* Pull `Module` out of `ModuleTextBuilder` This commit is the first in what will likely be a number towards preparing for serializing a compiled component to bytes, a precompiled artifact. To that end my rough plan is to merge all of the compiled artifacts for a component into one large object file instead of having lots of separate object files and lots of separate mmaps to manage. To that end I plan on eventually using `ModuleTextBuilder` to build one large text section for all core wasm modules and trampolines, meaning that `ModuleTextBuilder` is no longer specific to one module. I've extracted out functionality such as function name calculation as well as relocation resolving (now a closure passed in) in preparation for this. For now this just keeps tests passing, and the trajectory for this should become more clear over the following commits. * Remove component-specific object emission This commit removes the `ComponentCompiler::emit_obj` function in favor of `Compiler::emit_obj`, now renamed `append_code`. This involved significantly refactoring code emission to take a flat list of functions into `append_code` and the caller is responsible for weaving together various "families" of functions and un-weaving them afterwards. * Consolidate ELF parsing in `CodeMemory` This commit moves the ELF file parsing and section iteration from `CompiledModule` into `CodeMemory` so one location keeps track of section ranges and such. This is in preparation for sharing much of this code with components which needs all the same sections to get tracked but won't be using `CompiledModule`. A small side benefit from this is that the section parsing done in `CodeMemory` and `CompiledModule` is no longer duplicated. * Remove separately tracked traps in components Previously components would generate an "always trapping" function and the metadata around which pc was allowed to trap was handled manually for components. With recent refactorings the Wasmtime-standard trap section in object files is now being generated for components as well which means that can be reused instead of custom-tracking this metadata. This commit removes the manual tracking for the `always_trap` functions and plumbs the necessary bits around to make components look more like modules. * Remove a now-unnecessary `Arc` in `Module` Not expected to have any measurable impact on performance, but complexity-wise this should make it a bit easier to understand the internals since there's no longer any need to store this somewhere else than its owner's location. * Merge compilation artifacts of components This commit is a large refactoring of the component compilation process to produce a single artifact instead of multiple binary artifacts. The core wasm compilation process is refactored as well to share as much code as necessary with the component compilation process. This method of representing a compiled component necessitated a few medium-sized changes internally within Wasmtime: * A new data structure was created, `CodeObject`, which represents metadata about a single compiled artifact. This is then stored as an `Arc` within a component and a module. For `Module` this is always uniquely owned and represents a shuffling around of data from one owner to another. For a `Component`, however, this is shared amongst all loaded modules and the top-level component. * The "module registry" which is used for symbolicating backtraces and for trap information has been updated to account for a single region of loaded code holding possibly multiple modules. This involved adding a second-level `BTreeMap` for now. This will likely slow down instantiation slightly but if it poses an issue in the future this should be able to be represented with a more clever data structure. This commit additionally solves a number of longstanding issues with components such as compiling only one host-to-wasm trampoline per signature instead of possibly once-per-module. Additionally the `SignatureCollection` registration now happens once-per-component instead of once-per-module-within-a-component. * Fix compile errors from prior commits * Support AOT-compiling components This commit adds support for AOT-compiled components in the same manner as `Module`, specifically adding: * `Engine::precompile_component` * `Component::serialize` * `Component::deserialize` * `Component::deserialize_file` Internally the support for components looks quite similar to `Module`. All the prior commits to this made adding the support here (unsurprisingly) easy. Components are represented as a single object file as are modules, and the functions for each module are all piled into the same object file next to each other (as are areas such as data sections). Support was also added here to quickly differentiate compiled components vs compiled modules via the `e_flags` field in the ELF header. * Prevent serializing exported modules on components The current representation of a module within a component means that the implementation of `Module::serialize` will not work if the module is exported from a component. The reason for this is that `serialize` doesn't actually do anything and simply returns the underlying mmap as a list of bytes. The mmap, however, has `.wasmtime.info` describing component metadata as opposed to this module's metadata. While rewriting this section could be implemented it's not so easy to do so and is otherwise seen as not super important of a feature right now anyway. * Fix windows build * Fix an unused function warning * Update crates/environ/src/compilation.rs Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com> Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
1193 lines
45 KiB
Rust
1193 lines
45 KiB
Rust
//! An `Instance` contains all the runtime state used by execution of a
|
|
//! wasm module (except its callstack and register state). An
|
|
//! `InstanceHandle` is a reference-counting handle for an `Instance`.
|
|
|
|
use crate::export::Export;
|
|
use crate::externref::VMExternRefActivationsTable;
|
|
use crate::memory::{Memory, RuntimeMemoryCreator};
|
|
use crate::table::{Table, TableElement, TableElementType};
|
|
use crate::vmcontext::{
|
|
VMBuiltinFunctionsArray, VMCallerCheckedAnyfunc, VMContext, VMFunctionImport,
|
|
VMGlobalDefinition, VMGlobalImport, VMMemoryDefinition, VMMemoryImport, VMOpaqueContext,
|
|
VMRuntimeLimits, VMTableDefinition, VMTableImport, VMCONTEXT_MAGIC,
|
|
};
|
|
use crate::{
|
|
ExportFunction, ExportGlobal, ExportMemory, ExportTable, Imports, ModuleRuntimeInfo, Store,
|
|
VMFunctionBody,
|
|
};
|
|
use anyhow::Error;
|
|
use memoffset::offset_of;
|
|
use std::alloc::Layout;
|
|
use std::any::Any;
|
|
use std::convert::TryFrom;
|
|
use std::hash::Hash;
|
|
use std::ops::Range;
|
|
use std::ptr::NonNull;
|
|
use std::sync::atomic::AtomicU64;
|
|
use std::sync::Arc;
|
|
use std::{mem, ptr};
|
|
use wasmtime_environ::{
|
|
packed_option::ReservedValue, DataIndex, DefinedGlobalIndex, DefinedMemoryIndex,
|
|
DefinedTableIndex, ElemIndex, EntityIndex, EntityRef, EntitySet, FuncIndex, GlobalIndex,
|
|
GlobalInit, HostPtr, MemoryIndex, Module, PrimaryMap, SignatureIndex, TableIndex,
|
|
TableInitialization, TrapCode, VMOffsets, WasmType,
|
|
};
|
|
|
|
mod allocator;
|
|
|
|
pub use allocator::*;
|
|
|
|
/// A type that roughly corresponds to a WebAssembly instance, but is also used
|
|
/// for host-defined objects.
