Add a new type BlockCall that represents the pair of a block name with arguments to be passed to it. (The mnemonic here is that it looks a bit like a function call.) Rework the implementation of jump, brz, and brnz to use BlockCall instead of storing the block arguments as varargs in the instruction's ValueList. To ensure that we're processing block arguments from BlockCall values in instructions, three new functions have been introduced on DataFlowGraph that both sets of arguments: inst_values - returns an iterator that traverses values in the instruction and block arguments map_inst_values - applies a function to each value in the instruction and block arguments overwrite_inst_values - overwrite all values in an instruction and block arguments with values from the iterator Co-authored-by: Jamey Sharp <jamey@minilop.net>
242 lines
8.6 KiB
Rust
242 lines
8.6 KiB
Rust
//! A Loop Invariant Code Motion optimization pass
|
|
|
|
use crate::cursor::{Cursor, FuncCursor};
|
|
use crate::dominator_tree::DominatorTree;
|
|
use crate::entity::{EntityList, ListPool};
|
|
use crate::flowgraph::{BlockPredecessor, ControlFlowGraph};
|
|
use crate::fx::FxHashSet;
|
|
use crate::ir::{
|
|
Block, DataFlowGraph, Function, Inst, InstBuilder, InstructionData, Layout, Opcode, Type, Value,
|
|
};
|
|
use crate::loop_analysis::{Loop, LoopAnalysis};
|
|
use crate::timing;
|
|
use alloc::vec::Vec;
|
|
|
|
/// Performs the LICM pass by detecting loops within the CFG and moving
|
|
/// loop-invariant instructions out of them.
|
|
/// Changes the CFG and domtree in-place during the operation.
|
|
pub fn do_licm(
|
|
func: &mut Function,
|
|
cfg: &mut ControlFlowGraph,
|
|
domtree: &mut DominatorTree,
|
|
loop_analysis: &mut LoopAnalysis,
|
|
) {
|
|
let _tt = timing::licm();
|
|
debug_assert!(cfg.is_valid());
|
|
debug_assert!(domtree.is_valid());
|
|
debug_assert!(loop_analysis.is_valid());
|
|
|
|
for lp in loop_analysis.loops() {
|
|
// For each loop that we want to optimize we determine the set of loop-invariant
|
|
// instructions
|
|
let invariant_insts = remove_loop_invariant_instructions(lp, func, cfg, loop_analysis);
|
|
// Then we create the loop's pre-header and fill it with the invariant instructions
|
|
// Then we remove the invariant instructions from the loop body
|
|
if !invariant_insts.is_empty() {
|
|
// If the loop has a natural pre-header we use it, otherwise we create it.
|
|
let mut pos;
|
|
match has_pre_header(&func.layout, cfg, domtree, loop_analysis.loop_header(lp)) {
|
|
None => {
|
|
let pre_header =
|
|
create_pre_header(loop_analysis.loop_header(lp), func, cfg, domtree);
|
|
pos = FuncCursor::new(func).at_last_inst(pre_header);
|
|
}
|
|
// If there is a natural pre-header we insert new instructions just before the
|
|
// related jumping instruction (which is not necessarily at the end).
|
|
Some((_, last_inst)) => {
|
|
pos = FuncCursor::new(func).at_inst(last_inst);
|
|
}
|
|
};
|
|
// The last instruction of the pre-header is the termination instruction (usually
|
|
// a jump) so we need to insert just before this.
|
|
for inst in invariant_insts {
|
|
pos.insert_inst(inst);
|
|
}
|
|
}
|
|
}
|
|
// We have to recompute the domtree to account for the changes
|
|
cfg.compute(func);
|
|
domtree.compute(func, cfg);
|
|
}
|
|
|
|
/// Insert a pre-header before the header, modifying the function layout and CFG to reflect it.
|
|
/// A jump instruction to the header is placed at the end of the pre-header.
|
|
fn create_pre_header(
|
|
header: Block,
|
|
func: &mut Function,
|
|
cfg: &mut ControlFlowGraph,
|
|
domtree: &DominatorTree,
|
|
) -> Block {
|
|
let pool = &mut ListPool::<Value>::new();
|
|
let header_args_values = func.dfg.block_params(header).to_vec();
|
|
let header_args_types: Vec<Type> = header_args_values
|
|
.into_iter()
|
|
.map(|val| func.dfg.value_type(val))
|
|
.collect();
|
|
let pre_header = func.dfg.make_block();
|
|
let mut pre_header_args_value: EntityList<Value> = EntityList::new();
|
|
for typ in header_args_types {
|
|
pre_header_args_value.push(func.dfg.append_block_param(pre_header, typ), pool);
|
|
}
|
|
|
|
for BlockPredecessor {
|
|
inst: last_inst, ..
|
|
} in cfg.pred_iter(header)
|
|
{
|
|
// We only follow normal edges (not the back edges)
|
|
if !domtree.dominates(header, last_inst, &func.layout) {
|
|
func.rewrite_branch_destination(last_inst, header, pre_header);
|
|
}
|
|
}
|
|
|
|
// Inserts the pre-header at the right place in the layout.
|
|
let mut pos = FuncCursor::new(func).at_top(header);
|
|
pos.insert_block(pre_header);
|
|
pos.next_inst();
|
|
pos.ins().jump(header, pre_header_args_value.as_slice(pool));
|
|
|
|
pre_header
|
|
}
|
|
|
|
/// Detects if a loop header has a natural pre-header.
|
|
///
|
|
/// A loop header has a pre-header if there is only one predecessor that the header doesn't
|
|
/// dominate.
