Files
wasmtime/cranelift/codegen/src/isa/s390x/abi.rs
Ulrich Weigand d9e6902b69 s390x: Enable most memory64 tests
* Support full set of ADD LOGICAL / SUBTRACT LOGICAL instructions

* Full implementation of IaddIfcout lowering

* Enable most memory64 tests (except simd and threads)
2021-09-30 18:52:05 +02:00

806 lines
27 KiB
Rust

//! Implementation of a standard S390x ABI.
//!
//! This machine uses the "vanilla" ABI implementation from abi_impl.rs,
//! however a few details are different from the description there:
//!
//! - On s390x, the caller must provide a "register save area" of 160
//! bytes to any function it calls. The called function is free to use
//! this space for any purpose; usually to save callee-saved GPRs.
//! (Note that while this area is allocated by the caller, it is counted
//! as part of the callee's stack frame; in particular, the callee's CFA
//! is the top of the register save area, not the incoming SP value.)
//!
//! - Overflow arguments are passed on the stack starting immediately
//! above the register save area. On s390x, this space is allocated
//! only once directly in the prologue, using a size large enough to
//! hold overflow arguments for every call in the function.
//!
//! - On s390x we do not use a frame pointer register; instead, every
//! element of the stack frame is addressed via (constant) offsets
//! from the stack pointer. Note that due to the above (and because
//! there are no variable-sized stack allocations in cranelift), the
//! value of the stack pointer register never changes after the
//! initial allocation in the function prologue.
//!
//! Overall, the stack frame layout on s390x is as follows:
//!
//! ```plain
//! (high address)
//!
//! +---------------------------+
//! | ... |
//! CFA -----> | stack args |
//! +---------------------------+
//! | ... |
//! | 160 bytes reg save area |
//! SP at function entry -----> | (used to save GPRs) |
//! +---------------------------+
//! | ... |
//! | clobbered callee-saves |
//! | (used to save FPRs) |
//! unwind-frame base ----> | (alloc'd by prologue) |
//! +---------------------------+
//! | ... |
//! | spill slots |
//! | (accessed via nominal SP) |
//! | ... |
//! | stack slots |
//! | (accessed via nominal SP) |
//! nominal SP ---------------> | (alloc'd by prologue) |
//! +---------------------------+
//! | ... |
//! | args for call |
//! | outgoing reg save area |
//! SP during function ------> | (alloc'd by prologue) |
//! +---------------------------+
//!
//! (low address)
//! ```
use crate::ir;
use crate::ir::condcodes::IntCC;
use crate::ir::types;
use crate::ir::MemFlags;
use crate::ir::Type;
use crate::isa;
use crate::isa::s390x::inst::*;
use crate::isa::unwind::UnwindInst;
use crate::machinst::*;
use crate::settings;
use crate::{CodegenError, CodegenResult};
use alloc::boxed::Box;
use alloc::vec::Vec;
use regalloc::{RealReg, Reg, RegClass, Set, Writable};
use smallvec::{smallvec, SmallVec};
use std::convert::TryFrom;
// We use a generic implementation that factors out ABI commonalities.
/// Support for the S390x ABI from the callee side (within a function body).
pub type S390xABICallee = ABICalleeImpl<S390xMachineDeps>;
/// Support for the S390x ABI from the caller side (at a callsite).