|
|
///
|
|
/// This structure is is never allocated directly but is instead managed through
|
|
/// an `InstanceHandle`. This structure ends with a `VMContext` which has a
|
|
/// dynamic size corresponding to the `module` configured within. Memory
|
|
/// management of this structure is always externalized.
|
|
///
|
|
/// Instances here can correspond to actual instantiated modules, but it's also
|
|
/// used ubiquitously for host-defined objects. For example creating a
|
|
/// host-defined memory will have a `module` that looks like it exports a single
|
|
/// memory (and similar for other constructs).
|
|
///
|
|
/// This `Instance` type is used as a ubiquitous representation for WebAssembly
|
|
/// values, whether or not they were created on the host or through a module.
|
|
#[repr(C)] // ensure that the vmctx field is last.
|
|
pub(crate) struct Instance {
|
|
/// The runtime info (corresponding to the "compiled module"
|
|
/// abstraction in higher layers) that is retained and needed for
|
|
/// lazy initialization. This provides access to the underlying
|
|
/// Wasm module entities, the compiled JIT code, metadata about
|
|
/// functions, lazy initialization state, etc.
|
|
runtime_info: Arc<dyn ModuleRuntimeInfo>,
|
|
|
|
/// Offsets in the `vmctx` region, precomputed from the `module` above.
|
|
offsets: VMOffsets<HostPtr>,
|
|
|
|
/// WebAssembly linear memory data.
|
|
///
|
|
/// This is where all runtime information about defined linear memories in
|
|
/// this module lives.
|
|
memories: PrimaryMap<DefinedMemoryIndex, Memory>,
|
|
|
|
/// WebAssembly table data.
|
|
///
|
|
/// Like memories, this is only for defined tables in the module and
|
|
/// contains all of their runtime state.
|
|
tables: PrimaryMap<DefinedTableIndex, Table>,
|
|
|
|
/// Stores the dropped passive element segments in this instantiation by index.
|
|
/// If the index is present in the set, the segment has been dropped.
|
|
dropped_elements: EntitySet<ElemIndex>,
|
|
|
|
/// Stores the dropped passive data segments in this instantiation by index.
|
|
/// If the index is present in the set, the segment has been dropped.
|
|
dropped_data: EntitySet<DataIndex>,
|
|
|
|
/// Hosts can store arbitrary per-instance information here.
|
|
///
|
|
/// Most of the time from Wasmtime this is `Box::new(())`, a noop
|
|
/// allocation, but some host-defined objects will store their state here.
|
|
host_state: Box<dyn Any + Send + Sync>,
|
|
|
|
/// Additional context used by compiled wasm code. This field is last, and
|
|
/// represents a dynamically-sized array that extends beyond the nominal
|
|
/// end of the struct (similar to a flexible array member).
|
|
vmctx: VMContext,
|
|
}
|
|
|
|
#[allow(clippy::cast_ptr_alignment)]
|
|
impl Instance {
|
|
/// Create an instance at the given memory address.
|
|
///
|
|
/// It is assumed the memory was properly aligned and the
|
|
/// allocation was `alloc_size` in bytes.
|
|
unsafe fn new_at(
|
|
ptr: *mut Instance,
|
|
alloc_size: usize,
|
|
offsets: VMOffsets<HostPtr>,
|
|
req: InstanceAllocationRequest,
|
|
memories: PrimaryMap<DefinedMemoryIndex, Memory>,
|
|
tables: PrimaryMap<DefinedTableIndex, Table>,
|
|
) {
|
|
// The allocation must be *at least* the size required of `Instance`.
|
|
assert!(alloc_size >= Self::alloc_layout(&offsets).size());
|
|
|
|
let module = req.runtime_info.module();
|
|
let dropped_elements = EntitySet::with_capacity(module.passive_elements.len());
|
|
let dropped_data = EntitySet::with_capacity(module.passive_data_map.len());
|
|
|
|
ptr::write(
|
|
ptr,
|
|
Instance {
|
|
runtime_info: req.runtime_info.clone(),
|
|
offsets,
|
|
memories,
|
|
tables,
|
|
dropped_elements,
|
|
dropped_data,
|
|
host_state: req.host_state,
|
|
vmctx: VMContext {
|
|
_marker: std::marker::PhantomPinned,
|
|
},
|
|
},
|
|
);
|
|
|
|
(*ptr).initialize_vmctx(module, req.store, req.imports);
|
|
}
|
|
|
|
/// Helper function to access various locations offset from our `*mut
|
|
/// VMContext` object.
|
|
unsafe fn vmctx_plus_offset<T>(&self, offset: u32) -> *mut T {
|
|
(self.vmctx_ptr().cast::<u8>())
|
|
.add(usize::try_from(offset).unwrap())
|
|
.cast()
|
|
}
|
|
|
|
pub(crate) fn module(&self) -> &Arc<Module> {
|
|
self.runtime_info.module()
|
|
}
|
|
|
|
/// Return the indexed `VMFunctionImport`.
|
|
fn imported_function(&self, index: FuncIndex) -> &VMFunctionImport {
|
|
unsafe { &*self.vmctx_plus_offset(self.offsets.vmctx_vmfunction_import(index)) }
|
|
}
|
|
|
|
/// Return the index `VMTableImport`.
|
|
fn imported_table(&self, index: TableIndex) -> &VMTableImport {
|
|
unsafe { &*self.vmctx_plus_offset(self.offsets.vmctx_vmtable_import(index)) }
|
|
}
|
|
|
|
/// Return the indexed `VMMemoryImport`.
|
|
fn imported_memory(&self, index: MemoryIndex) -> &VMMemoryImport {
|
|
unsafe { &*self.vmctx_plus_offset(self.offsets.vmctx_vmmemory_import(index)) }
|
|
}
|
|
|
|
/// Return the indexed `VMGlobalImport`.
|
|
fn imported_global(&self, index: GlobalIndex) -> &VMGlobalImport {
|
|
unsafe { &*self.vmctx_plus_offset(self.offsets.vmctx_vmglobal_import(index)) }
|
|
}
|
|
|
|
/// Return the indexed `VMTableDefinition`.
|
|
#[allow(dead_code)]
|
|
fn table(&self, index: DefinedTableIndex) -> VMTableDefinition {
|
|
unsafe { *self.table_ptr(index) }
|
|
}
|
|
|
|
/// Updates the value for a defined table to `VMTableDefinition`.
