIArgSlot>,
/// Offset of this arg relative to base of stack args.
offset: i64,
/// Size of this arg on the stack.
size: u64,
/// Purpose of this arg.
purpose: ir::ArgumentPurpose,
},
/// Implicit argument. Similar to a StructArg, except that we have the
/// target type, not a pointer type, at the CLIF-level. This argument is
/// still being passed via reference implicitly.
ImplicitPtrArg {
/// Register or stack slot holding a pointer to the buffer.
pointer: ABIArgSlot,
/// Offset of the argument buffer.
offset: i64,
/// Type of the implicit argument.
ty: Type,
/// Purpose of this arg.
purpose: ir::ArgumentPurpose,
},
}
impl ABIArg {
/// Create an ABIArg from one register.
pub fn reg(
reg: RealReg,
ty: ir::Type,
extension: ir::ArgumentExtension,
purpose: ir::ArgumentPurpose,
) -> ABIArg {
ABIArg::Slots {
slots: smallvec![ABIArgSlot::Reg { reg, ty, extension }],
purpose,
}
}
/// Create an ABIArg from one stack slot.
pub fn stack(
offset: i64,
ty: ir::Type,
extension: ir::ArgumentExtension,
purpose: ir::ArgumentPurpose,
) -> ABIArg {
ABIArg::Slots {
slots: smallvec![ABIArgSlot::Stack {
offset,
ty,
extension,
}],
purpose,
}
}
}
/// Are we computing information about arguments or return values? Much of the
/// handling is factored out into common routines; this enum allows us to
/// distinguish which case we're handling.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ArgsOrRets {
/// Arguments.
Args,
/// Return values.
Rets,
}
/// Abstract location for a machine-specific ABI impl to translate into the
/// appropriate addressing mode.
#[derive(Clone, Copy, Debug)]
pub enum StackAMode {
/// Offset from the frame pointer, possibly making use of a specific type
/// for a scaled indexing operation.
FPOffset(i64, ir::Type),
/// Offset from the nominal stack pointer, possibly making use of a specific
/// type for a scaled indexing operation.
NominalSPOffset(i64, ir::Type),
/// Offset from the real stack pointer, possibly making use of a specific
/// type for a scaled indexing operation.
SPOffset(i64, ir::Type),
}
impl StackAMode {
/// Offset by an addend.
pub fn offset(self, addend: i64) -> Self {
match self {
StackAMode::FPOffset(off, ty) => StackAMode::FPOffset(off + addend, ty),
StackAMode::NominalSPOffset(off, ty) => StackAMode::NominalSPOffset(off + addend, ty),
StackAMode::SPOffset(off, ty) => StackAMode::SPOffset(off + addend, ty),
}
}
}
/// Trait implemented by machine-specific backend to represent ISA flags.
pub trait IsaFlags: Clone {}
/// Trait implemented by machine-specific backend to provide information about
/// register assignments and to allow generating the specific instructions for
/// stack loads/saves, prologues/epilogues, etc.
pub trait ABIMachineSpec {
/// The instruction type.
type I: VCodeInst;
/// The ISA flags type.
type F: IsaFlags;
/// Returns the number of bits in a word, that is 32/64 for 32/64-bit architecture.
fn word_bits() -> u32;
/// Returns the number of bytes in a word.
fn word_bytes() -> u32 {
return Self::word_bits() / 8;
}
/// Returns word-size integer type.
fn word_type() -> Type {
match Self::word_bits() {
32 => I32,
64 => I64,
_ => unreachable!(),
}
}
/// Returns word register class.
fn word_reg_class() -> RegClass {
RegClass::Int
}
/// Returns required stack alignment in bytes.
fn stack_align(call_conv: isa::CallConv) -> u32;
/// Process a list of parameters or return values and allocate them to registers
/// and stack slots.
///
/// Returns the list of argument locations, the stack-space used (rounded up
/// to as alignment requires), and if `add_ret_area_ptr` was passed, the
/// index of the extra synthetic arg that was added.
fn compute_arg_locs(
call_conv: isa::CallConv,
flags: &settings::Flags,
params: &[ir::AbiParam],
args_or_rets: ArgsOrRets,
add_ret_area_ptr: bool,
) -> CodegenResult<(ABIArgVec, i64, Option<usize>)>;
/// Returns the offset from FP to the argument area, i.e., jumping over the saved FP, return
/// address, and maybe other standard elements depending on ABI (e.g. Wasm TLS reg).
fn fp_to_arg_offset(call_conv: isa::CallConv, flags: &settings::Flags) -> i64;
/// Generate a load from the stack.
fn gen_load_stack(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Self::I;
/// Generate a store to the stack.
fn gen_store_stack(mem: StackAMode, from_reg: Reg, ty: Type) -> Self::I;
/// Generate a move.
fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Self::I;
/// Generate an integer-extend operation.
fn gen_extend(
to_reg: Writable<Reg>,
from_reg: Reg,
is_signed: bool,
from_bits: u8,
to_bits: u8,
) -> Self::I;
/// Generate a return instruction.
fn gen_ret(setup_frame: bool, isa_flags: &Self::F, rets: Vec<Reg>) -> Self::I;
/// Generate an add-with-immediate. Note that even if this uses a scratch
/// register, it must satisfy two requirements:
///
/// - The add-imm sequence must only clobber caller-save registers, because
/// it will be placed in the prologue before the clobbered callee-save
/// registers are saved.
///
/// - The add-imm sequence must work correctly when `from_reg` and/or
/// `into_reg` are the register returned by `get_stacklimit_reg()`.
fn gen_add_imm(into_reg: Writable<Reg>, from_reg: Reg, imm: u32) -> SmallInstVec<Self::I>;
/// Generate a sequence that traps with a `TrapCode::StackOverflow` code if
/// the stack pointer is less than the given limit register (assuming the
/// stack grows downward).
fn gen_stack_lower_bound_trap(limit_reg: Reg) -> SmallInstVec<Self::I>;
/// Generate an instruction to compute an address of a stack slot (FP- or
/// SP-based offset).
fn gen_get_stack_addr(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Self::I;
/// Get a fixed register to use to compute a stack limit. This is needed for
/// certain sequences generated after the register allocator has already
/// run. This must satisfy two requirements:
///
/// - It must be a caller-save register, because it will be clobbered in the
/// prologue before the clobbered callee-save registers are saved.
///
/// - It must be safe to pass as an argument and/or destination to
/// `gen_add_imm()`. This is relevant when an addition with a large
/// immediate needs its own temporary; it cannot use the same fixed
/// temporary as this one.
fn get_stacklimit_reg() -> Reg;
/// Generate a store to the given [base+offset] address.
fn gen_load_base_offset(into_reg: Writable<Reg>, base: Reg, offset: i32, ty: Type) -> Self::I;
/// Generate a load from the given [base+offset] address.
fn gen_store_base_offset(base: Reg, offset: i32, from_reg: Reg, ty: Type) -> Self::I;
/// Adjust the stack pointer up or down.
fn gen_sp_reg_adjust(amount: i32) -> SmallInstVec<Self::I>;
/// Generate a meta-instruction that adjusts the nominal SP offset.
fn gen_nominal_sp_adj(amount: i32) -> Self::I;
/// Generates the mandatory part of the prologue, irrespective of whether
/// the usual frame-setup sequence for this architecture is required or not,
/// e.g. extra unwind instructions.
fn gen_prologue_start(
_setup_frame: bool,
_call_conv: isa::CallConv,
_flags: &settings::Flags,
_isa_flags: &Self::F,
) -> SmallInstVec<Self::I> {
// By default, generates nothing.