pub type S390xABICaller = ABICallerImpl<S390xMachineDeps>;
/// ABI Register usage
fn in_int_reg(ty: Type) -> bool {
match ty {
types::I8 | types::I16 | types::I32 | types::I64 | types::R64 => true,
types::B1 | types::B8 | types::B16 | types::B32 | types::B64 => true,
_ => false,
}
}
fn in_flt_reg(ty: Type) -> bool {
match ty {
types::F32 | types::F64 => true,
_ => false,
}
}
fn get_intreg_for_arg(idx: usize) -> Option<Reg> {
match idx {
0 => Some(regs::gpr(2)),
1 => Some(regs::gpr(3)),
2 => Some(regs::gpr(4)),
3 => Some(regs::gpr(5)),
4 => Some(regs::gpr(6)),
_ => None,
}
}
fn get_fltreg_for_arg(idx: usize) -> Option<Reg> {
match idx {
0 => Some(regs::fpr(0)),
1 => Some(regs::fpr(2)),
2 => Some(regs::fpr(4)),
3 => Some(regs::fpr(6)),
_ => None,
}
}
fn get_intreg_for_ret(idx: usize) -> Option<Reg> {
match idx {
0 => Some(regs::gpr(2)),
// ABI extension to support multi-value returns:
1 => Some(regs::gpr(3)),
2 => Some(regs::gpr(4)),
3 => Some(regs::gpr(5)),
_ => None,
}
}
fn get_fltreg_for_ret(idx: usize) -> Option<Reg> {
match idx {
0 => Some(regs::fpr(0)),
// ABI extension to support multi-value returns:
1 => Some(regs::fpr(2)),
2 => Some(regs::fpr(4)),
3 => Some(regs::fpr(6)),
_ => None,
}
}
/// This is the limit for the size of argument and return-value areas on the
/// stack. We place a reasonable limit here to avoid integer overflow issues
/// with 32-bit arithmetic: for now, 128 MB.
static STACK_ARG_RET_SIZE_LIMIT: u64 = 128 * 1024 * 1024;
impl Into<MemArg> for StackAMode {
fn into(self) -> MemArg {
match self {
StackAMode::FPOffset(off, _ty) => MemArg::InitialSPOffset { off },
StackAMode::NominalSPOffset(off, _ty) => MemArg::NominalSPOffset { off },
StackAMode::SPOffset(off, _ty) => {
MemArg::reg_plus_off(stack_reg(), off, MemFlags::trusted())
}
}
}
}
/// S390x-specific ABI behavior. This struct just serves as an implementation
/// point for the trait; it is never actually instantiated.
pub struct S390xMachineDeps;
impl ABIMachineSpec for S390xMachineDeps {
type I = Inst;
fn word_bits() -> u32 {
64
}
/// Return required stack alignment in bytes.
fn stack_align(_call_conv: isa::CallConv) -> u32 {
8
}
fn compute_arg_locs(
call_conv: isa::CallConv,
_flags: &settings::Flags,
params: &[ir::AbiParam],
args_or_rets: ArgsOrRets,
add_ret_area_ptr: bool,
) -> CodegenResult<(Vec<ABIArg>, i64, Option<usize>)> {
let mut next_gpr = 0;
let mut next_fpr = 0;
let mut next_stack: u64 = 0;
let mut ret = vec![];
if args_or_rets == ArgsOrRets::Args {
next_stack = 160;
}
for i in 0..params.len() {
let param = &params[i];
// Validate "purpose".
match &param.purpose {
&ir::ArgumentPurpose::VMContext
| &ir::ArgumentPurpose::Normal
| &ir::ArgumentPurpose::StackLimit
| &ir::ArgumentPurpose::SignatureId => {}
_ => panic!(
"Unsupported argument purpose {:?} in signature: {:?}",
param.purpose, params
),
}
let intreg = in_int_reg(param.value_type);
let fltreg = in_flt_reg(param.value_type);
debug_assert!(intreg || fltreg);
debug_assert!(!(intreg && fltreg));
let (next_reg, candidate) = if intreg {
let candidate = match args_or_rets {
ArgsOrRets::Args => get_intreg_for_arg(next_gpr),
ArgsOrRets::Rets => get_intreg_for_ret(next_gpr),
};
(&mut next_gpr, candidate)
} else {
let candidate = match args_or_rets {
ArgsOrRets::Args => get_fltreg_for_arg(next_fpr),
ArgsOrRets::Rets => get_fltreg_for_ret(next_fpr),
};
(&mut next_fpr, candidate)
};
// In the Wasmtime ABI only the first return value can be in a register.
let candidate =
if call_conv.extends_wasmtime() && args_or_rets == ArgsOrRets::Rets && i > 0 {
None
} else {
candidate
};
if let Some(reg) = candidate {
ret.push(ABIArg::reg(
reg.to_real_reg(),
param.value_type,
param.extension,
param.purpose,
));
*next_reg += 1;
} else {
// Compute size. Every argument or return value takes a slot of
// at least 8 bytes, except for return values in the Wasmtime ABI.
let size = (ty_bits(param.value_type) / 8) as u64;
let slot_size = if call_conv.extends_wasmtime() && args_or_rets == ArgsOrRets::Rets
{
size
} else {
std::cmp::max(size, 8)
};
// Align the stack slot.