|
|
fn set_table(&self, index: DefinedTableIndex, table: VMTableDefinition) {
|
|
unsafe {
|
|
*self.table_ptr(index) = table;
|
|
}
|
|
}
|
|
|
|
/// Return the indexed `VMTableDefinition`.
|
|
fn table_ptr(&self, index: DefinedTableIndex) -> *mut VMTableDefinition {
|
|
unsafe { self.vmctx_plus_offset(self.offsets.vmctx_vmtable_definition(index)) }
|
|
}
|
|
|
|
/// Get a locally defined or imported memory.
|
|
pub(crate) fn get_memory(&self, index: MemoryIndex) -> VMMemoryDefinition {
|
|
if let Some(defined_index) = self.module().defined_memory_index(index) {
|
|
self.memory(defined_index)
|
|
} else {
|
|
let import = self.imported_memory(index);
|
|
unsafe { VMMemoryDefinition::load(import.from) }
|
|
}
|
|
}
|
|
|
|
/// Return the indexed `VMMemoryDefinition`.
|
|
fn memory(&self, index: DefinedMemoryIndex) -> VMMemoryDefinition {
|
|
unsafe { VMMemoryDefinition::load(self.memory_ptr(index)) }
|
|
}
|
|
|
|
/// Set the indexed memory to `VMMemoryDefinition`.
|
|
fn set_memory(&self, index: DefinedMemoryIndex, mem: VMMemoryDefinition) {
|
|
unsafe {
|
|
*self.memory_ptr(index) = mem;
|
|
}
|
|
}
|
|
|
|
/// Return the indexed `VMMemoryDefinition`.
|
|
fn memory_ptr(&self, index: DefinedMemoryIndex) -> *mut VMMemoryDefinition {
|
|
unsafe { *self.vmctx_plus_offset(self.offsets.vmctx_vmmemory_pointer(index)) }
|
|
}
|
|
|
|
/// Return the indexed `VMGlobalDefinition`.
|
|
fn global(&self, index: DefinedGlobalIndex) -> &VMGlobalDefinition {
|
|
unsafe { &*self.global_ptr(index) }
|
|
}
|
|
|
|
/// Return the indexed `VMGlobalDefinition`.
|
|
fn global_ptr(&self, index: DefinedGlobalIndex) -> *mut VMGlobalDefinition {
|
|
unsafe { self.vmctx_plus_offset(self.offsets.vmctx_vmglobal_definition(index)) }
|
|
}
|
|
|
|
/// Get a raw pointer to the global at the given index regardless whether it
|
|
/// is defined locally or imported from another module.
|
|
///
|
|
/// Panics if the index is out of bound or is the reserved value.
|
|
pub(crate) fn defined_or_imported_global_ptr(
|
|
&self,
|
|
index: GlobalIndex,
|
|
) -> *mut VMGlobalDefinition {
|
|
if let Some(index) = self.module().defined_global_index(index) {
|
|
self.global_ptr(index)
|
|
} else {
|
|
self.imported_global(index).from
|
|
}
|
|
}
|
|
|
|
/// Return a pointer to the interrupts structure
|
|
pub fn runtime_limits(&self) -> *mut *const VMRuntimeLimits {
|
|
unsafe { self.vmctx_plus_offset(self.offsets.vmctx_runtime_limits()) }
|
|
}
|
|
|
|
/// Return a pointer to the global epoch counter used by this instance.
|
|
pub fn epoch_ptr(&self) -> *mut *const AtomicU64 {
|
|
unsafe { self.vmctx_plus_offset(self.offsets.vmctx_epoch_ptr()) }
|
|
}
|
|
|
|
/// Return a pointer to the `VMExternRefActivationsTable`.
|
|
pub fn externref_activations_table(&self) -> *mut *mut VMExternRefActivationsTable {
|
|
unsafe { self.vmctx_plus_offset(self.offsets.vmctx_externref_activations_table()) }
|
|
}
|
|
|
|
/// Gets a pointer to this instance's `Store` which was originally
|
|
/// configured on creation.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// This will panic if the originally configured store was `None`. That can
|
|
/// happen for host functions so host functions can't be queried what their
|
|
/// original `Store` was since it's just retained as null (since host
|
|
/// functions are shared amongst threads and don't all share the same
|
|
/// store).
|
|
#[inline]
|
|
pub fn store(&self) -> *mut dyn Store {
|
|
let ptr = unsafe { *self.vmctx_plus_offset::<*mut dyn Store>(self.offsets.vmctx_store()) };
|
|
assert!(!ptr.is_null());
|
|
ptr
|
|
}
|
|
|
|
pub unsafe fn set_store(&mut self, store: Option<*mut dyn Store>) {
|
|
if let Some(store) = store {
|
|
*self.vmctx_plus_offset(self.offsets.vmctx_store()) = store;
|
|
*self.runtime_limits() = (*store).vmruntime_limits();
|
|
*self.epoch_ptr() = (*store).epoch_ptr();
|
|
*self.externref_activations_table() = (*store).externref_activations_table().0;
|
|
} else {
|
|
assert_eq!(
|
|
mem::size_of::<*mut dyn Store>(),
|
|
mem::size_of::<[*mut (); 2]>()
|
|
);
|
|
*self.vmctx_plus_offset::<[*mut (); 2]>(self.offsets.vmctx_store()) =
|
|
[ptr::null_mut(), ptr::null_mut()];
|
|
|
|
*self.runtime_limits() = ptr::null_mut();
|
|
*self.epoch_ptr() = ptr::null_mut();
|
|
*self.externref_activations_table() = ptr::null_mut();
|
|
}
|
|
}
|
|
|
|
pub(crate) unsafe fn set_callee(&mut self, callee: Option<NonNull<VMFunctionBody>>) {
|
|
*self.vmctx_plus_offset(self.offsets.vmctx_callee()) =
|
|
callee.map_or(ptr::null_mut(), |c| c.as_ptr());
|
|
}
|
|
|
|
/// Return a reference to the vmctx used by compiled wasm code.
|
|
#[inline]
|
|
pub fn vmctx(&self) -> &VMContext {
|
|
&self.vmctx
|
|
}
|
|
|
|
/// Return a raw pointer to the vmctx used by compiled wasm code.
