* x64: Enable load-coalescing for SSE/AVX instructions This commit unlocks the ability to fold loads into operands of SSE and AVX instructions. This is beneficial for both function size when it happens in addition to being able to reduce register pressure. Previously this was not done because most SSE instructions require memory to be aligned. AVX instructions, however, do not have alignment requirements. The solution implemented here is one recommended by Chris which is to add a new `XmmMemAligned` newtype wrapper around `XmmMem`. All SSE instructions are now annotated as requiring an `XmmMemAligned` operand except for a new new instruction styles used specifically for instructions that don't require alignment (e.g. `movdqu`, `*sd`, and `*ss` instructions). All existing instruction helpers continue to take `XmmMem`, however. This way if an AVX lowering is chosen it can be used as-is. If an SSE lowering is chosen, however, then an automatic conversion from `XmmMem` to `XmmMemAligned` kicks in. This automatic conversion only fails for unaligned addresses in which case a load instruction is emitted and the operand becomes a temporary register instead. A number of prior `Xmm` arguments have now been converted to `XmmMem` as well. One change from this commit is that loading an unaligned operand for an SSE instruction previously would use the "correct type" of load, e.g. `movups` for f32x4 or `movup` for f64x2, but now the loading happens in a context without type information so the `movdqu` instruction is generated. According to [this stack overflow question][question] it looks like modern processors won't penalize this "wrong" choice of type when the operand is then used for f32 or f64 oriented instructions. Finally this commit improves some reuse of logic in the `put_in_*_mem*` helper to share code with `sinkable_load` and avoid duplication. With this in place some various ISLE rules have been updated as well. In the tests it can be seen that AVX-instructions are now automatically load-coalesced and use memory operands in a few cases. [question]: https://stackoverflow.com/questions/40854819/is-there-any-situation-where-using-movdqu-and-movupd-is-better-than-movups * Fix tests * Fix move-and-extend to be unaligned These don't have alignment requirements like other xmm instructions as well. Additionally add some ISA tests to ensure that their output is tested. * Review comments
filetests
Filetests is a crate that contains multiple test suites for testing
various parts of cranelift. Each folder under cranelift/filetests/filetests is a different
test suite that tests different parts.
Adding a runtest
One of the available testsuites is the "runtest" testsuite. Its goal is to compile some piece of clif code, run it and ensure that what comes out is what we expect.
To build a run test you can add the following to a file:
test interpret
test run
target x86_64
target aarch64
target s390x
function %band_f32(f32, f32) -> f32 {
block0(v0: f32, v1: f32):
v2 = band v0, v1
return v2
}
; run: %band_f32(0x0.5, 0x1.0) == 0x1.5
Since this is a run test for band we can put it in: runtests/band.clif.
Once we have the file in the test suite we can run it by invoking: cargo run -- test filetests/filetests/runtests/band.clif from the cranelift directory.
The first lines tell clif-util what kind of tests we want to run on this file.
test interpret invokes the interpreter and checks if the conditions in the ; run comments pass. test run does the same, but compiles the file and runs it as a native binary.
For more information about testing see testing.md.