debug_assert!(slot_size.is_power_of_two());
next_stack = align_to(next_stack, slot_size);
// If the type is actually of smaller size (and the argument
// was not extended), it is passed right-aligned.
let offset = if size < slot_size && param.extension == ir::ArgumentExtension::None {
slot_size - size
} else {
0
};
ret.push(ABIArg::stack(
(next_stack + offset) as i64,
param.value_type,
param.extension,
param.purpose,
));
next_stack += slot_size;
}
}
next_stack = align_to(next_stack, 8);
let extra_arg = if add_ret_area_ptr {
debug_assert!(args_or_rets == ArgsOrRets::Args);
if let Some(reg) = get_intreg_for_arg(next_gpr) {
ret.push(ABIArg::reg(
reg.to_real_reg(),
types::I64,
ir::ArgumentExtension::None,
ir::ArgumentPurpose::Normal,
));
} else {
ret.push(ABIArg::stack(
next_stack as i64,
types::I64,
ir::ArgumentExtension::None,
ir::ArgumentPurpose::Normal,
));
next_stack += 8;
}
Some(ret.len() - 1)
} else {
None
};
// To avoid overflow issues, limit the arg/return size to something
// reasonable -- here, 128 MB.
if next_stack > STACK_ARG_RET_SIZE_LIMIT {
return Err(CodegenError::ImplLimitExceeded);
}
Ok((ret, next_stack as i64, extra_arg))
}
fn fp_to_arg_offset(_call_conv: isa::CallConv, _flags: &settings::Flags) -> i64 {
0
}
fn gen_load_stack(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Inst {
Inst::gen_load(into_reg, mem.into(), ty)
}
fn gen_store_stack(mem: StackAMode, from_reg: Reg, ty: Type) -> Inst {
Inst::gen_store(mem.into(), from_reg, ty)
}
fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Inst {
Inst::gen_move(to_reg, from_reg, ty)
}
fn gen_extend(
to_reg: Writable<Reg>,
from_reg: Reg,
signed: bool,
from_bits: u8,
to_bits: u8,
) -> Inst {
assert!(from_bits < to_bits);
Inst::Extend {
rd: to_reg,
rn: from_reg,
signed,
from_bits,
to_bits,
}
}
fn gen_ret() -> Inst {
Inst::Ret { link: gpr(14) }
}
fn gen_add_imm(into_reg: Writable<Reg>, from_reg: Reg, imm: u32) -> SmallInstVec<Inst> {
let mut insts = SmallVec::new();
if let Some(imm) = UImm12::maybe_from_u64(imm as u64) {
insts.push(Inst::LoadAddr {
rd: into_reg,
mem: MemArg::BXD12 {
base: from_reg,
index: zero_reg(),
disp: imm,
flags: MemFlags::trusted(),
},
});
} else if let Some(imm) = SImm20::maybe_from_i64(imm as i64) {
insts.push(Inst::LoadAddr {
rd: into_reg,
mem: MemArg::BXD20 {
base: from_reg,
index: zero_reg(),
disp: imm,
flags: MemFlags::trusted(),
},
});
} else {
if from_reg != into_reg.to_reg() {
insts.push(Inst::mov64(into_reg, from_reg));
}
insts.push(Inst::AluRUImm32 {
alu_op: ALUOp::AddLogical64,
rd: into_reg,
imm,
});
}
insts
}
fn gen_stack_lower_bound_trap(limit_reg: Reg) -> SmallInstVec<Inst> {
let mut insts = SmallVec::new();
insts.push(Inst::CmpTrapRR {
op: CmpOp::CmpL64,
rn: stack_reg(),
rm: limit_reg,
cond: Cond::from_intcc(IntCC::UnsignedLessThanOrEqual),
trap_code: ir::TrapCode::StackOverflow,
});
insts
}
fn gen_epilogue_placeholder() -> Inst {
Inst::EpiloguePlaceholder
}
fn gen_get_stack_addr(mem: StackAMode, into_reg: Writable<Reg>, _ty: Type) -> Inst {
let mem = mem.into();
Inst::LoadAddr { rd: into_reg, mem }
}
fn get_stacklimit_reg() -> Reg {
spilltmp_reg()
}