|
|
#[inline]
|
|
pub fn vmctx_ptr(&self) -> *mut VMContext {
|
|
self.vmctx() as *const VMContext as *mut VMContext
|
|
}
|
|
|
|
fn get_exported_func(&mut self, index: FuncIndex) -> ExportFunction {
|
|
let anyfunc = self.get_caller_checked_anyfunc(index).unwrap();
|
|
let anyfunc = NonNull::new(anyfunc as *const VMCallerCheckedAnyfunc as *mut _).unwrap();
|
|
ExportFunction { anyfunc }
|
|
}
|
|
|
|
fn get_exported_table(&mut self, index: TableIndex) -> ExportTable {
|
|
let (definition, vmctx) = if let Some(def_index) = self.module().defined_table_index(index)
|
|
{
|
|
(self.table_ptr(def_index), self.vmctx_ptr())
|
|
} else {
|
|
let import = self.imported_table(index);
|
|
(import.from, import.vmctx)
|
|
};
|
|
ExportTable {
|
|
definition,
|
|
vmctx,
|
|
table: self.module().table_plans[index].clone(),
|
|
}
|
|
}
|
|
|
|
fn get_exported_memory(&mut self, index: MemoryIndex) -> ExportMemory {
|
|
let (definition, vmctx, def_index) =
|
|
if let Some(def_index) = self.module().defined_memory_index(index) {
|
|
(self.memory_ptr(def_index), self.vmctx_ptr(), def_index)
|
|
} else {
|
|
let import = self.imported_memory(index);
|
|
(import.from, import.vmctx, import.index)
|
|
};
|
|
ExportMemory {
|
|
definition,
|
|
vmctx,
|
|
memory: self.module().memory_plans[index].clone(),
|
|
index: def_index,
|
|
}
|
|
}
|
|
|
|
fn get_exported_global(&mut self, index: GlobalIndex) -> ExportGlobal {
|
|
ExportGlobal {
|
|
definition: if let Some(def_index) = self.module().defined_global_index(index) {
|
|
self.global_ptr(def_index)
|
|
} else {
|
|
self.imported_global(index).from
|
|
},
|
|
global: self.module().globals[index],
|
|
}
|
|
}
|
|
|
|
/// Return an iterator over the exports of this instance.
|
|
///
|
|
/// Specifically, it provides access to the key-value pairs, where the keys
|
|
/// are export names, and the values are export declarations which can be
|
|
/// resolved `lookup_by_declaration`.
|
|
pub fn exports(&self) -> indexmap::map::Iter<String, EntityIndex> {
|
|
self.module().exports.iter()
|
|
}
|
|
|
|
/// Return a reference to the custom state attached to this instance.
|
|
#[inline]
|
|
pub fn host_state(&self) -> &dyn Any {
|
|
&*self.host_state
|
|
}
|
|
|
|
/// Return the offset from the vmctx pointer to its containing Instance.
|
|
#[inline]
|
|
pub(crate) fn vmctx_offset() -> isize {
|
|
offset_of!(Self, vmctx) as isize
|
|
}
|
|
|
|
/// Return the table index for the given `VMTableDefinition`.
|
|
unsafe fn table_index(&self, table: &VMTableDefinition) -> DefinedTableIndex {
|
|
let index = DefinedTableIndex::new(
|
|
usize::try_from(
|
|
(table as *const VMTableDefinition)
|
|
.offset_from(self.table_ptr(DefinedTableIndex::new(0))),
|
|
)
|
|
.unwrap(),
|
|
);
|
|
assert!(index.index() < self.tables.len());
|
|
index
|
|
}
|
|
|
|
/// Grow memory by the specified amount of pages.
|
|
///
|
|
/// Returns `None` if memory can't be grown by the specified amount
|
|
/// of pages. Returns `Some` with the old size in bytes if growth was
|
|
/// successful.
|
|
pub(crate) fn memory_grow(
|
|
&mut self,
|
|
index: MemoryIndex,
|
|
delta: u64,
|
|
) -> Result<Option<usize>, Error> {
|
|
let (idx, instance) = if let Some(idx) = self.module().defined_memory_index(index) {
|
|
(idx, self)
|
|
} else {
|
|
let import = self.imported_memory(index);
|
|
unsafe {
|
|
let foreign_instance = (*import.vmctx).instance_mut();
|
|
(import.index, foreign_instance)
|
|
}
|
|
};
|
|
let store = unsafe { &mut *instance.store() };
|
|
let memory = &mut instance.memories[idx];
|
|
|
|
let result = unsafe { memory.grow(delta, Some(store)) };
|
|
|
|
// Update the state used by a non-shared Wasm memory in case the base
|
|
// pointer and/or the length changed.
|
|
if memory.as_shared_memory().is_none() {
|
|
let vmmemory = memory.vmmemory();
|
|
instance.set_memory(idx, vmmemory);
|
|
}
|
|
|
|
result
|
|
}
|
|
|
|
pub(crate) fn table_element_type(&mut self, table_index: TableIndex) -> TableElementType {
|
|
unsafe { (*self.get_table(table_index)).element_type() }
|
|
}
|
|
|
|
/// Grow table by the specified amount of elements, filling them with
|
|
/// `init_value`.
|
|
///
|
|
/// Returns `None` if table can't be grown by the specified amount of
|
|
/// elements, or if `init_value` is the wrong type of table element.
|
|
pub(crate) fn table_grow(
|
|
&mut self,
|
|
table_index: TableIndex,
|
|
delta: u32,
|
|
init_value: TableElement,
|
|
) -> Result<Option<u32>, Error> {
|
|
let (defined_table_index, instance) =
|
|
self.get_defined_table_index_and_instance(table_index);
|
|
instance.defined_table_grow(defined_table_index, delta, init_value)
|
|
}
|
|
|
|
fn defined_table_grow(
|
|
&mut self,
|
|
table_index: DefinedTableIndex,
|
|
delta: u32,
|
|
init_value: TableElement,
|
|
) -> Result<Option<u32>, Error> {
|
|
let store = unsafe { &mut *self.store() };
|
|
let table = self
|
|
.tables
|
|
.get_mut(table_index)
|
|
.unwrap_or_else(|| panic!("no table for index {}", table_index.index()));
|
|
|
|
let result = unsafe { table.grow(delta, init_value, store) };
|
|
|
|
// Keep the `VMContext` pointers used by compiled Wasm code up to
|
|
// date.
