Files
wasmtime/cranelift/jit/src/compiled_blob.rs
Afonso Bordado e64fb6ab39 riscv64: Fix underflow in call relocation handling (#5951)
Under some test case layouts the call relocation
panicking with an underflow. Use `wrapping_sub` to
signal that this is expected.

The fuzzer took a while to generate such a test case.
And I can't introduce it as a regression test because
when running via the regular clif-util run tests the
layout is different and the test case passes!

I think this is because in the fuzzer we only add
one trampoline, while in clif-util we build trampolines
for each funcion in the file.

Co-authored-by: Jamey Sharp <jsharp@fastly.com>
2023-03-10 11:43:27 +00:00

151 lines
7.2 KiB
Rust

use cranelift_codegen::binemit::Reloc;
use cranelift_module::ModuleExtName;
use cranelift_module::ModuleReloc;
use std::convert::TryFrom;
/// Reads a 32bit instruction at `iptr`, and writes it again after
/// being altered by `modifier`
unsafe fn modify_inst32(iptr: *mut u32, modifier: impl FnOnce(u32) -> u32) {
let inst = iptr.read_unaligned();
let new_inst = modifier(inst);
iptr.write_unaligned(new_inst);
}
#[derive(Clone)]
pub(crate) struct CompiledBlob {
pub(crate) ptr: *mut u8,
pub(crate) size: usize,
pub(crate) relocs: Vec<ModuleReloc>,
}
impl CompiledBlob {
pub(crate) fn perform_relocations(
&self,
get_address: impl Fn(&ModuleExtName) -> *const u8,
get_got_entry: impl Fn(&ModuleExtName) -> *const u8,
get_plt_entry: impl Fn(&ModuleExtName) -> *const u8,
) {
use std::ptr::write_unaligned;
for &ModuleReloc {
kind,
offset,
ref name,
addend,
} in &self.relocs
{
debug_assert!((offset as usize) < self.size);
let at = unsafe { self.ptr.offset(isize::try_from(offset).unwrap()) };
match kind {
Reloc::Abs4 => {
let base = get_address(name);
let what = unsafe { base.offset(isize::try_from(addend).unwrap()) };
#[cfg_attr(feature = "cargo-clippy", allow(clippy::cast_ptr_alignment))]
unsafe {
write_unaligned(at as *mut u32, u32::try_from(what as usize).unwrap())
};
}
Reloc::Abs8 => {
let base = get_address(name);
let what = unsafe { base.offset(isize::try_from(addend).unwrap()) };
#[cfg_attr(feature = "cargo-clippy", allow(clippy::cast_ptr_alignment))]
unsafe {
write_unaligned(at as *mut u64, u64::try_from(what as usize).unwrap())
};
}
Reloc::X86PCRel4 | Reloc::X86CallPCRel4 => {
let base = get_address(name);
let what = unsafe { base.offset(isize::try_from(addend).unwrap()) };
let pcrel = i32::try_from((what as isize) - (at as isize)).unwrap();
#[cfg_attr(feature = "cargo-clippy", allow(clippy::cast_ptr_alignment))]
unsafe {
write_unaligned(at as *mut i32, pcrel)
};
}
Reloc::X86GOTPCRel4 => {
let base = get_got_entry(name);
let what = unsafe { base.offset(isize::try_from(addend).unwrap()) };
let pcrel = i32::try_from((what as isize) - (at as isize)).unwrap();
#[cfg_attr(feature = "cargo-clippy", allow(clippy::cast_ptr_alignment))]
unsafe {
write_unaligned(at as *mut i32, pcrel)
};
}
Reloc::X86CallPLTRel4 => {
let base = get_plt_entry(name);
let what = unsafe { base.offset(isize::try_from(addend).unwrap()) };
let pcrel = i32::try_from((what as isize) - (at as isize)).unwrap();
#[cfg_attr(feature = "cargo-clippy", allow(clippy::cast_ptr_alignment))]
unsafe {
write_unaligned(at as *mut i32, pcrel)
};
}
Reloc::S390xPCRel32Dbl | Reloc::S390xPLTRel32Dbl => {
let base = get_address(name);
let what = unsafe { base.offset(isize::try_from(addend).unwrap()) };
let pcrel = i32::try_from(((what as isize) - (at as isize)) >> 1).unwrap();
#[cfg_attr(feature = "cargo-clippy", allow(clippy::cast_ptr_alignment))]
unsafe {
write_unaligned(at as *mut i32, pcrel)
};
}
Reloc::Arm64Call => {
let base = get_address(name);
// The instruction is 32 bits long.
let iptr = at as *mut u32;
// The offset encoded in the `bl` instruction is the
// number of bytes divided by 4.
let diff = ((base as isize) - (at as isize)) >> 2;
// Sign propagating right shift disposes of the
// included bits, so the result is expected to be
// either all sign bits or 0, depending on if the original
// value was negative or positive.
assert!((diff >> 26 == -1) || (diff >> 26 == 0));
// The lower 26 bits of the `bl` instruction form the
// immediate offset argument.
let chop = 32 - 26;
let imm26 = (diff as u32) << chop >> chop;
unsafe { modify_inst32(iptr, |inst| inst | imm26) };
}
Reloc::RiscvCall => {
// A R_RISCV_CALL relocation expects auipc+jalr instruction pair.
// It is the equivalent of two relocations:
// 1. R_RISCV_PCREL_HI20 on the `auipc`
// 2. R_RISCV_PCREL_LO12_I on the `jalr`
let base = get_address(name);
let what = unsafe { base.offset(isize::try_from(addend).unwrap()) };
let pcrel = i32::try_from((what as isize) - (at as isize)).unwrap() as u32;
// See https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-elf.adoc#pc-relative-symbol-addresses
// for a better explanation of the following code.
//
// Unlike the regular symbol relocations, here both "sub-relocations" point to the same address.
//
// `pcrel` is a signed value (+/- 2GiB range), when splitting it into two parts, we need to
// ensure that `hi20` is close enough to `pcrel` to be able to add `lo12` to it and still
// get a valid address.
//
// `lo12` is also a signed offset (+/- 2KiB range) relative to the `hi20` value.
//
// `hi20` should also be shifted right to be the "true" value. But we also need it
// left shifted for the `lo12` calculation and it also matches the instruction encoding.
let hi20 = pcrel.wrapping_add(0x800) & 0xFFFFF000;
let lo12 = pcrel.wrapping_sub(hi20) & 0xFFF;
unsafe {
// Do a R_RISCV_PCREL_HI20 on the `auipc`
let auipc_addr = at as *mut u32;
modify_inst32(auipc_addr, |auipc| (auipc & 0xFFF) | hi20);
// Do a R_RISCV_PCREL_LO12_I on the `jalr`
let jalr_addr = at.offset(4) as *mut u32;
modify_inst32(jalr_addr, |jalr| (jalr & 0xFFFFF) | (lo12 << 20));
}
}
_ => unimplemented!(),
}
}
}
}