fn gen_load_base_offset(into_reg: Writable<Reg>, base: Reg, offset: i32, ty: Type) -> Inst {
let mem = MemArg::reg_plus_off(base, offset.into(), MemFlags::trusted());
Inst::gen_load(into_reg, mem, ty)
}
fn gen_store_base_offset(base: Reg, offset: i32, from_reg: Reg, ty: Type) -> Inst {
let mem = MemArg::reg_plus_off(base, offset.into(), MemFlags::trusted());
Inst::gen_store(mem, from_reg, ty)
}
fn gen_sp_reg_adjust(imm: i32) -> SmallInstVec<Inst> {
if imm == 0 {
return SmallVec::new();
}
let mut insts = SmallVec::new();
if let Ok(imm) = i16::try_from(imm) {
insts.push(Inst::AluRSImm16 {
alu_op: ALUOp::Add64,
rd: writable_stack_reg(),
imm,
});
} else {
insts.push(Inst::AluRSImm32 {
alu_op: ALUOp::Add64,
rd: writable_stack_reg(),
imm,
});
}
insts
}
fn gen_nominal_sp_adj(offset: i32) -> Inst {
Inst::VirtualSPOffsetAdj {
offset: offset.into(),
}
}
fn gen_prologue_frame_setup(_flags: &settings::Flags) -> SmallInstVec<Inst> {
SmallVec::new()
}
fn gen_epilogue_frame_restore(_flags: &settings::Flags) -> SmallInstVec<Inst> {
SmallVec::new()
}
fn gen_probestack(_: u32) -> SmallInstVec<Self::I> {
// TODO: implement if we ever require stack probes on an s390x host
// (unlikely unless Lucet is ported)
smallvec![]
}
// Returns stack bytes used as well as instructions. Does not adjust
// nominal SP offset; abi_impl generic code will do that.
fn gen_clobber_save(
_call_conv: isa::CallConv,
_setup_frame: bool,
flags: &settings::Flags,
clobbered_callee_saves: &Vec<Writable<RealReg>>,
fixed_frame_storage_size: u32,
outgoing_args_size: u32,
) -> (u64, SmallVec<[Inst; 16]>) {
let mut insts = SmallVec::new();
let mut clobbered_fpr = vec![];
let mut clobbered_gpr = vec![];
for &reg in clobbered_callee_saves.iter() {
match reg.to_reg().get_class() {
RegClass::I64 => clobbered_gpr.push(reg),
RegClass::F64 => clobbered_fpr.push(reg),
class => panic!("Unexpected RegClass: {:?}", class),
}
}
let mut first_clobbered_gpr = 16;
for reg in clobbered_gpr {
let enc = reg.to_reg().get_hw_encoding();
if enc < first_clobbered_gpr {
first_clobbered_gpr = enc;
}
}
let clobber_size = clobbered_fpr.len() * 8;
if flags.unwind_info() {
insts.push(Inst::Unwind {
inst: UnwindInst::DefineNewFrame {
offset_upward_to_caller_sp: 160,
offset_downward_to_clobbers: clobber_size as u32,
},
});
}
// Use STMG to save clobbered GPRs into save area.
if first_clobbered_gpr < 16 {
let offset = 8 * first_clobbered_gpr as i64;
insts.push(Inst::StoreMultiple64 {
rt: gpr(first_clobbered_gpr as u8),
rt2: gpr(15),
addr_reg: stack_reg(),
addr_off: SImm20::maybe_from_i64(offset).unwrap(),
});
}
if flags.unwind_info() {
for i in first_clobbered_gpr..16 {
insts.push(Inst::Unwind {
inst: UnwindInst::SaveReg {
clobber_offset: clobber_size as u32 + (i * 8) as u32,
reg: gpr(i as u8).to_real_reg(),
},
});
}
}
// Decrement stack pointer.
let stack_size =
outgoing_args_size as i32 + clobber_size as i32 + fixed_frame_storage_size as i32;
insts.extend(Self::gen_sp_reg_adjust(-stack_size));
if flags.unwind_info() {
insts.push(Inst::Unwind {
inst: UnwindInst::StackAlloc {
size: stack_size as u32,
},
});
}
let sp_adj = outgoing_args_size as i32;
if sp_adj > 0 {
insts.push(Self::gen_nominal_sp_adj(sp_adj));
}
// Save FPRs.