|
|
let element = self.tables[table_index].vmtable();
|
|
self.set_table(table_index, element);
|
|
|
|
result
|
|
}
|
|
|
|
fn alloc_layout(offsets: &VMOffsets<HostPtr>) -> Layout {
|
|
let size = mem::size_of::<Self>()
|
|
.checked_add(usize::try_from(offsets.size_of_vmctx()).unwrap())
|
|
.unwrap();
|
|
let align = mem::align_of::<Self>();
|
|
Layout::from_size_align(size, align).unwrap()
|
|
}
|
|
|
|
/// Construct a new VMCallerCheckedAnyfunc for the given function
|
|
/// (imported or defined in this module) and store into the given
|
|
/// location. Used during lazy initialization.
|
|
///
|
|
/// Note that our current lazy-init scheme actually calls this every
|
|
/// time the anyfunc pointer is fetched; this turns out to be better
|
|
/// than tracking state related to whether it's been initialized
|
|
/// before, because resetting that state on (re)instantiation is
|
|
/// very expensive if there are many anyfuncs.
|
|
fn construct_anyfunc(
|
|
&mut self,
|
|
index: FuncIndex,
|
|
sig: SignatureIndex,
|
|
into: *mut VMCallerCheckedAnyfunc,
|
|
) {
|
|
let type_index = self.runtime_info.signature(sig);
|
|
|
|
let (func_ptr, vmctx) = if let Some(def_index) = self.module().defined_func_index(index) {
|
|
(
|
|
(self.runtime_info.image_base()
|
|
+ self.runtime_info.function_loc(def_index).start as usize)
|
|
as *mut _,
|
|
VMOpaqueContext::from_vmcontext(self.vmctx_ptr()),
|
|
)
|
|
} else {
|
|
let import = self.imported_function(index);
|
|
(import.body.as_ptr(), import.vmctx)
|
|
};
|
|
|
|
// Safety: we have a `&mut self`, so we have exclusive access
|
|
// to this Instance.
|
|
unsafe {
|
|
*into = VMCallerCheckedAnyfunc {
|
|
vmctx,
|
|
type_index,
|
|
func_ptr: NonNull::new(func_ptr).expect("Non-null function pointer"),
|
|
};
|
|
}
|
|
}
|
|
|
|
/// Get a `&VMCallerCheckedAnyfunc` for the given `FuncIndex`.
|
|
///
|
|
/// Returns `None` if the index is the reserved index value.
|
|
///
|
|
/// The returned reference is a stable reference that won't be moved and can
|
|
/// be passed into JIT code.
|
|
pub(crate) fn get_caller_checked_anyfunc(
|
|
&mut self,
|
|
index: FuncIndex,
|
|
) -> Option<*mut VMCallerCheckedAnyfunc> {
|
|
if index == FuncIndex::reserved_value() {
|
|
return None;
|
|
}
|
|
|
|
// Safety: we have a `&mut self`, so we have exclusive access
|
|
// to this Instance.
|
|
unsafe {
|
|
// For now, we eagerly initialize an anyfunc struct in-place
|
|
// whenever asked for a reference to it. This is mostly
|
|
// fine, because in practice each anyfunc is unlikely to be
|
|
// requested more than a few times: once-ish for funcref
|
|
// tables used for call_indirect (the usual compilation
|
|
// strategy places each function in the table at most once),
|
|
// and once or a few times when fetching exports via API.
|
|
// Note that for any case driven by table accesses, the lazy
|
|
// table init behaves like a higher-level cache layer that
|
|
// protects this initialization from happening multiple
|
|
// times, via that particular table at least.
|
|
//
|
|
// When `ref.func` becomes more commonly used or if we
|
|
// otherwise see a use-case where this becomes a hotpath,
|
|
// we can reconsider by using some state to track
|
|
// "uninitialized" explicitly, for example by zeroing the
|
|
// anyfuncs (perhaps together with other
|
|
// zeroed-at-instantiate-time state) or using a separate
|
|
// is-initialized bitmap.
|
|
//
|
|
// We arrived at this design because zeroing memory is
|
|
// expensive, so it's better for instantiation performance
|
|
// if we don't have to track "is-initialized" state at
|
|
// all!
|
|
let func = &self.module().functions[index];
|
|
let sig = func.signature;
|
|
let anyfunc: *mut VMCallerCheckedAnyfunc = self
|
|
.vmctx_plus_offset::<VMCallerCheckedAnyfunc>(
|
|
self.offsets.vmctx_anyfunc(func.anyfunc),
|
|
);
|
|
self.construct_anyfunc(index, sig, anyfunc);
|
|
|
|
Some(anyfunc)
|
|
}
|
|
}
|
|
|
|
/// The `table.init` operation: initializes a portion of a table with a
|
|
/// passive element.
|
|
///
|
|
/// # Errors
|
|
///
|
|
/// Returns a `Trap` error when the range within the table is out of bounds
|
|
/// or the range within the passive element is out of bounds.
|
|
pub(crate) fn table_init(
|
|
&mut self,
|
|
table_index: TableIndex,
|
|
elem_index: ElemIndex,
|
|
dst: u32,
|
|
src: u32,
|
|
len: u32,
|
|
) -> Result<(), TrapCode> {
|
|
// TODO: this `clone()` shouldn't be necessary but is used for now to
|
|
// inform `rustc` that the lifetime of the elements here are
|
|
// disconnected from the lifetime of `self`.
|
|
let module = self.module().clone();
|
|
|
|
let elements = match module.passive_elements_map.get(&elem_index) {
|
|
Some(index) if !self.dropped_elements.contains(elem_index) => {
|
|
module.passive_elements[*index].as_ref()
|
|
}
|
|
_ => &[],
|
|
};
|
|
self.table_init_segment(table_index, elements, dst, src, len)
|
|
}
|
|
|
|
pub(crate) fn table_init_segment(
|
|
&mut self,
|
|
table_index: TableIndex,
|
|
elements: &[FuncIndex],
|
|
dst: u32,
|
|
src: u32,
|
|
len: u32,
|
|
) -> Result<(), TrapCode> {
|
|
// https://webassembly.github.io/bulk-memory-operations/core/exec/instructions.html#exec-table-init
|
|
|
|
let table = unsafe { &mut *self.get_table(table_index) };
|
|
|
|
let elements = match elements
|
|
.get(usize::try_from(src).unwrap()..)