smallvec![]
}
/// Generate the usual frame-setup sequence for this architecture: e.g.,
/// `push rbp / mov rbp, rsp` on x86-64, or `stp fp, lr, [sp, #-16]!` on
/// AArch64.
fn gen_prologue_frame_setup(flags: &settings::Flags) -> SmallInstVec<Self::I>;
/// Generate the usual frame-restore sequence for this architecture.
fn gen_epilogue_frame_restore(flags: &settings::Flags) -> SmallInstVec<Self::I>;
/// Generate a probestack call.
fn gen_probestack(_frame_size: u32) -> SmallInstVec<Self::I>;
/// Get all clobbered registers that are callee-saved according to the ABI; the result
/// contains the registers in a sorted order.
fn get_clobbered_callee_saves(
call_conv: isa::CallConv,
flags: &settings::Flags,
sig: &Signature,
regs: &[Writable<RealReg>],
) -> Vec<Writable<RealReg>>;
/// Determine whether it is necessary to generate the usual frame-setup
/// sequence (refer to gen_prologue_frame_setup()).
fn is_frame_setup_needed(
is_leaf: bool,
stack_args_size: u32,
num_clobbered_callee_saves: usize,
fixed_frame_storage_size: u32,
) -> bool;
/// Generate a clobber-save sequence. The implementation here should return
/// a sequence of instructions that "push" or otherwise save to the stack all
/// registers written/modified by the function body that are callee-saved.
/// The sequence of instructions should adjust the stack pointer downward,
/// and should align as necessary according to ABI requirements.
///
/// Returns stack bytes used as well as instructions. Does not adjust
/// nominal SP offset; caller will do that.
fn gen_clobber_save(
call_conv: isa::CallConv,
setup_frame: bool,
flags: &settings::Flags,
clobbered_callee_saves: &[Writable<RealReg>],
fixed_frame_storage_size: u32,
outgoing_args_size: u32,
) -> (u64, SmallVec<[Self::I; 16]>);
/// Generate a clobber-restore sequence. This sequence should perform the
/// opposite of the clobber-save sequence generated above, assuming that SP
/// going into the sequence is at the same point that it was left when the
/// clobber-save sequence finished.
fn gen_clobber_restore(
call_conv: isa::CallConv,
sig: &Signature,
flags: &settings::Flags,
clobbers: &[Writable<RealReg>],
fixed_frame_storage_size: u32,
outgoing_args_size: u32,
) -> SmallVec<[Self::I; 16]>;
/// Generate a call instruction/sequence. This method is provided one
/// temporary register to use to synthesize the called address, if needed.
fn gen_call(
dest: &CallDest,
uses: SmallVec<[Reg; 8]>,
defs: SmallVec<[Writable<Reg>; 8]>,
clobbers: PRegSet,
opcode: ir::Opcode,
tmp: Writable<Reg>,
callee_conv: isa::CallConv,
callee_conv: isa::CallConv,
) -> SmallVec<[Self::I; 2]>;
/// Generate a memcpy invocation. Used to set up struct args. May clobber
/// caller-save registers; we only memcpy before we start to set up args for
/// a call.
fn gen_memcpy(
call_conv: isa::CallConv,
dst: Reg,
src: Reg,
size: usize,
) -> SmallVec<[Self::I; 8]>;
/// Get the number of spillslots required for the given register-class.
fn get_number_of_spillslots_for_value(rc: RegClass, target_vector_bytes: u32) -> u32;
/// Get the current virtual-SP offset from an instruction-emission state.
fn get_virtual_sp_offset_from_state(s: &<Self::I as MachInstEmit>::State) -> i64;
/// Get the "nominal SP to FP" offset from an instruction-emission state.
fn get_nominal_sp_to_fp(s: &<Self::I as MachInstEmit>::State) -> i64;
/// Get all caller-save registers, that is, registers that we expect
/// not to be saved across a call to a callee with the given ABI.
fn get_regs_clobbered_by_call(call_conv_of_callee: isa::CallConv) -> PRegSet;
/// Get the needed extension mode, given the mode attached to the argument
/// in the signature and the calling convention. The input (the attribute in
/// the signature) specifies what extension type should be done *if* the ABI
/// requires extension to the full register; this method's return value
/// indicates whether the extension actually *will* be done.
fn get_ext_mode(
call_conv: isa::CallConv,
specified: ir::ArgumentExtension,
) -> ir::ArgumentExtension;
}
// A vector of `ABIArg`s with inline capacity, since they are typically small.
pub type ABIArgVec = SmallVec<[ABIArg; 6]>;
/// ABI information shared between body (callee) and caller.
#[derive(Clone)]
pub struct ABISig {
/// Argument locations (regs or stack slots). Stack offsets are relative to
/// SP on entry to function.
args: ABIArgVec,
/// Return-value locations. Stack offsets are relative to the return-area
/// pointer.
rets: ABIArgVec,
/// Space on stack used to store arguments.
sized_stack_arg_space: i64,
/// Space on stack used to store return values.
sized_stack_ret_space: i64,
/// Index in `args` of the stack-return-value-area argument.
stack_ret_arg: Option<usize>,
/// Calling convention used.
call_conv: isa::CallConv,
}
impl ABISig {
pub fn from_func_sig<M: ABIMachineSpec>(
sig: &ir::Signature,
flags: &settings::Flags,
) -> CodegenResult<ABISig> {
let sig = ensure_struct_return_ptr_is_returned(sig);
// Compute args and retvals from signature. Handle retvals first,
// because we may need to add a return-area arg to the args.
let (rets, sized_stack_ret_space, _) = M::compute_arg_locs(
sig.call_conv,
flags,
&sig.returns,
ArgsOrRets::Rets,
/* extra ret-area ptr = */ false,
)?;
let need_stack_return_area = sized_stack_ret_space > 0;
let (args, sized_stack_arg_space, stack_ret_arg) = M::compute_arg_locs(
sig.call_conv,
flags,
&sig.params,
ArgsOrRets::Args,
need_stack_return_area,
)?;
trace!(
"ABISig: sig {:?} => args = {:?} rets = {:?} arg stack = {} ret stack = {} stack_ret_arg = {:?}",
sig,
args,
rets,
sized_stack_arg_space,
sized_stack_ret_space,
stack_ret_arg,
);
Ok(ABISig {
args,
rets,
sized_stack_arg_space,
sized_stack_ret_space,
stack_ret_arg,
call_conv: sig.call_conv,
})
}
/// Return all uses (i.e, function args), defs (i.e., return values
/// and caller-saved registers), and clobbers for the callsite.
pub fn call_uses_defs_clobbers<M: ABIMachineSpec>(
&self,
) -> (SmallVec<[Reg; 8]>, SmallVec<[Writable<Reg>; 8]>, PRegSet) {
// Compute uses: all arg regs.
let mut uses = smallvec![];
for arg in &self.args {
match arg {
&ABIArg::Slots { ref slots, .. } => {
for slot in slots {
match slot {
&ABIArgSlot::Reg { reg, .. } => {
uses.push(Reg::from(reg));
}
_ => {}
}
}
}
&ABIArg::StructArg { ref pointer, .. } => {
if let Some(slot) = pointer {
match slot {
&ABIArgSlot::Reg { reg, .. } => {
uses.push(Reg::from(reg));
}
_ => {}
}
}
}
&ABIArg::ImplicitPtrArg { ref pointer, .. } => match pointer {
&ABIArgSlot::Reg { reg, .. } => {
uses.push(Reg::from(reg));
}
_ => {}
},
}
}
// Get clobbers: all caller-saves. These may include return value
// regs, which we will remove from the clobber set below.