|
|
/// Returns the pre-header Block and the instruction jumping to the header.
|
|
fn has_pre_header(
|
|
layout: &Layout,
|
|
cfg: &ControlFlowGraph,
|
|
domtree: &DominatorTree,
|
|
header: Block,
|
|
) -> Option<(Block, Inst)> {
|
|
let mut result = None;
|
|
for BlockPredecessor {
|
|
block: pred_block,
|
|
inst: branch_inst,
|
|
} in cfg.pred_iter(header)
|
|
{
|
|
// We only count normal edges (not the back edges)
|
|
if !domtree.dominates(header, branch_inst, layout) {
|
|
if result.is_some() {
|
|
// We have already found one, there are more than one
|
|
return None;
|
|
}
|
|
if branch_inst != layout.last_inst(pred_block).unwrap()
|
|
|| cfg.succ_iter(pred_block).nth(1).is_some()
|
|
{
|
|
// It's along a critical edge, so don't use it.
|
|
return None;
|
|
}
|
|
result = Some((pred_block, branch_inst));
|
|
}
|
|
}
|
|
result
|
|
}
|
|
|
|
/// Test whether the given opcode is unsafe to even consider for LICM.
|
|
fn trivially_unsafe_for_licm(opcode: Opcode) -> bool {
|
|
opcode.can_store()
|
|
|| opcode.is_call()
|
|
|| opcode.is_branch()
|
|
|| opcode.is_terminator()
|
|
|| opcode.is_return()
|
|
|| opcode.can_trap()
|
|
|| opcode.other_side_effects()
|
|
}
|
|
|
|
fn is_unsafe_load(inst_data: &InstructionData) -> bool {
|
|
match *inst_data {
|
|
InstructionData::Load { flags, .. } => !flags.readonly() || !flags.notrap(),
|
|
_ => inst_data.opcode().can_load(),
|
|
}
|
|
}
|
|
|
|
/// Test whether the given instruction is loop-invariant.
|
|
fn is_loop_invariant(inst: Inst, dfg: &DataFlowGraph, loop_values: &FxHashSet<Value>) -> bool {
|
|
if trivially_unsafe_for_licm(dfg.insts[inst].opcode()) {
|
|
return false;
|
|
}
|
|
|
|
if is_unsafe_load(&dfg.insts[inst]) {
|
|
return false;
|
|
}
|
|
|
|
for arg in dfg.inst_values(inst) {
|
|
let arg = dfg.resolve_aliases(arg);
|
|
if loop_values.contains(&arg) {
|
|
return false;
|
|
}
|
|
}
|
|
true
|
|
}
|
|
|
|
/// Traverses a loop in reverse post-order from a header block and identify loop-invariant
|
|
/// instructions. These loop-invariant instructions are then removed from the code and returned
|
|
/// (in reverse post-order) for later use.
|
|
fn remove_loop_invariant_instructions(
|
|
lp: Loop,
|
|
func: &mut Function,
|
|
cfg: &ControlFlowGraph,
|
|
loop_analysis: &LoopAnalysis,
|
|
) -> Vec<Inst> {
|
|
let mut loop_values: FxHashSet<Value> = FxHashSet();
|
|
let mut invariant_insts: Vec<Inst> = Vec::new();
|
|
let mut pos = FuncCursor::new(func);
|
|
// We traverse the loop block in reverse post-order.
|
|
for block in postorder_blocks_loop(loop_analysis, cfg, lp).iter().rev() {
|
|
// Arguments of the block are loop values
|
|
for val in pos.func.dfg.block_params(*block) {
|
|
loop_values.insert(*val);
|
|
}
|
|
pos.goto_top(*block);
|
|
#[cfg_attr(feature = "cargo-clippy", allow(clippy::block_in_if_condition_stmt))]
|
|
while let Some(inst) = pos.next_inst() {
|
|
if is_loop_invariant(inst, &pos.func.dfg, &loop_values) {
|
|
// If all the instruction's argument are defined outside the loop
|
|
// then this instruction is loop-invariant
|
|
invariant_insts.push(inst);
|
|
// We remove it from the loop
|
|
pos.remove_inst_and_step_back();
|
|
} else {
|
|
// If the instruction is not loop-invariant we push its results in the set of
|
|
// loop values
|
|
for out in pos.func.dfg.inst_results(inst) {
|
|
loop_values.insert(*out);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
invariant_insts
|
|
}
|
|
|
|
/// Return blocks from a loop in post-order, starting from an entry point in the block.
|
|
fn postorder_blocks_loop(
|
|
loop_analysis: &LoopAnalysis,
|
|
cfg: &ControlFlowGraph,
|
|
lp: Loop,
|
|
) -> Vec<Block> {
|
|
let mut grey = FxHashSet();
|
|
let mut black = FxHashSet();
|
|
let mut stack = vec![loop_analysis.loop_header(lp)];
|
|
let mut postorder = Vec::new();
|
|
|
|
while !stack.is_empty() {
|
|
let node = stack.pop().unwrap();
|
|
if !grey.contains(&node) {
|
|
// This is a white node. Mark it as gray.
|
|
grey.insert(node);
|
|
stack.push(node);
|
|
// Get any children we've never seen before.
|
|
for child in cfg.succ_iter(node) {
|
|
if loop_analysis.is_in_loop(child, lp) && !grey.contains(&child) {
|
|
stack.push(child);
|
|
}
|
|
}
|
|
} else if !black.contains(&node) {
|
|
postorder.push(node);
|
|
black.insert(node);
|
|
}
|
|
}
|
|
postorder
|
|
}
|