|
|
.and_then(|s| s.get(..usize::try_from(len).unwrap()))
|
|
{
|
|
Some(elements) => elements,
|
|
None => return Err(TrapCode::TableOutOfBounds),
|
|
};
|
|
|
|
match table.element_type() {
|
|
TableElementType::Func => {
|
|
table.init_funcs(
|
|
dst,
|
|
elements.iter().map(|idx| {
|
|
self.get_caller_checked_anyfunc(*idx)
|
|
.unwrap_or(std::ptr::null_mut())
|
|
}),
|
|
)?;
|
|
}
|
|
|
|
TableElementType::Extern => {
|
|
debug_assert!(elements.iter().all(|e| *e == FuncIndex::reserved_value()));
|
|
table.fill(dst, TableElement::ExternRef(None), len)?;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Drop an element.
|
|
pub(crate) fn elem_drop(&mut self, elem_index: ElemIndex) {
|
|
// https://webassembly.github.io/reference-types/core/exec/instructions.html#exec-elem-drop
|
|
|
|
self.dropped_elements.insert(elem_index);
|
|
|
|
// Note that we don't check that we actually removed a segment because
|
|
// dropping a non-passive segment is a no-op (not a trap).
|
|
}
|
|
|
|
/// Get a locally-defined memory.
|
|
pub(crate) fn get_defined_memory(&mut self, index: DefinedMemoryIndex) -> *mut Memory {
|
|
ptr::addr_of_mut!(self.memories[index])
|
|
}
|
|
|
|
/// Do a `memory.copy`
|
|
///
|
|
/// # Errors
|
|
///
|
|
/// Returns a `Trap` error when the source or destination ranges are out of
|
|
/// bounds.
|
|
pub(crate) fn memory_copy(
|
|
&mut self,
|
|
dst_index: MemoryIndex,
|
|
dst: u64,
|
|
src_index: MemoryIndex,
|
|
src: u64,
|
|
len: u64,
|
|
) -> Result<(), TrapCode> {
|
|
// https://webassembly.github.io/reference-types/core/exec/instructions.html#exec-memory-copy
|
|
|
|
let src_mem = self.get_memory(src_index);
|
|
let dst_mem = self.get_memory(dst_index);
|
|
|
|
let src = self.validate_inbounds(src_mem.current_length(), src, len)?;
|
|
let dst = self.validate_inbounds(dst_mem.current_length(), dst, len)?;
|
|
|
|
// Bounds and casts are checked above, by this point we know that
|
|
// everything is safe.
|
|
unsafe {
|
|
let dst = dst_mem.base.add(dst);
|
|
let src = src_mem.base.add(src);
|
|
// FIXME audit whether this is safe in the presence of shared memory
|
|
// (https://github.com/bytecodealliance/wasmtime/issues/4203).
|
|
ptr::copy(src, dst, len as usize);
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn validate_inbounds(&self, max: usize, ptr: u64, len: u64) -> Result<usize, TrapCode> {
|
|
let oob = || TrapCode::HeapOutOfBounds;
|
|
let end = ptr
|
|
.checked_add(len)
|
|
.and_then(|i| usize::try_from(i).ok())
|
|
.ok_or_else(oob)?;
|
|
if end > max {
|
|
Err(oob())
|
|
} else {
|
|
Ok(ptr as usize)
|
|
}
|
|
}
|
|
|
|
/// Perform the `memory.fill` operation on a locally defined memory.
|
|
///
|
|
/// # Errors
|
|
///
|
|
/// Returns a `Trap` error if the memory range is out of bounds.
|
|
pub(crate) fn memory_fill(
|
|
&mut self,
|
|
memory_index: MemoryIndex,
|
|
dst: u64,
|
|
val: u8,
|
|
len: u64,
|
|
) -> Result<(), TrapCode> {
|
|
let memory = self.get_memory(memory_index);
|
|
let dst = self.validate_inbounds(memory.current_length(), dst, len)?;
|
|
|
|
// Bounds and casts are checked above, by this point we know that
|
|
// everything is safe.
|
|
unsafe {
|
|
let dst = memory.base.add(dst);
|
|
// FIXME audit whether this is safe in the presence of shared memory
|
|
// (https://github.com/bytecodealliance/wasmtime/issues/4203).
|
|
ptr::write_bytes(dst, val, len as usize);
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Performs the `memory.init` operation.
|
|
///
|
|
/// # Errors
|
|
///
|
|
/// Returns a `Trap` error if the destination range is out of this module's
|
|
/// memory's bounds or if the source range is outside the data segment's
|
|
/// bounds.
|
|
pub(crate) fn memory_init(
|
|
&mut self,
|
|
memory_index: MemoryIndex,
|
|
data_index: DataIndex,
|
|
dst: u64,
|
|
src: u32,
|
|
len: u32,
|
|
) -> Result<(), TrapCode> {
|
|
let range = match self.module().passive_data_map.get(&data_index).cloned() {
|
|
Some(range) if !self.dropped_data.contains(data_index) => range,
|
|
_ => 0..0,
|
|
};
|
|
self.memory_init_segment(memory_index, range, dst, src, len)
|
|
}
|
|
|
|
pub(crate) fn wasm_data(&self, range: Range<u32>) -> &[u8] {
|
|
&self.runtime_info.wasm_data()[range.start as usize..range.end as usize]
|
|
}
|
|
|
|
pub(crate) fn memory_init_segment(
|
|
&mut self,
|
|
memory_index: MemoryIndex,
|
|
range: Range<u32>,
|
|
dst: u64,
|
|
src: u32,
|
|
len: u32,
|
|
) -> Result<(), TrapCode> {
|
|
// https://webassembly.github.io/bulk-memory-operations/core/exec/instructions.html#exec-memory-init
|
|
|
|
let memory = self.get_memory(memory_index);
|
|
let data = self.wasm_data(range);
|
|
let dst = self.validate_inbounds(memory.current_length(), dst, len.into())?;
|
|
let src = self.validate_inbounds(data.len(), src.into(), len.into())?;
|
|
let len = len as usize;
|
|
|
|
unsafe {
|
|
let src_start = data.as_ptr().add(src);
|
|
let dst_start = memory.base.add(dst);
|
|
// FIXME audit whether this is safe in the presence of shared memory
|
|
// (https://github.com/bytecodealliance/wasmtime/issues/4203).
|
|
ptr::copy_nonoverlapping(src_start, dst_start, len);
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Drop the given data segment, truncating its length to zero.
|
|
pub(crate) fn data_drop(&mut self, data_index: DataIndex) {
|
|
self.dropped_data.insert(data_index);
|
|
|
|
// Note that we don't check that we actually removed a segment because
|
|
// dropping a non-passive segment is a no-op (not a trap).