let mut clobbers = M::get_regs_clobbered_by_call(self.call_conv);
// Compute defs: all retval regs, and all caller-save (clobbered) regs.
let mut defs = smallvec![];
for ret in &self.rets {
if let &ABIArg::Slots { ref slots, .. } = ret {
for slot in slots {
match slot {
&ABIArgSlot::Reg { reg, .. } => {
defs.push(Writable::from_reg(Reg::from(reg)));
clobbers.remove(PReg::from(reg));
}
_ => {}
}
}
}
}
(uses, defs, clobbers)
}
/// Get the number of arguments expected.
pub fn num_args(&self) -> usize {
if self.stack_ret_arg.is_some() {
self.args.len() - 1
} else {
self.args.len()
}
}
/// Get information specifying how to pass one argument.
pub fn get_arg(&self, idx: usize) -> ABIArg {
self.args[idx].clone()
}
/// Get total stack space required for arguments.
pub fn sized_stack_arg_space(&self) -> i64 {
self.sized_stack_arg_space
}
/// Get the number of return values expected.
pub fn num_rets(&self) -> usize {
self.rets.len()
}
/// Get information specifying how to pass one return value.
pub fn get_ret(&self, idx: usize) -> ABIArg {
self.rets[idx].clone()
}
/// Get total stack space required for return values.
pub fn sized_stack_ret_space(&self) -> i64 {
self.sized_stack_ret_space
}
/// Get information specifying how to pass the implicit pointer
/// to the return-value area on the stack, if required.
pub fn get_ret_arg(&self) -> Option<ABIArg> {
let ret_arg = self.stack_ret_arg?;
Some(self.args[ret_arg].clone())
}
/// Get calling convention used.
pub fn call_conv(&self) -> isa::CallConv {
self.call_conv
}
}
/// ABI object for a function body.
pub struct Callee<M: ABIMachineSpec> {
/// CLIF-level signature, possibly normalized.
ir_sig: ir::Signature,
/// Signature: arg and retval regs.
sig: ABISig,
/// Defined dynamic types.
dynamic_type_sizes: HashMap<Type, u32>,
/// Offsets to each dynamic stackslot.
dynamic_stackslots: PrimaryMap<DynamicStackSlot, u32>,
/// Offsets to each sized stackslot.
sized_stackslots: PrimaryMap<StackSlot, u32>,
/// Total stack size of all stackslots
stackslots_size: u32,
/// Stack size to be reserved for outgoing arguments.
outgoing_args_size: u32,
/// Clobbered registers, from regalloc.
clobbered: Vec<Writable<RealReg>>,
/// Total number of spillslots, including for 'dynamic' types, from regalloc.
spillslots: Option<usize>,
/// Storage allocated for the fixed part of the stack frame. This is
/// usually the same as the total frame size below.
fixed_frame_storage_size: u32,
/// "Total frame size", as defined by "distance between FP and nominal SP".
/// Some items are pushed below nominal SP, so the function may actually use
/// more stack than this would otherwise imply. It is simply the initial
/// frame/allocation size needed for stackslots and spillslots.
total_frame_size: Option<u32>,
/// The register holding the return-area pointer, if needed.
ret_area_ptr: Option<Writable<Reg>>,
/// Temp registers required for argument setup, if needed.
arg_temp_reg: Vec<Option<Writable<Reg>>>,
/// Calling convention this function expects.
call_conv: isa::CallConv,
/// The settings controlling this function's compilation.
flags: settings::Flags,
/// The ISA-specific flag values controlling this function's compilation.
isa_flags: M::F,
/// Whether or not this function is a "leaf", meaning it calls no other
/// functions
is_leaf: bool,
/// If this function has a stack limit specified, then `Reg` is where the
/// stack limit will be located after the instructions specified have been
/// executed.
///
/// Note that this is intended for insertion into the prologue, if
/// present. Also note that because the instructions here execute in the
/// prologue this happens after legalization/register allocation/etc so we
/// need to be extremely careful with each instruction. The instructions are
/// manually register-allocated and carefully only use caller-saved
/// registers and keep nothing live after this sequence of instructions.
stack_limit: Option<(Reg, SmallInstVec<M::I>)>,
/// Are we to invoke the probestack function in the prologue? If so,
/// what is the minimum size at which we must invoke it?
probestack_min_frame: Option<u32>,
/// Whether it is necessary to generate the usual frame-setup sequence.
setup_frame: bool,
_mach: PhantomData<M>,
}
fn get_special_purpose_param_register(
f: &ir::Function,
abi: &ABISig,
purpose: ir::ArgumentPurpose,
) -> Option<Reg> {
let idx = f.signature.special_param_index(purpose)?;
match &abi.args[idx] {
&ABIArg::Slots { ref slots, .. } => match &slots[0] {
&ABIArgSlot::Reg { reg, .. } => Some(reg.into()),
_ => None,
},
_ => None,
}
}
impl<M: ABIMachineSpec> Callee<M> {
/// Create a new body ABI instance.
pub fn new(f: &ir::Function, isa: &dyn TargetIsa, isa_flags: &M::F) -> CodegenResult<Self> {
trace!("ABI: func signature {:?}", f.signature);
let flags = isa.flags().clone();
let ir_sig = ensure_struct_return_ptr_is_returned(&f.signature);
let sig = ABISig::from_func_sig::<M>(&ir_sig, &flags)?;
let call_conv = f.signature.call_conv;
// Only these calling conventions are supported.
debug_assert!(
call_conv == isa::CallConv::SystemV
|| call_conv == isa::CallConv::Fast
|| call_conv == isa::CallConv::Cold
|| call_conv.extends_windows_fastcall()
|| call_conv == isa::CallConv::AppleAarch64
|| call_conv == isa::CallConv::WasmtimeSystemV
|| call_conv == isa::CallConv::WasmtimeAppleAarch64,
"Unsupported calling convention: {:?}",
call_conv
);
// Compute sized stackslot locations and total stackslot size.
let mut sized_stack_offset: u32 = 0;
let mut sized_stackslots = PrimaryMap::new();
for (stackslot, data) in f.sized_stack_slots.iter() {
let off = sized_stack_offset;
sized_stack_offset += data.size;
let mask = M::word_bytes() - 1;
sized_stack_offset = (sized_stack_offset + mask) & !mask;
debug_assert_eq!(stackslot.as_u32() as usize, sized_stackslots.len());
sized_stackslots.push(off);
}
// Compute dynamic stackslot locations and total stackslot size.
let mut dynamic_stackslots = PrimaryMap::new();
let mut dynamic_stack_offset: u32 = sized_stack_offset;
for (stackslot, data) in f.dynamic_stack_slots.iter() {
debug_assert_eq!(stackslot.as_u32() as usize, dynamic_stackslots.len());
let off = dynamic_stack_offset;
let ty = f
.get_concrete_dynamic_ty(data.dyn_ty)
.unwrap_or_else(|| panic!("invalid dynamic vector type: {}", data.dyn_ty));
dynamic_stack_offset += isa.dynamic_vector_bytes(ty);
let mask = M::word_bytes() - 1;
dynamic_stack_offset = (dynamic_stack_offset + mask) & !mask;
dynamic_stackslots.push(off);
}
let stackslots_size = dynamic_stack_offset;
let mut dynamic_type_sizes = HashMap::with_capacity(f.dfg.dynamic_types.len());
for (dyn_ty, _data) in f.dfg.dynamic_types.iter() {
let ty = f
.get_concrete_dynamic_ty(dyn_ty)
.unwrap_or_else(|| panic!("invalid dynamic vector type: {}", dyn_ty));
let size = isa.dynamic_vector_bytes(ty);
dynamic_type_sizes.insert(ty, size);
}
// Figure out what instructions, if any, will be needed to check the
// stack limit. This can either be specified as a special-purpose
// argument or as a global value which often calculates the stack limit
// from the arguments.