for (i, reg) in clobbered_fpr.iter().enumerate() {
insts.push(Inst::FpuStore64 {
rd: reg.to_reg().to_reg(),
mem: MemArg::reg_plus_off(
stack_reg(),
(i * 8) as i64 + outgoing_args_size as i64 + fixed_frame_storage_size as i64,
MemFlags::trusted(),
),
});
if flags.unwind_info() {
insts.push(Inst::Unwind {
inst: UnwindInst::SaveReg {
clobber_offset: (i * 8) as u32,
reg: reg.to_reg(),
},
});
}
}
(clobber_size as u64, insts)
}
fn gen_clobber_restore(
call_conv: isa::CallConv,
_: &settings::Flags,
clobbers: &Set<Writable<RealReg>>,
fixed_frame_storage_size: u32,
outgoing_args_size: u32,
) -> SmallVec<[Inst; 16]> {
let mut insts = SmallVec::new();
// Collect clobbered registers.
let (clobbered_gpr, clobbered_fpr) = get_regs_saved_in_prologue(call_conv, clobbers);
let mut first_clobbered_gpr = 16;
for reg in clobbered_gpr {
let enc = reg.to_reg().get_hw_encoding();
if enc < first_clobbered_gpr {
first_clobbered_gpr = enc;
}
}
let clobber_size = clobbered_fpr.len() * 8;
// Restore FPRs.
for (i, reg) in clobbered_fpr.iter().enumerate() {
insts.push(Inst::FpuLoad64 {
rd: Writable::from_reg(reg.to_reg().to_reg()),
mem: MemArg::reg_plus_off(
stack_reg(),
(i * 8) as i64 + outgoing_args_size as i64 + fixed_frame_storage_size as i64,
MemFlags::trusted(),
),
});
}
// Increment stack pointer unless it will be restored implicitly.
let stack_size =
outgoing_args_size as i32 + clobber_size as i32 + fixed_frame_storage_size as i32;
let implicit_sp_restore = first_clobbered_gpr < 16
&& SImm20::maybe_from_i64(8 * first_clobbered_gpr as i64 + stack_size as i64).is_some();
if !implicit_sp_restore {
insts.extend(Self::gen_sp_reg_adjust(stack_size));
}
// Use LMG to restore clobbered GPRs from save area.
if first_clobbered_gpr < 16 {
let mut offset = 8 * first_clobbered_gpr as i64;
if implicit_sp_restore {
offset += stack_size as i64;
}
insts.push(Inst::LoadMultiple64 {
rt: writable_gpr(first_clobbered_gpr as u8),
rt2: writable_gpr(15),
addr_reg: stack_reg(),
addr_off: SImm20::maybe_from_i64(offset).unwrap(),
});
}
insts
}
fn gen_call(
dest: &CallDest,
uses: Vec<Reg>,
defs: Vec<Writable<Reg>>,
opcode: ir::Opcode,
tmp: Writable<Reg>,
_callee_conv: isa::CallConv,
_caller_conv: isa::CallConv,
) -> SmallVec<[(InstIsSafepoint, Inst); 2]> {
let mut insts = SmallVec::new();
match &dest {
&CallDest::ExtName(ref name, RelocDistance::Near) => insts.push((
InstIsSafepoint::Yes,
Inst::Call {
link: writable_gpr(14),
info: Box::new(CallInfo {
dest: name.clone(),
uses,
defs,
opcode,
}),
},
)),
&CallDest::ExtName(ref name, RelocDistance::Far) => {
insts.push((
InstIsSafepoint::No,
Inst::LoadExtNameFar {
rd: tmp,
name: Box::new(name.clone()),
offset: 0,
},
));
insts.push((
InstIsSafepoint::Yes,
Inst::CallInd {
link: writable_gpr(14),
info: Box::new(CallIndInfo {
rn: tmp.to_reg(),
uses,
defs,
opcode,
}),
},
));
}
&CallDest::Reg(reg) => insts.push((
InstIsSafepoint::Yes,
Inst::CallInd {
link: writable_gpr(14),
info: Box::new(CallIndInfo {
rn: *reg,
uses,
defs,
opcode,
}),
},
)),
}
insts
}
fn gen_memcpy(
_call_conv: isa::CallConv,
_dst: Reg,
_src: Reg,
_size: usize,
) -> SmallVec<[Self::I; 8]> {
unimplemented!("StructArgs not implemented for S390X yet");
}
fn get_number_of_spillslots_for_value(rc: RegClass, ty: Type) -> u32 {
// We allocate in terms of 8-byte slots.