|
|
}
|
|
|
|
/// Get a table by index regardless of whether it is locally-defined
|
|
/// or an imported, foreign table. Ensure that the given range of
|
|
/// elements in the table is lazily initialized. We define this
|
|
/// operation all-in-one for safety, to ensure the lazy-init
|
|
/// happens.
|
|
///
|
|
/// Takes an `Iterator` for the index-range to lazy-initialize,
|
|
/// for flexibility. This can be a range, single item, or empty
|
|
/// sequence, for example. The iterator should return indices in
|
|
/// increasing order, so that the break-at-out-of-bounds behavior
|
|
/// works correctly.
|
|
pub(crate) fn get_table_with_lazy_init(
|
|
&mut self,
|
|
table_index: TableIndex,
|
|
range: impl Iterator<Item = u32>,
|
|
) -> *mut Table {
|
|
let (idx, instance) = self.get_defined_table_index_and_instance(table_index);
|
|
let elt_ty = instance.tables[idx].element_type();
|
|
|
|
if elt_ty == TableElementType::Func {
|
|
for i in range {
|
|
let value = match instance.tables[idx].get(i) {
|
|
Some(value) => value,
|
|
None => {
|
|
// Out-of-bounds; caller will handle by likely
|
|
// throwing a trap. No work to do to lazy-init
|
|
// beyond the end.
|
|
break;
|
|
}
|
|
};
|
|
if value.is_uninit() {
|
|
let table_init = match &instance.module().table_initialization {
|
|
// We unfortunately can't borrow `tables`
|
|
// outside the loop because we need to call
|
|
// `get_caller_checked_anyfunc` (a `&mut`
|
|
// method) below; so unwrap it dynamically
|
|
// here.
|
|
TableInitialization::FuncTable { tables, .. } => tables,
|
|
_ => break,
|
|
}
|
|
.get(table_index);
|
|
|
|
// The TableInitialization::FuncTable elements table may
|
|
// be smaller than the current size of the table: it
|
|
// always matches the initial table size, if present. We
|
|
// want to iterate up through the end of the accessed
|
|
// index range so that we set an "initialized null" even
|
|
// if there is no initializer. We do a checked `get()` on
|
|
// the initializer table below and unwrap to a null if
|
|
// we're past its end.
|
|
let func_index =
|
|
table_init.and_then(|indices| indices.get(i as usize).cloned());
|
|
let anyfunc = func_index
|
|
.and_then(|func_index| instance.get_caller_checked_anyfunc(func_index))
|
|
.unwrap_or(std::ptr::null_mut());
|
|
|
|
let value = TableElement::FuncRef(anyfunc);
|
|
|
|
instance.tables[idx]
|
|
.set(i, value)
|
|
.expect("Table type should match and index should be in-bounds");
|
|
}
|
|
}
|
|
}
|
|
|
|
ptr::addr_of_mut!(instance.tables[idx])
|
|
}
|
|
|
|
/// Get a table by index regardless of whether it is locally-defined or an
|
|
/// imported, foreign table.
|
|
pub(crate) fn get_table(&mut self, table_index: TableIndex) -> *mut Table {
|
|
let (idx, instance) = self.get_defined_table_index_and_instance(table_index);
|
|
ptr::addr_of_mut!(instance.tables[idx])
|
|
}
|
|
|
|
/// Get a locally-defined table.
|
|
pub(crate) fn get_defined_table(&mut self, index: DefinedTableIndex) -> *mut Table {
|
|
ptr::addr_of_mut!(self.tables[index])
|
|
}
|
|
|
|
pub(crate) fn get_defined_table_index_and_instance(
|
|
&mut self,
|
|
index: TableIndex,
|
|
) -> (DefinedTableIndex, &mut Instance) {
|
|
if let Some(defined_table_index) = self.module().defined_table_index(index) {
|
|
(defined_table_index, self)
|
|
} else {
|
|
let import = self.imported_table(index);
|
|
unsafe {
|
|
let foreign_instance = (*import.vmctx).instance_mut();
|
|
let foreign_table_def = &*import.from;
|
|
let foreign_table_index = foreign_instance.table_index(foreign_table_def);
|
|
(foreign_table_index, foreign_instance)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Initialize the VMContext data associated with this Instance.
|
|
///
|
|
/// The `VMContext` memory is assumed to be uninitialized; any field
|
|
/// that we need in a certain state will be explicitly written by this
|
|
/// function.
|
|
unsafe fn initialize_vmctx(&mut self, module: &Module, store: StorePtr, imports: Imports) {
|
|
assert!(std::ptr::eq(module, self.module().as_ref()));
|
|
|
|
*self.vmctx_plus_offset(self.offsets.vmctx_magic()) = VMCONTEXT_MAGIC;
|
|
self.set_callee(None);
|
|
self.set_store(store.as_raw());
|
|
|
|
// Initialize shared signatures
|
|
let signatures = self.runtime_info.signature_ids();
|
|
*self.vmctx_plus_offset(self.offsets.vmctx_signature_ids_array()) = signatures.as_ptr();
|
|
|
|
// Initialize the built-in functions
|
|
*self.vmctx_plus_offset(self.offsets.vmctx_builtin_functions()) =
|
|
&VMBuiltinFunctionsArray::INIT;
|
|
|
|
// Initialize the imports
|
|
debug_assert_eq!(imports.functions.len(), module.num_imported_funcs);
|
|
ptr::copy_nonoverlapping(
|
|
imports.functions.as_ptr(),
|
|
self.vmctx_plus_offset(self.offsets.vmctx_imported_functions_begin()),
|
|
imports.functions.len(),
|
|
);
|
|
debug_assert_eq!(imports.tables.len(), module.num_imported_tables);
|
|
ptr::copy_nonoverlapping(
|
|
imports.tables.as_ptr(),
|
|
self.vmctx_plus_offset(self.offsets.vmctx_imported_tables_begin()),
|
|
imports.tables.len(),
|
|
);
|
|
debug_assert_eq!(imports.memories.len(), module.num_imported_memories);
|
|
ptr::copy_nonoverlapping(
|
|
imports.memories.as_ptr(),
|
|
self.vmctx_plus_offset(self.offsets.vmctx_imported_memories_begin()),
|
|
imports.memories.len(),
|
|
);
|
|
debug_assert_eq!(imports.globals.len(), module.num_imported_globals);
|
|
ptr::copy_nonoverlapping(
|
|
imports.globals.as_ptr(),
|
|
self.vmctx_plus_offset(self.offsets.vmctx_imported_globals_begin()),
|
|
imports.globals.len(),
|
|
);
|
|
|
|
// N.B.: there is no need to initialize the anyfuncs array because
|
|
// we eagerly construct each element in it whenever asked for a
|
|
// reference to that element. In other words, there is no state
|
|
// needed to track the lazy-init, so we don't need to initialize
|
|
// any state now.