let stack_limit =
get_special_purpose_param_register(f, &sig, ir::ArgumentPurpose::StackLimit)
.map(|reg| (reg, smallvec![]))
.or_else(|| f.stack_limit.map(|gv| gen_stack_limit::<M>(f, &sig, gv)));
// Determine whether a probestack call is required for large enough
// frames (and the minimum frame size if so).
let probestack_min_frame = if flags.enable_probestack() {
assert!(
!flags.probestack_func_adjusts_sp(),
"SP-adjusting probestack not supported in new backends"
);
Some(1 << flags.probestack_size_log2())
} else {
None
};
Ok(Self {
ir_sig,
sig,
dynamic_stackslots,
dynamic_type_sizes,
sized_stackslots,
stackslots_size,
outgoing_args_size: 0,
clobbered: vec![],
spillslots: None,
fixed_frame_storage_size: 0,
total_frame_size: None,
ret_area_ptr: None,
arg_temp_reg: vec![],
call_conv,
flags,
isa_flags: isa_flags.clone(),
is_leaf: f.is_leaf(),
stack_limit,
probestack_min_frame,
setup_frame: true,
_mach: PhantomData,
})
}
/// Inserts instructions necessary for checking the stack limit into the
/// prologue.
///
/// This function will generate instructions necessary for perform a stack
/// check at the header of a function. The stack check is intended to trap
/// if the stack pointer goes below a particular threshold, preventing stack
/// overflow in wasm or other code. The `stack_limit` argument here is the
/// register which holds the threshold below which we're supposed to trap.
/// This function is known to allocate `stack_size` bytes and we'll push
/// instructions onto `insts`.
///
/// Note that the instructions generated here are special because this is
/// happening so late in the pipeline (e.g. after register allocation). This
/// means that we need to do manual register allocation here and also be
/// careful to not clobber any callee-saved or argument registers. For now
/// this routine makes do with the `spilltmp_reg` as one temporary
/// register, and a second register of `tmp2` which is caller-saved. This
/// should be fine for us since no spills should happen in this sequence of
/// instructions, so our register won't get accidentally clobbered.
///
/// No values can be live after the prologue, but in this case that's ok
/// because we just need to perform a stack check before progressing with
/// the rest of the function.
fn insert_stack_check(
&self,
stack_limit: Reg,
stack_size: u32,
insts: &mut SmallInstVec<M::I>,
) {
// With no explicit stack allocated we can just emit the simple check of
// the stack registers against the stack limit register, and trap if
// it's out of bounds.
if stack_size == 0 {
insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
return;
}
// Note that the 32k stack size here is pretty special. See the
// documentation in x86/abi.rs for why this is here. The general idea is
// that we're protecting against overflow in the addition that happens
// below.
if stack_size >= 32 * 1024 {
insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
}
// Add the `stack_size` to `stack_limit`, placing the result in
// `scratch`.
//
// Note though that `stack_limit`'s register may be the same as
// `scratch`. If our stack size doesn't fit into an immediate this
// means we need a second scratch register for loading the stack size
// into a register.
let scratch = Writable::from_reg(M::get_stacklimit_reg());
insts.extend(M::gen_add_imm(scratch, stack_limit, stack_size).into_iter());
insts.extend(M::gen_stack_lower_bound_trap(scratch.to_reg()));
}
}
/// Generates the instructions necessary for the `gv` to be materialized into a
/// register.
///
/// This function will return a register that will contain the result of
/// evaluating `gv`. It will also return any instructions necessary to calculate
/// the value of the register.
///
/// Note that global values are typically lowered to instructions via the
/// standard legalization pass. Unfortunately though prologue generation happens
/// so late in the pipeline that we can't use these legalization passes to
/// generate the instructions for `gv`. As a result we duplicate some lowering
/// of `gv` here and support only some global values. This is similar to what
/// the x86 backend does for now, and hopefully this can be somewhat cleaned up
/// in the future too!
///
/// Also note that this function will make use of `writable_spilltmp_reg()` as a
/// temporary register to store values in if necessary. Currently after we write
/// to this register there's guaranteed to be no spilled values between where
/// it's used, because we're not participating in register allocation anyway!
fn gen_stack_limit<M: ABIMachineSpec>(
f: &ir::Function,
abi: &ABISig,
gv: ir::GlobalValue,
) -> (Reg, SmallInstVec<M::I>) {
let mut insts = smallvec![];
let reg = generate_gv::<M>(f, abi, gv, &mut insts);
return (reg, insts);
}
fn generate_gv<M: ABIMachineSpec>(
f: &ir::Function,
abi: &ABISig,
gv: ir::GlobalValue,
insts: &mut SmallInstVec<M::I>,
) -> Reg {
match f.global_values[gv] {
// Return the direct register the vmcontext is in
ir::GlobalValueData::VMContext => {
get_special_purpose_param_register(f, abi, ir::ArgumentPurpose::VMContext)
.expect("no vmcontext parameter found")
}
// Load our base value into a register, then load from that register
// in to a temporary register.
ir::GlobalValueData::Load {
base,
offset,
global_type: _,
readonly: _,
} => {
let base = generate_gv::<M>(f, abi, base, insts);
let into_reg = Writable::from_reg(M::get_stacklimit_reg());
insts.push(M::gen_load_base_offset(
into_reg,
base,
offset.into(),
M::word_type(),
));
return into_reg.to_reg();
}
ref other => panic!("global value for stack limit not supported: {}", other),
}
}
fn gen_load_stack_multi<M: ABIMachineSpec>(
from: StackAMode,
dst: ValueRegs<Writable<Reg>>,
ty: Type,
) -> SmallInstVec<M::I> {
let mut ret = smallvec![];
let (_, tys) = M::I::rc_for_type(ty).unwrap();
let mut offset = 0;
// N.B.: registers are given in the `ValueRegs` in target endian order.
for (&dst, &ty) in dst.regs().iter().zip(tys.iter()) {
ret.push(M::gen_load_stack(from.offset(offset), dst, ty));
offset += ty.bytes() as i64;
}
ret
}
fn gen_store_stack_multi<M: ABIMachineSpec>(
from: StackAMode,
src: ValueRegs<Reg>,
ty: Type,
) -> SmallInstVec<M::I> {
let mut ret = smallvec![];
let (_, tys) = M::I::rc_for_type(ty).unwrap();
let mut offset = 0;
// N.B.: registers are given in the `ValueRegs` in target endian order.
for (&src, &ty) in src.regs().iter().zip(tys.iter()) {
ret.push(M::gen_store_stack(from.offset(offset), src, ty));
offset += ty.bytes() as i64;
}
ret
}
fn ensure_struct_return_ptr_is_returned(sig: &ir::Signature) -> ir::Signature {
let params_structret = sig
.params
.iter()
.find(|p| p.purpose == ArgumentPurpose::StructReturn);
let rets_have_structret = sig.returns.len() > 0
&& sig
.returns
.iter()
.any(|arg| arg.purpose == ArgumentPurpose::StructReturn);
let mut sig = sig.clone();
if params_structret.is_some() && !rets_have_structret {
sig.returns.insert(0, params_structret.unwrap().clone());
}
sig
}
/// ### Pre-Regalloc Functions
///
/// These methods of `Callee` may only be called before regalloc.
impl<M: ABIMachineSpec> Callee<M> {
/// Access the (possibly legalized) signature.
pub fn signature(&self) -> &ir::Signature {
&self.ir_sig
}
/// Does the ABI-body code need temp registers (and if so, of what type)?
