Files
wasmtime/cranelift/codegen/src/context.rs
Nick Fitzgerald e1c8878b33 cranelift_codegen::souper_harvest: Move preopt out of Context, into clif-util
This allows for more flexibility of when/where to harvest LHS candidates. For
example, we could choose to harvest candidates that overlap with and supercede
our current preopt peepholes.

This commit also makes sure that we compute the CFG before running preopt, when
harvesting LHS candidates via `clif-util souper-harvest`.
2020-09-14 16:27:47 -07:00

466 lines
16 KiB
Rust

//! Cranelift compilation context and main entry point.
//!
//! When compiling many small functions, it is important to avoid repeatedly allocating and
//! deallocating the data structures needed for compilation. The `Context` struct is used to hold
//! on to memory allocations between function compilations.
//!
//! The context does not hold a `TargetIsa` instance which has to be provided as an argument
//! instead. This is because an ISA instance is immutable and can be used by multiple compilation
//! contexts concurrently. Typically, you would have one context per compilation thread and only a
//! single ISA instance.
use crate::binemit::{
relax_branches, shrink_instructions, CodeInfo, MemoryCodeSink, RelocSink, StackMapSink,
TrapSink,
};
use crate::dce::do_dce;
use crate::dominator_tree::DominatorTree;
use crate::flowgraph::ControlFlowGraph;
use crate::ir::Function;
use crate::isa::TargetIsa;
use crate::legalize_function;
use crate::legalizer::simple_legalize;
use crate::licm::do_licm;
use crate::loop_analysis::LoopAnalysis;
use crate::machinst::MachCompileResult;
use crate::nan_canonicalization::do_nan_canonicalization;
use crate::postopt::do_postopt;
use crate::redundant_reload_remover::RedundantReloadRemover;
use crate::regalloc;
use crate::remove_constant_phis::do_remove_constant_phis;
use crate::result::CodegenResult;
use crate::settings::{FlagsOrIsa, OptLevel};
use crate::simple_gvn::do_simple_gvn;
use crate::simple_preopt::do_preopt;
use crate::timing;
use crate::unreachable_code::eliminate_unreachable_code;
use crate::value_label::{build_value_labels_ranges, ComparableSourceLoc, ValueLabelsRanges};
use crate::verifier::{verify_context, verify_locations, VerifierErrors, VerifierResult};
#[cfg(feature = "souper-harvest")]
use alloc::string::String;
use alloc::vec::Vec;
use log::debug;
#[cfg(feature = "souper-harvest")]
use crate::souper_harvest::do_souper_harvest;
/// Persistent data structures and compilation pipeline.
pub struct Context {
/// The function we're compiling.
pub func: Function,
/// The control flow graph of `func`.
pub cfg: ControlFlowGraph,
/// Dominator tree for `func`.
pub domtree: DominatorTree,
/// Register allocation context.
pub regalloc: regalloc::Context,
/// Loop analysis of `func`.
pub loop_analysis: LoopAnalysis,
/// Redundant-reload remover context.
pub redundant_reload_remover: RedundantReloadRemover,
/// Result of MachBackend compilation, if computed.
pub mach_compile_result: Option<MachCompileResult>,
/// Flag: do we want a disassembly with the MachCompileResult?
pub want_disasm: bool,
}
impl Context {
/// Allocate a new compilation context.
///
/// The returned instance should be reused for compiling multiple functions in order to avoid
/// needless allocator thrashing.
pub fn new() -> Self {
Self::for_function(Function::new())
}
/// Allocate a new compilation context with an existing Function.
///
/// The returned instance should be reused for compiling multiple functions in order to avoid
/// needless allocator thrashing.
pub fn for_function(func: Function) -> Self {
Self {
func,
cfg: ControlFlowGraph::new(),
domtree: DominatorTree::new(),
regalloc: regalloc::Context::new(),
loop_analysis: LoopAnalysis::new(),
redundant_reload_remover: RedundantReloadRemover::new(),
mach_compile_result: None,
want_disasm: false,
}
}
/// Clear all data structures in this context.
pub fn clear(&mut self) {
self.func.clear();
self.cfg.clear();
self.domtree.clear();
self.regalloc.clear();
self.loop_analysis.clear();
self.redundant_reload_remover.clear();
self.mach_compile_result = None;
self.want_disasm = false;
}
/// Set the flag to request a disassembly when compiling with a
/// `MachBackend` backend.
pub fn set_disasm(&mut self, val: bool) {
self.want_disasm = val;
}
/// Compile the function, and emit machine code into a `Vec<u8>`.
///
/// Run the function through all the passes necessary to generate code for the target ISA
/// represented by `isa`, as well as the final step of emitting machine code into a
/// `Vec<u8>`. The machine code is not relocated. Instead, any relocations are emitted
/// into `relocs`.
///
/// This function calls `compile` and `emit_to_memory`, taking care to resize `mem` as
/// needed, so it provides a safe interface.