match (rc, ty) {
(RegClass::I64, _) => 1,
(RegClass::F64, _) => 1,
_ => panic!("Unexpected register class!"),
}
}
/// Get the current virtual-SP offset from an instruction-emission state.
fn get_virtual_sp_offset_from_state(s: &EmitState) -> i64 {
s.virtual_sp_offset
}
/// Get the nominal-SP-to-FP offset from an instruction-emission state.
fn get_nominal_sp_to_fp(s: &EmitState) -> i64 {
s.initial_sp_offset
}
fn get_regs_clobbered_by_call(call_conv_of_callee: isa::CallConv) -> Vec<Writable<Reg>> {
let mut caller_saved = Vec::new();
for i in 0..15 {
let x = writable_gpr(i);
if is_reg_clobbered_by_call(call_conv_of_callee, x.to_reg().to_real_reg()) {
caller_saved.push(x);
}
}
for i in 0..15 {
let v = writable_fpr(i);
if is_reg_clobbered_by_call(call_conv_of_callee, v.to_reg().to_real_reg()) {
caller_saved.push(v);
}
}
caller_saved
}
fn get_ext_mode(
_call_conv: isa::CallConv,
specified: ir::ArgumentExtension,
) -> ir::ArgumentExtension {
specified
}
fn get_clobbered_callee_saves(
call_conv: isa::CallConv,
regs: &Set<Writable<RealReg>>,
) -> Vec<Writable<RealReg>> {
let mut regs: Vec<Writable<RealReg>> = regs
.iter()
.cloned()
.filter(|r| is_reg_saved_in_prologue(call_conv, r.to_reg()))
.collect();
// Sort registers for deterministic code output. We can do an unstable
// sort because the registers will be unique (there are no dups).
regs.sort_unstable_by_key(|r| r.to_reg().get_index());
regs
}
fn is_frame_setup_needed(
_is_leaf: bool,
_stack_args_size: u32,
_num_clobbered_callee_saves: usize,
_fixed_frame_storage_size: u32,
) -> bool {
// The call frame set-up is handled by gen_clobber_save().
false
}
}
fn is_reg_saved_in_prologue(_call_conv: isa::CallConv, r: RealReg) -> bool {
match r.get_class() {
RegClass::I64 => {
// r6 - r15 inclusive are callee-saves.
r.get_hw_encoding() >= 6 && r.get_hw_encoding() <= 15
}
RegClass::F64 => {
// f8 - f15 inclusive are callee-saves.
r.get_hw_encoding() >= 8 && r.get_hw_encoding() <= 15
}
_ => panic!("Unexpected RegClass"),
}
}
fn get_regs_saved_in_prologue(
call_conv: isa::CallConv,
regs: &Set<Writable<RealReg>>,
) -> (Vec<Writable<RealReg>>, Vec<Writable<RealReg>>) {
let mut int_saves = vec![];
let mut fpr_saves = vec![];
for &reg in regs.iter() {
if is_reg_saved_in_prologue(call_conv, reg.to_reg()) {
match reg.to_reg().get_class() {
RegClass::I64 => int_saves.push(reg),
RegClass::F64 => fpr_saves.push(reg),
_ => panic!("Unexpected RegClass"),
}
}
}
// Sort registers for deterministic code output.
int_saves.sort_by_key(|r| r.to_reg().get_index());
fpr_saves.sort_by_key(|r| r.to_reg().get_index());
(int_saves, fpr_saves)
}
fn is_reg_clobbered_by_call(_call_conv: isa::CallConv, r: RealReg) -> bool {
match r.get_class() {
RegClass::I64 => {
// r0 - r5 inclusive are caller-saves.
r.get_hw_encoding() <= 5
}
RegClass::F64 => {
// f0 - f7 inclusive are caller-saves.
r.get_hw_encoding() <= 7
}
_ => panic!("Unexpected RegClass"),
}
}