/// They will be provided to `init()` as the `temps` arg if so.
pub fn temps_needed(&self) -> Vec<Type> {
let mut temp_tys = vec![];
for arg in &self.sig.args {
match arg {
&ABIArg::ImplicitPtrArg { pointer, .. } => match &pointer {
&ABIArgSlot::Reg { .. } => {}
&ABIArgSlot::Stack { ty, .. } => {
temp_tys.push(ty);
}
},
_ => {}
}
}
if self.sig.stack_ret_arg.is_some() {
temp_tys.push(M::word_type());
}
temp_tys
}
/// Initialize. This is called after the Callee is constructed because it
/// may be provided with a vector of temp vregs, which can only be allocated
/// once the lowering context exists.
pub fn init(&mut self, temps: Vec<Writable<Reg>>) {
let mut temps_iter = temps.into_iter();
for arg in &self.sig.args {
let temp = match arg {
&ABIArg::ImplicitPtrArg { pointer, .. } => match &pointer {
&ABIArgSlot::Reg { .. } => None,
&ABIArgSlot::Stack { .. } => Some(temps_iter.next().unwrap()),
},
_ => None,
};
self.arg_temp_reg.push(temp);
}
if self.sig.stack_ret_arg.is_some() {
self.ret_area_ptr = Some(temps_iter.next().unwrap());
}
}
/// Accumulate outgoing arguments.
///
/// This ensures that at least `size` bytes are allocated in the prologue to
/// be available for use in function calls to hold arguments and/or return
/// values. If this function is called multiple times, the maximum of all
/// `size` values will be available.
pub fn accumulate_outgoing_args_size(&mut self, size: u32) {
if size > self.outgoing_args_size {
self.outgoing_args_size = size;
}
}
/// Get the calling convention implemented by this ABI object.
pub fn call_conv(&self) -> isa::CallConv {
self.sig.call_conv
}
/// The offsets of all sized stack slots (not spill slots) for debuginfo purposes.
pub fn sized_stackslot_offsets(&self) -> &PrimaryMap<StackSlot, u32> {
&self.sized_stackslots
}
/// The offsets of all dynamic stack slots (not spill slots) for debuginfo purposes.
pub fn dynamic_stackslot_offsets(&self) -> &PrimaryMap<DynamicStackSlot, u32> {
&self.dynamic_stackslots
}
/// Generate an instruction which copies an argument to a destination
/// register.
pub fn gen_copy_arg_to_regs(
&self,
idx: usize,
into_regs: ValueRegs<Writable<Reg>>,
) -> SmallInstVec<M::I> {
let mut insts = smallvec![];
let mut copy_arg_slot_to_reg = |slot: &ABIArgSlot, into_reg: &Writable<Reg>| {
match slot {
&ABIArgSlot::Reg { reg, ty, .. } => {
// Extension mode doesn't matter (we're copying out, not in; we
// ignore high bits by convention).
insts.push(M::gen_move(*into_reg, reg.into(), ty));
}
&ABIArgSlot::Stack {
offset,
ty,
extension,
..
} => {
// However, we have to respect the extention mode for stack
// slots, or else we grab the wrong bytes on big-endian.
let ext = M::get_ext_mode(self.sig.call_conv, extension);
let ty = match (ext, ty_bits(ty) as u32) {
(ArgumentExtension::Uext, n) | (ArgumentExtension::Sext, n)
if n < M::word_bits() =>
{
M::word_type()
}
_ => ty,
};
insts.push(M::gen_load_stack(
StackAMode::FPOffset(
M::fp_to_arg_offset(self.call_conv, &self.flags) + offset,
ty,
),
*into_reg,
ty,
));
}
}
};
match &self.sig.args[idx] {
&ABIArg::Slots { ref slots, .. } => {
assert_eq!(into_regs.len(), slots.len());
for (slot, into_reg) in slots.iter().zip(into_regs.regs().iter()) {
copy_arg_slot_to_reg(&slot, &into_reg);
}
}
&ABIArg::StructArg {
pointer, offset, ..
} => {
let into_reg = into_regs.only_reg().unwrap();
if let Some(slot) = pointer {
// Buffer address is passed in a register or stack slot.
copy_arg_slot_to_reg(&slot, &into_reg);
} else {
// Buffer address is implicitly defined by the ABI.
insts.push(M::gen_get_stack_addr(
StackAMode::FPOffset(
M::fp_to_arg_offset(self.call_conv, &self.flags) + offset,
I8,
),
into_reg,
I8,
));
}
}
&ABIArg::ImplicitPtrArg { pointer, ty, .. } => {
let into_reg = into_regs.only_reg().unwrap();
// We need to dereference the pointer.
let base = match &pointer {
&ABIArgSlot::Reg { reg, .. } => Reg::from(reg),
&ABIArgSlot::Stack { offset, ty, .. } => {
// In this case we need a temp register to hold the address.
// This was allocated in the `init` routine.
let addr_reg = self.arg_temp_reg[idx].unwrap();
insts.push(M::gen_load_stack(
StackAMode::FPOffset(
M::fp_to_arg_offset(self.call_conv, &self.flags) + offset,
ty,
),
addr_reg,
ty,
));
addr_reg.to_reg()
}
};
insts.push(M::gen_load_base_offset(into_reg, base, 0, ty));
}
}
insts
}
/// Is the given argument needed in the body (as opposed to, e.g., serving
/// only as a special ABI-specific placeholder)? This controls whether
/// lowering will copy it to a virtual reg use by CLIF instructions.
pub fn arg_is_needed_in_body(&self, _idx: usize) -> bool {
true
}
/// Generate an instruction which copies a source register to a return value slot.
pub fn gen_copy_regs_to_retval(
&self,
idx: usize,
from_regs: ValueRegs<Writable<Reg>>,
) -> SmallInstVec<M::I> {
let mut ret = smallvec![];
let word_bits = M::word_bits() as u8;
match &self.sig.rets[idx] {
&ABIArg::Slots { ref slots, .. } => {
assert_eq!(from_regs.len(), slots.len());
for (slot, &from_reg) in slots.iter().zip(from_regs.regs().iter()) {
match slot {
&ABIArgSlot::Reg {
reg, ty, extension, ..
} => {
let from_bits = ty_bits(ty) as u8;
let ext = M::get_ext_mode(self.sig.call_conv, extension);
let reg: Writable<Reg> = Writable::from_reg(Reg::from(reg));
match (ext, from_bits) {
(ArgumentExtension::Uext, n) | (ArgumentExtension::Sext, n)
if n < word_bits =>
{
let signed = ext == ArgumentExtension::Sext;
ret.push(M::gen_extend(
reg,
from_reg.to_reg(),
signed,
from_bits,
/* to_bits = */ word_bits,
));
}
_ => {
ret.push(M::gen_move(reg, from_reg.to_reg(), ty));
}
};
}
&ABIArgSlot::Stack {
offset,
ty,
extension,
..