///
/// Returns information about the function's code and read-only data.
pub fn compile_and_emit(
&mut self,
isa: &dyn TargetIsa,
mem: &mut Vec<u8>,
relocs: &mut dyn RelocSink,
traps: &mut dyn TrapSink,
stack_maps: &mut dyn StackMapSink,
) -> CodegenResult<CodeInfo> {
let info = self.compile(isa)?;
let old_len = mem.len();
mem.resize(old_len + info.total_size as usize, 0);
let new_info = unsafe {
self.emit_to_memory(
isa,
mem.as_mut_ptr().add(old_len),
relocs,
traps,
stack_maps,
)
};
debug_assert!(new_info == info);
Ok(info)
}
/// Compile the function.
///
/// Run the function through all the passes necessary to generate code for the target ISA
/// represented by `isa`. This does not include the final step of emitting machine code into a
/// code sink.
///
/// Returns information about the function's code and read-only data.
pub fn compile(&mut self, isa: &dyn TargetIsa) -> CodegenResult<CodeInfo> {
let _tt = timing::compile();
self.verify_if(isa)?;
let opt_level = isa.flags().opt_level();
debug!(
"Compiling (opt level {:?}):\n{}",
opt_level,
self.func.display(isa)
);
self.compute_cfg();
if opt_level != OptLevel::None {
self.preopt(isa)?;
}
if isa.flags().enable_nan_canonicalization() {
self.canonicalize_nans(isa)?;
}
self.legalize(isa)?;
if opt_level != OptLevel::None {
self.postopt(isa)?;
self.compute_domtree();
self.compute_loop_analysis();
self.licm(isa)?;
self.simple_gvn(isa)?;
}
self.compute_domtree();
self.eliminate_unreachable_code(isa)?;
if opt_level != OptLevel::None {
self.dce(isa)?;
}
self.remove_constant_phis(isa)?;
if let Some(backend) = isa.get_mach_backend() {
let result = backend.compile_function(&self.func, self.want_disasm)?;
let info = result.code_info();
self.mach_compile_result = Some(result);
Ok(info)
} else {
self.regalloc(isa)?;
self.prologue_epilogue(isa)?;
if opt_level == OptLevel::Speed || opt_level == OptLevel::SpeedAndSize {
self.redundant_reload_remover(isa)?;
}
if opt_level == OptLevel::SpeedAndSize {
self.shrink_instructions(isa)?;
}
let result = self.relax_branches(isa);
debug!("Compiled:\n{}", self.func.display(isa));
result
}
}
/// Emit machine code directly into raw memory.
///
/// Write all of the function's machine code to the memory at `mem`. The size of the machine
/// code is returned by `compile` above.
///
/// The machine code is not relocated. Instead, any relocations are emitted into `relocs`.
///
/// # Safety
///
/// This function is unsafe since it does not perform bounds checking on the memory buffer,
/// and it can't guarantee that the `mem` pointer is valid.
///
/// Returns information about the emitted code and data.
pub unsafe fn emit_to_memory(
&self,
isa: &dyn TargetIsa,
mem: *mut u8,
relocs: &mut dyn RelocSink,
traps: &mut dyn TrapSink,
stack_maps: &mut dyn StackMapSink,
) -> CodeInfo {
let _tt = timing::binemit();
let mut sink = MemoryCodeSink::new(mem, relocs, traps, stack_maps);
if let Some(ref result) = &self.mach_compile_result {
result.buffer.emit(&mut sink);
} else {
isa.emit_function_to_memory(&self.func, &mut sink);
}
sink.info
}
/// Creates unwind information for the function.
///
/// Returns `None` if the function has no unwind information.
#[cfg(feature = "unwind")]
pub fn create_unwind_info(
&self,
isa: &dyn TargetIsa,
) -> CodegenResult<Option<crate::isa::unwind::UnwindInfo>> {
isa.create_unwind_info(&self.func)
}
/// Run the verifier on the function.
///
/// Also check that the dominator tree and control flow graph are consistent with the function.
pub fn verify<'a, FOI: Into<FlagsOrIsa<'a>>>(&self, fisa: FOI) -> VerifierResult<()> {
let mut errors = VerifierErrors::default();
let _ = verify_context(&self.func, &self.cfg, &self.domtree, fisa, &mut errors);
if errors.is_empty() {
Ok(())
} else {
Err(errors)
}
}
/// Run the verifier only if the `enable_verifier` setting is true.
pub fn verify_if<'a, FOI: Into<FlagsOrIsa<'a>>>(&self, fisa: FOI) -> CodegenResult<()> {
let fisa = fisa.into();
if fisa.flags.enable_verifier() {
self.verify(fisa)?;
}
Ok(())
}
/// Run the locations verifier on the function.
pub fn verify_locations(&self, isa: &dyn TargetIsa) -> VerifierResult<()> {
let mut errors = VerifierErrors::default();
let _ = verify_locations(isa, &self.func, &self.cfg, None, &mut errors);
if errors.is_empty() {
Ok(())
} else {
Err(errors)
}
}
/// Run the locations verifier only if the `enable_verifier` setting is true.
pub fn verify_locations_if(&self, isa: &dyn TargetIsa) -> CodegenResult<()> {
if isa.flags().enable_verifier() {
self.verify_locations(isa)?;
}
Ok(())
}
/// Perform dead-code elimination on the function.