} => {
let mut ty = ty;
let from_bits = ty_bits(ty) as u8;
// A machine ABI implementation should ensure that stack frames
// have "reasonable" size. All current ABIs for machinst
// backends (aarch64 and x64) enforce a 128MB limit.
let off = i32::try_from(offset).expect(
"Argument stack offset greater than 2GB; should hit impl limit first",
);
let ext = M::get_ext_mode(self.sig.call_conv, extension);
// Trash the from_reg; it should be its last use.
match (ext, from_bits) {
(ArgumentExtension::Uext, n) | (ArgumentExtension::Sext, n)
if n < word_bits =>
{
assert_eq!(M::word_reg_class(), from_reg.to_reg().class());
let signed = ext == ArgumentExtension::Sext;
ret.push(M::gen_extend(
Writable::from_reg(from_reg.to_reg()),
from_reg.to_reg(),
signed,
from_bits,
/* to_bits = */ word_bits,
));
// Store the extended version.
ty = M::word_type();
}
_ => {}
};
ret.push(M::gen_store_base_offset(
self.ret_area_ptr.unwrap().to_reg(),
off,
from_reg.to_reg(),
ty,
));
}
}
}
}
&ABIArg::StructArg { .. } => {
panic!("StructArg in return position is unsupported");
}
&ABIArg::ImplicitPtrArg { .. } => {
panic!("ImplicitPtrArg in return position is unsupported");
}
}
ret
}
/// Generate any setup instruction needed to save values to the
/// return-value area. This is usually used when were are multiple return
/// values or an otherwise large return value that must be passed on the
/// stack; typically the ABI specifies an extra hidden argument that is a
/// pointer to that memory.
pub fn gen_retval_area_setup(&self) -> Option<M::I> {
if let Some(i) = self.sig.stack_ret_arg {
let insts = self.gen_copy_arg_to_regs(i, ValueRegs::one(self.ret_area_ptr.unwrap()));
let inst = insts.into_iter().next().unwrap();
trace!(
"gen_retval_area_setup: inst {:?}; ptr reg is {:?}",
inst,
self.ret_area_ptr.unwrap().to_reg()
);
Some(inst)
} else {
trace!("gen_retval_area_setup: not needed");
None
}
}
/// Generate a return instruction.
pub fn gen_ret(&self) -> M::I {
let mut rets = vec![];
for ret in &self.sig.rets {
match ret {
ABIArg::Slots { slots, .. } => {
for slot in slots {
match slot {
ABIArgSlot::Reg { reg, .. } => rets.push(Reg::from(*reg)),
_ => {}
}
}
}
_ => {}
}
}
M::gen_ret(self.setup_frame, &self.isa_flags, rets)
}
/// Produce an instruction that computes a sized stackslot address.
pub fn sized_stackslot_addr(
&self,
slot: StackSlot,
offset: u32,
into_reg: Writable<Reg>,
) -> M::I {
// Offset from beginning of stackslot area, which is at nominal SP (see
// [MemArg::NominalSPOffset] for more details on nominal SP tracking).
let stack_off = self.sized_stackslots[slot] as i64;
let sp_off: i64 = stack_off + (offset as i64);
M::gen_get_stack_addr(StackAMode::NominalSPOffset(sp_off, I8), into_reg, I8)
}
/// Produce an instruction that computes a dynamic stackslot address.
pub fn dynamic_stackslot_addr(&self, slot: DynamicStackSlot, into_reg: Writable<Reg>) -> M::I {
let stack_off = self.dynamic_stackslots[slot] as i64;
M::gen_get_stack_addr(
StackAMode::NominalSPOffset(stack_off, I64X2XN),
into_reg,
I64X2XN,
)
}
/// Load from a spillslot.
pub fn load_spillslot(
&self,
slot: SpillSlot,
ty: Type,
into_regs: ValueRegs<Writable<Reg>>,
) -> SmallInstVec<M::I> {
// Offset from beginning of spillslot area, which is at nominal SP + stackslots_size.
let islot = slot.index() as i64;
let spill_off = islot * M::word_bytes() as i64;
let sp_off = self.stackslots_size as i64 + spill_off;
trace!("load_spillslot: slot {:?} -> sp_off {}", slot, sp_off);
gen_load_stack_multi::<M>(StackAMode::NominalSPOffset(sp_off, ty), into_regs, ty)
}
/// Store to a spillslot.
pub fn store_spillslot(
&self,
slot: SpillSlot,
ty: Type,
from_regs: ValueRegs<Reg>,
) -> SmallInstVec<M::I> {
// Offset from beginning of spillslot area, which is at nominal SP + stackslots_size.
let islot = slot.index() as i64;
let spill_off = islot * M::word_bytes() as i64;
let sp_off = self.stackslots_size as i64 + spill_off;
trace!("store_spillslot: slot {:?} -> sp_off {}", slot, sp_off);
gen_store_stack_multi::<M>(StackAMode::NominalSPOffset(sp_off, ty), from_regs, ty)
}
}
/// ### Post-Regalloc Functions
///
/// These methods of `Callee` may only be called after
/// regalloc.
impl<M: ABIMachineSpec> Callee<M> {
/// Update with the number of spillslots, post-regalloc.
pub fn set_num_spillslots(&mut self, slots: usize) {
self.spillslots = Some(slots);
}
/// Update with the clobbered registers, post-regalloc.
pub fn set_clobbered(&mut self, clobbered: Vec<Writable<RealReg>>) {
self.clobbered = clobbered;
}
/// Generate a stack map, given a list of spillslots and the emission state
/// at a given program point (prior to emission of the safepointing
/// instruction).
pub fn spillslots_to_stack_map(
&self,
slots: &[SpillSlot],
state: &<M::I as MachInstEmit>::State,
) -> StackMap {
let virtual_sp_offset = M::get_virtual_sp_offset_from_state(state);
let nominal_sp_to_fp = M::get_nominal_sp_to_fp(state);
assert!(virtual_sp_offset >= 0);
trace!(
"spillslots_to_stackmap: slots = {:?}, state = {:?}",
slots,
state
);
let map_size = (virtual_sp_offset + nominal_sp_to_fp) as u32;
let bytes = M::word_bytes();
let map_words = (map_size + bytes - 1) / bytes;
let mut bits = std::iter::repeat(false)
.take(map_words as usize)
.collect::<Vec<bool>>();
let first_spillslot_word =
((self.stackslots_size + virtual_sp_offset as u32) / bytes) as usize;
for &slot in slots {
let slot = slot.index();
bits[first_spillslot_word + slot] = true;
}
StackMap::from_slice(&bits[..])
}
/// Generate a prologue, post-regalloc.
///
/// This should include any stack frame or other setup necessary to use the
/// other methods (`load_arg`, `store_retval`, and spillslot accesses.)
/// `self` is mutable so that we can store information in it which will be
/// useful when creating the epilogue.
pub fn gen_prologue(&mut self) -> SmallInstVec<M::I> {
let bytes = M::word_bytes();
let total_stacksize = self.stackslots_size + bytes * self.spillslots.unwrap() as u32;
let mask = M::stack_align(self.call_conv) - 1;
let total_stacksize = (total_stacksize + mask) & !mask; // 16-align the stack.
let clobbered_callee_saves = M::get_clobbered_callee_saves(
self.call_conv,
&self.flags,
self.signature(),
&self.clobbered,
);
let mut insts = smallvec![];
self.fixed_frame_storage_size += total_stacksize;
self.setup_frame = self.flags.preserve_frame_pointers()
|| M::is_frame_setup_needed(
self.is_leaf,
self.stack_args_size(),
clobbered_callee_saves.len(),
self.fixed_frame_storage_size,
);
insts.extend(
M::gen_prologue_start(
self.setup_frame,
self.call_conv,
&self.flags,
&self.isa_flags,
)
.into_iter(),
);
if self.setup_frame {
// set up frame
insts.extend(M::gen_prologue_frame_setup(&self.flags).into_iter());
}
// Leaf functions with zero stack don't need a stack check if one's
// specified, otherwise always insert the stack check.
if total_stacksize > 0 || !self.is_leaf {
if let Some((reg, stack_limit_load)) = &self.stack_limit {
insts.extend(stack_limit_load.clone());
self.insert_stack_check(*reg, total_stacksize, &mut insts);
}
if let Some(min_frame) = &self.probestack_min_frame {
if total_stacksize >= *min_frame {
insts.extend(M::gen_probestack(total_stacksize));
}
}
}
// Save clobbered registers.
let (clobber_size, clobber_insts) = M::gen_clobber_save(
self.call_conv,
self.setup_frame,
&self.flags,
&clobbered_callee_saves,
self.fixed_frame_storage_size,
self.outgoing_args_size,
);
insts.extend(clobber_insts);
// N.B.: "nominal SP", which we use to refer to stackslots and
// spillslots, is defined to be equal to the stack pointer at this point
// in the prologue.
//
// If we push any further data onto the stack in the function
// body, we emit a virtual-SP adjustment meta-instruction so
// that the nominal SP references behave as if SP were still
// at this point. See documentation for
// [crate::machinst::abi_impl](this module) for more details
// on stackframe layout and nominal SP maintenance.
self.total_frame_size = Some(total_stacksize + clobber_size as u32);
insts
}
/// Generate an epilogue, post-regalloc.
///
/// Note that this must generate the actual return instruction (rather than
/// emitting this in the lowering logic), because the epilogue code comes
/// before the return and the two are likely closely related.
pub fn gen_epilogue(&self) -> SmallInstVec<M::I> {
let mut insts = smallvec![];
// Restore clobbered registers.
insts.extend(M::gen_clobber_restore(
self.call_conv,
self.signature(),
&self.flags,
&self.clobbered,
self.fixed_frame_storage_size,
self.outgoing_args_size,
));
// N.B.: we do *not* emit a nominal SP adjustment here, because (i) there will be no
// references to nominal SP offsets before the return below, and (ii) the instruction
// emission tracks running SP offset linearly (in straight-line order), not according to
// the CFG, so early returns in the middle of function bodies would cause an incorrect
// offset for the rest of the body.
if self.setup_frame {
insts.extend(M::gen_epilogue_frame_restore(&self.flags));
}
// This `ret` doesn't need any return registers attached
// because we are post-regalloc and don't need to
// represent the implicit uses anymore.
insts.push(M::gen_ret(self.setup_frame, &self.isa_flags, vec![]));
trace!("Epilogue: {:?}", insts);
insts
}
/// Returns the full frame size for the given function, after prologue
/// emission has run. This comprises the spill slots and stack-storage slots
/// (but not storage for clobbered callee-save registers, arguments pushed
/// at callsites within this function, or other ephemeral pushes).
pub fn frame_size(&self) -> u32 {
self.total_frame_size
.expect("frame size not computed before prologue generation")
}
/// Returns the size of arguments expected on the stack.
pub fn stack_args_size(&self) -> u32 {
self.sig.sized_stack_arg_space as u32
}
/// Get the spill-slot size.
pub fn get_spillslot_size(&self, rc: RegClass) -> u32 {
let max = if self.dynamic_type_sizes.len() == 0 {
16
} else {
*self
.dynamic_type_sizes
.iter()
.max_by(|x, y| x.1.cmp(&y.1))
.map(|(_k, v)| v)
.unwrap()
};
M::get_number_of_spillslots_for_value(rc, max)
}
/// Generate a spill.
pub fn gen_spill(&self, to_slot: SpillSlot, from_reg: RealReg) -> M::I {
let ty = M::I::canonical_type_for_rc(Reg::from(from_reg).class());
self.store_spillslot(to_slot, ty, ValueRegs::one(Reg::from(from_reg)))
.into_iter()
.next()
.unwrap()
}
/// Generate a reload (fill).
pub fn gen_reload(&self, to_reg: Writable<RealReg>, from_slot: SpillSlot) -> M::I {
let ty = M::I::canonical_type_for_rc(to_reg.to_reg().class());
self.load_spillslot(
from_slot,
ty,
writable_value_regs(ValueRegs::one(Reg::from(to_reg.to_reg()))),
)
.into_iter()
.next()
.unwrap()
}
}
/// ABI object for a callsite.
pub struct Caller<M: ABIMachineSpec> {
/// The called function's signature.
sig: ABISig,
/// All uses for the callsite, i.e., function args.
uses: SmallVec<[Reg; 8]>,
/// All defs for the callsite, i.e., return values.
defs: SmallVec<[Writable<Reg>; 8]>,
/// Caller-save clobbers.
clobbers: PRegSet,
/// Call destination.
dest: CallDest,
/// Actual call opcode; used to distinguish various types of calls.
opcode: ir::Opcode,
/// Caller's calling convention.
caller_conv: isa::CallConv,
/// The settings controlling this compilation.
flags: settings::Flags,
_mach: PhantomData<M>,
}
/// Destination for a call.
#[derive(Debug, Clone)]
pub enum CallDest {
/// Call to an ExtName (named function symbol).
ExtName(ir::ExternalName, RelocDistance),
/// Indirect call to a function pointer in a register.
Reg(Reg),
}
impl<M: ABIMachineSpec> Caller<M> {
/// Create a callsite ABI object for a call directly to the specified function.
pub fn from_func(
sig: &ir::Signature,
extname: &ir::ExternalName,
dist: RelocDistance,
caller_conv: isa::CallConv,
flags: &settings::Flags,
) -> CodegenResult<Caller<M>> {
let ir_sig = ensure_struct_return_ptr_is_returned(sig);
let sig = ABISig::from_func_sig::<M>(&ir_sig, flags)?;
let (uses, defs, clobbers) = sig.call_uses_defs_clobbers::<M>();
Ok(Caller {
sig,
uses,
defs,
clobbers,
dest: CallDest::ExtName(extname.clone(), dist),
opcode: ir::Opcode::Call,
caller_conv,
flags: flags.clone(),
_mach: PhantomData,
})
}
/// Create a callsite ABI object for a call to a function pointer with the
/// given signature.
pub fn from_ptr(
sig: &ir::Signature,
ptr: Reg,
opcode: ir::Opcode,
caller_conv: isa::CallConv,
flags: &settings::Flags,
) -> CodegenResult<Caller<M>> {
let ir_sig = ensure_struct_return_ptr_is_returned(sig);
let sig = ABISig::from_func_sig::<M>(&ir_sig, flags)?;
let (uses, defs, clobbers) = sig.call_uses_defs_clobbers::<M>();
Ok(Caller {
sig,
uses,
defs,
clobbers,
dest: CallDest::Reg(ptr),
opcode,
caller_conv,
flags: flags.clone(),
_mach: PhantomData,
})
}
}
fn adjust_stack_and_nominal_sp<M: ABIMachineSpec>(ctx: &mut Lower<M::I>, off: i32, is_sub: bool) {
if off == 0 {
return;
}
let amt = if is_sub { -off } else { off };
for inst in M::gen_sp_reg_adjust(amt) {
ctx.emit(inst);
}
ctx.emit(M::gen_nominal_sp_adj(-amt));
}
impl<M: ABIMachineSpec> Caller<M> {
/// Get the number of arguments expected.
pub fn num_args(&self) -> usize {
if self.sig.stack_ret_arg.is_some() {
self.sig.args.len() - 1
} else {
self.sig.args.len()
}
}
/// Emit code to pre-adjust the stack, prior to argument copies and call.
pub fn emit_stack_pre_adjust(&self, ctx: &mut Lower<M::I>) {
let off = self.sig.sized_stack_arg_space + self.sig.sized_stack_ret_space;
adjust_stack_and_nominal_sp::<M>(ctx, off as i32, /* is_sub = */ true)
}
/// Emit code to post-adjust the satck, after call return and return-value copies.
pub fn emit_stack_post_adjust(&self, ctx: &mut Lower<M::I>) {
let off = self.sig.sized_stack_arg_space + self.sig.sized_stack_ret_space;
adjust_stack_and_nominal_sp::<M>(ctx, off as i32, /* is_sub = */ false)
}
/// Emit a copy of a large argument into its associated stack buffer, if any.