pub fn dce<'a, FOI: Into<FlagsOrIsa<'a>>>(&mut self, fisa: FOI) -> CodegenResult<()> {
do_dce(&mut self.func, &mut self.domtree);
self.verify_if(fisa)?;
Ok(())
}
/// Perform constant-phi removal on the function.
pub fn remove_constant_phis<'a, FOI: Into<FlagsOrIsa<'a>>>(
&mut self,
fisa: FOI,
) -> CodegenResult<()> {
do_remove_constant_phis(&mut self.func, &mut self.domtree);
self.verify_if(fisa)?;
Ok(())
}
/// Perform pre-legalization rewrites on the function.
pub fn preopt(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
do_preopt(&mut self.func, &mut self.cfg, isa);
self.verify_if(isa)?;
Ok(())
}
/// Perform NaN canonicalizing rewrites on the function.
pub fn canonicalize_nans(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
do_nan_canonicalization(&mut self.func);
self.verify_if(isa)
}
/// Run the legalizer for `isa` on the function.
pub fn legalize(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
// Legalization invalidates the domtree and loop_analysis by mutating the CFG.
// TODO: Avoid doing this when legalization doesn't actually mutate the CFG.
self.domtree.clear();
self.loop_analysis.clear();
if isa.get_mach_backend().is_some() {
// Run some specific legalizations only.
simple_legalize(&mut self.func, &mut self.cfg, isa);
self.verify_if(isa)
} else {
legalize_function(&mut self.func, &mut self.cfg, isa);
debug!("Legalized:\n{}", self.func.display(isa));
self.verify_if(isa)
}
}
/// Perform post-legalization rewrites on the function.
pub fn postopt(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
do_postopt(&mut self.func, isa);
self.verify_if(isa)?;
Ok(())
}
/// Compute the control flow graph.
pub fn compute_cfg(&mut self) {
self.cfg.compute(&self.func)
}
/// Compute dominator tree.
pub fn compute_domtree(&mut self) {
self.domtree.compute(&self.func, &self.cfg)
}
/// Compute the loop analysis.
pub fn compute_loop_analysis(&mut self) {
self.loop_analysis
.compute(&self.func, &self.cfg, &self.domtree)
}
/// Compute the control flow graph and dominator tree.
pub fn flowgraph(&mut self) {
self.compute_cfg();
self.compute_domtree()
}
/// Perform simple GVN on the function.
pub fn simple_gvn<'a, FOI: Into<FlagsOrIsa<'a>>>(&mut self, fisa: FOI) -> CodegenResult<()> {
do_simple_gvn(&mut self.func, &mut self.domtree);
self.verify_if(fisa)
}
/// Perform LICM on the function.
pub fn licm(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
do_licm(
isa,
&mut self.func,
&mut self.cfg,
&mut self.domtree,
&mut self.loop_analysis,
);
self.verify_if(isa)
}
/// Perform unreachable code elimination.
pub fn eliminate_unreachable_code<'a, FOI>(&mut self, fisa: FOI) -> CodegenResult<()>
where
FOI: Into<FlagsOrIsa<'a>>,
{
eliminate_unreachable_code(&mut self.func, &mut self.cfg, &self.domtree);
self.verify_if(fisa)
}
/// Run the register allocator.
pub fn regalloc(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
self.regalloc
.run(isa, &mut self.func, &mut self.cfg, &mut self.domtree)
}
/// Insert prologue and epilogues after computing the stack frame layout.
pub fn prologue_epilogue(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
isa.prologue_epilogue(&mut self.func)?;
self.verify_if(isa)?;
self.verify_locations_if(isa)?;
Ok(())
}
/// Do redundant-reload removal after allocation of both registers and stack slots.
pub fn redundant_reload_remover(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
self.redundant_reload_remover
.run(isa, &mut self.func, &self.cfg);
self.verify_if(isa)?;
Ok(())
}
/// Run the instruction shrinking pass.
pub fn shrink_instructions(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
shrink_instructions(&mut self.func, isa);
self.verify_if(isa)?;
self.verify_locations_if(isa)?;
Ok(())
}
/// Run the branch relaxation pass and return information about the function's code and
/// read-only data.
pub fn relax_branches(&mut self, isa: &dyn TargetIsa) -> CodegenResult<CodeInfo> {
let info = relax_branches(&mut self.func, &mut self.cfg, &mut self.domtree, isa)?;
self.verify_if(isa)?;
self.verify_locations_if(isa)?;
Ok(info)
}
/// Builds ranges and location for specified value labels.
pub fn build_value_labels_ranges(
&self,
isa: &dyn TargetIsa,
) -> CodegenResult<ValueLabelsRanges> {
Ok(build_value_labels_ranges::<ComparableSourceLoc>(
&self.func,
&self.regalloc,
isa,
))
}
/// Harvest candidate left-hand sides for superoptimization with Souper.
#[cfg(feature = "souper-harvest")]
pub fn souper_harvest(
&mut self,
out: &mut std::sync::mpsc::Sender<String>,
) -> CodegenResult<()> {
do_souper_harvest(&self.func, out);
Ok(())
}
}