/// We must be careful to perform all these copies (as necessary) before setting
/// up the argument registers, since we may have to invoke memcpy(), which could
/// clobber any registers already set up. The back-end should call this routine
/// for all arguments before calling emit_copy_regs_to_arg for all arguments.
pub fn emit_copy_regs_to_buffer(
&self,
ctx: &mut Lower<M::I>,
idx: usize,
from_regs: ValueRegs<Reg>,
) {
match &self.sig.args[idx] {
&ABIArg::Slots { .. } => {}
&ABIArg::StructArg { offset, size, .. } => {
let src_ptr = from_regs.only_reg().unwrap();
let dst_ptr = ctx.alloc_tmp(M::word_type()).only_reg().unwrap();
ctx.emit(M::gen_get_stack_addr(
StackAMode::SPOffset(offset, I8),
dst_ptr,
I8,
));
// Emit a memcpy from `src_ptr` to `dst_ptr` of `size` bytes.
// N.B.: because we process StructArg params *first*, this is
// safe w.r.t. clobbers: we have not yet filled in any other
// arg regs.
let memcpy_call_conv = isa::CallConv::for_libcall(&self.flags, self.sig.call_conv);
for insn in
M::gen_memcpy(memcpy_call_conv, dst_ptr.to_reg(), src_ptr, size as usize)
.into_iter()
{
ctx.emit(insn);
}
}
&ABIArg::ImplicitPtrArg { .. } => unimplemented!(), // Only supported via ISLE.
}
}
/// Emit a copy of an argument value from a source register, prior to the call.
/// For large arguments with associated stack buffer, this may load the address
/// of the buffer into the argument register, if required by the ABI.
pub fn emit_copy_regs_to_arg(
&self,
ctx: &mut Lower<M::I>,
idx: usize,
from_regs: ValueRegs<Reg>,
) {
let word_rc = M::word_reg_class();
let word_bits = M::word_bits() as usize;
match &self.sig.args[idx] {
&ABIArg::Slots { ref slots, .. } => {
assert_eq!(from_regs.len(), slots.len());
for (slot, from_reg) in slots.iter().zip(from_regs.regs().iter()) {
match slot {
&ABIArgSlot::Reg {
reg, ty, extension, ..
} => {
let ext = M::get_ext_mode(self.sig.call_conv, extension);
if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits {
assert_eq!(word_rc, reg.class());
let signed = match ext {
ir::ArgumentExtension::Uext => false,
ir::ArgumentExtension::Sext => true,
_ => unreachable!(),
};
ctx.emit(M::gen_extend(
Writable::from_reg(Reg::from(reg)),
*from_reg,
signed,
ty_bits(ty) as u8,
word_bits as u8,
));
} else {
ctx.emit(M::gen_move(
Writable::from_reg(Reg::from(reg)),
*from_reg,
ty,
));
}
}
&ABIArgSlot::Stack {
offset,
ty,
extension,
..
} => {
let mut ty = ty;
let ext = M::get_ext_mode(self.sig.call_conv, extension);
if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits {
assert_eq!(word_rc, from_reg.class());
let signed = match ext {
ir::ArgumentExtension::Uext => false,
ir::ArgumentExtension::Sext => true,
_ => unreachable!(),
};
// Extend in place in the source register. Our convention is to
// treat high bits as undefined for values in registers, so this
// is safe, even for an argument that is nominally read-only.
ctx.emit(M::gen_extend(
Writable::from_reg(*from_reg),
*from_reg,
signed,
ty_bits(ty) as u8,
word_bits as u8,
));
// Store the extended version.
ty = M::word_type();
}
ctx.emit(M::gen_store_stack(
StackAMode::SPOffset(offset, ty),
*from_reg,
ty,
));
}
}
}
}
&ABIArg::StructArg { pointer, .. } => {
assert!(pointer.is_none()); // Only supported via ISLE.
}
&ABIArg::ImplicitPtrArg { .. } => unimplemented!(), // Only supported via ISLE.
}
}
/// Emit a copy a return value into a destination register, after the call returns.
pub fn emit_copy_retval_to_regs(
&self,
ctx: &mut Lower<M::I>,
idx: usize,
into_regs: ValueRegs<Writable<Reg>>,
) {
match &self.sig.rets[idx] {
&ABIArg::Slots { ref slots, .. } => {
assert_eq!(into_regs.len(), slots.len());
for (slot, into_reg) in slots.iter().zip(into_regs.regs().iter()) {
match slot {
// Extension mode doesn't matter because we're copying out, not in,
// and we ignore high bits in our own registers by convention.
&ABIArgSlot::Reg { reg, ty, .. } => {
ctx.emit(M::gen_move(*into_reg, Reg::from(reg), ty));
}
&ABIArgSlot::Stack { offset, ty, .. } => {
let ret_area_base = self.sig.sized_stack_arg_space;
ctx.emit(M::gen_load_stack(
StackAMode::SPOffset(offset + ret_area_base, ty),
*into_reg,
ty,
));
}
}
}
}
&ABIArg::StructArg { .. } => {
panic!("StructArg not supported in return position");
}
&ABIArg::ImplicitPtrArg { .. } => {
panic!("ImplicitPtrArg not supported in return position");
}
}
}
/// Emit the call itself.
///
/// The returned instruction should have proper use- and def-sets according
/// to the argument registers, return-value registers, and clobbered
/// registers for this function signature in this ABI.
///
/// (Arg registers are uses, and retval registers are defs. Clobbered
/// registers are also logically defs, but should never be read; their
/// values are "defined" (to the regalloc) but "undefined" in every other
/// sense.)
///
/// This function should only be called once, as it is allowed to re-use
/// parts of the `Caller` object in emitting instructions.
pub fn emit_call(&mut self, ctx: &mut Lower<M::I>) {
let (uses, defs) = (
mem::replace(&mut self.uses, Default::default()),
mem::replace(&mut self.defs, Default::default()),
);
let word_type = M::word_type();
if let Some(i) = self.sig.stack_ret_arg {
let rd = ctx.alloc_tmp(word_type).only_reg().unwrap();
let ret_area_base = self.sig.sized_stack_arg_space;
ctx.emit(M::gen_get_stack_addr(
StackAMode::SPOffset(ret_area_base, I8),
rd,
I8,
));
self.emit_copy_regs_to_arg(ctx, i, ValueRegs::one(rd.to_reg()));
}
let tmp = ctx.alloc_tmp(word_type).only_reg().unwrap();
for inst in M::gen_call(
&self.dest,
uses,
defs,
self.clobbers,
self.opcode,
tmp,
self.sig.call_conv,
self.caller_conv,
)
.into_iter()
{
ctx.emit(inst);
}
}
}