|
|
|
|
// Initialize the defined tables
|
|
let mut ptr = self.vmctx_plus_offset(self.offsets.vmctx_tables_begin());
|
|
for i in 0..module.table_plans.len() - module.num_imported_tables {
|
|
ptr::write(ptr, self.tables[DefinedTableIndex::new(i)].vmtable());
|
|
ptr = ptr.add(1);
|
|
}
|
|
|
|
// Initialize the defined memories. This fills in both the
|
|
// `defined_memories` table and the `owned_memories` table at the same
|
|
// time. Entries in `defined_memories` hold a pointer to a definition
|
|
// (all memories) whereas the `owned_memories` hold the actual
|
|
// definitions of memories owned (not shared) in the module.
|
|
let mut ptr = self.vmctx_plus_offset(self.offsets.vmctx_memories_begin());
|
|
let mut owned_ptr = self.vmctx_plus_offset(self.offsets.vmctx_owned_memories_begin());
|
|
for i in 0..module.memory_plans.len() - module.num_imported_memories {
|
|
let defined_memory_index = DefinedMemoryIndex::new(i);
|
|
let memory_index = module.memory_index(defined_memory_index);
|
|
if module.memory_plans[memory_index].memory.shared {
|
|
let def_ptr = self.memories[defined_memory_index]
|
|
.as_shared_memory()
|
|
.unwrap()
|
|
.vmmemory_ptr_mut();
|
|
ptr::write(ptr, def_ptr);
|
|
} else {
|
|
ptr::write(owned_ptr, self.memories[defined_memory_index].vmmemory());
|
|
ptr::write(ptr, owned_ptr);
|
|
owned_ptr = owned_ptr.add(1);
|
|
}
|
|
ptr = ptr.add(1);
|
|
}
|
|
|
|
// Initialize the defined globals
|
|
self.initialize_vmctx_globals(module);
|
|
}
|
|
|
|
unsafe fn initialize_vmctx_globals(&mut self, module: &Module) {
|
|
let num_imports = module.num_imported_globals;
|
|
for (index, global) in module.globals.iter().skip(num_imports) {
|
|
let def_index = module.defined_global_index(index).unwrap();
|
|
let to = self.global_ptr(def_index);
|
|
|
|
// Initialize the global before writing to it
|
|
ptr::write(to, VMGlobalDefinition::new());
|
|
|
|
match global.initializer {
|
|
GlobalInit::I32Const(x) => *(*to).as_i32_mut() = x,
|
|
GlobalInit::I64Const(x) => *(*to).as_i64_mut() = x,
|
|
GlobalInit::F32Const(x) => *(*to).as_f32_bits_mut() = x,
|
|
GlobalInit::F64Const(x) => *(*to).as_f64_bits_mut() = x,
|
|
GlobalInit::V128Const(x) => *(*to).as_u128_mut() = x,
|
|
GlobalInit::GetGlobal(x) => {
|
|
let from = if let Some(def_x) = module.defined_global_index(x) {
|
|
self.global(def_x)
|
|
} else {
|
|
&*self.imported_global(x).from
|
|
};
|
|
// Globals of type `externref` need to manage the reference
|
|
// count as values move between globals, everything else is just
|
|
// copy-able bits.
|
|
match global.wasm_ty {
|
|
WasmType::ExternRef => {
|
|
*(*to).as_externref_mut() = from.as_externref().clone()
|
|
}
|
|
_ => ptr::copy_nonoverlapping(from, to, 1),
|
|
}
|
|
}
|
|
GlobalInit::RefFunc(f) => {
|
|
*(*to).as_anyfunc_mut() = self.get_caller_checked_anyfunc(f).unwrap()
|
|
as *const VMCallerCheckedAnyfunc;
|
|
}
|
|
GlobalInit::RefNullConst => match global.wasm_ty {
|
|
// `VMGlobalDefinition::new()` already zeroed out the bits
|
|
WasmType::FuncRef => {}
|
|
WasmType::ExternRef => {}
|
|
ty => panic!("unsupported reference type for global: {:?}", ty),
|
|
},
|
|
GlobalInit::Import => panic!("locally-defined global initialized as import"),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Drop for Instance {
|
|
fn drop(&mut self) {
|
|
// Drop any defined globals
|
|
for (idx, global) in self.module().globals.iter() {
|
|
let idx = match self.module().defined_global_index(idx) {
|
|
Some(idx) => idx,
|
|
None => continue,
|
|
};
|
|
match global.wasm_ty {
|
|
// For now only externref globals need to get destroyed
|
|
WasmType::ExternRef => {}
|
|
_ => continue,
|
|
}
|
|
unsafe {
|
|
drop((*self.global_ptr(idx)).as_externref_mut().take());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A handle holding an `Instance` of a WebAssembly module.
|
|
#[derive(Hash, PartialEq, Eq)]
|
|
pub struct InstanceHandle {
|
|
instance: *mut Instance,
|
|
}
|
|
|
|
// These are only valid if the `Instance` type is send/sync, hence the
|
|
// assertion below.
|
|
unsafe impl Send for InstanceHandle {}
|
|
unsafe impl Sync for InstanceHandle {}
|
|
|
|
fn _assert_send_sync() {
|
|
fn _assert<T: Send + Sync>() {}
|
|
_assert::<Instance>();
|
|
}
|
|
|
|
impl InstanceHandle {
|
|
/// Create a new `InstanceHandle` pointing at the instance
|
|
/// pointed to by the given `VMContext` pointer.
|
|
///
|
|
/// # Safety
|
|
/// This is unsafe because it doesn't work on just any `VMContext`, it must
|
|
/// be a `VMContext` allocated as part of an `Instance`.
|
|
#[inline]
|
|
pub unsafe fn from_vmctx(vmctx: *mut VMContext) -> Self {
|
|
let instance = (&mut *vmctx).instance();
|
|
Self {
|
|
instance: instance as *const Instance as *mut Instance,
|
|
}
|
|
}
|
|
|
|
/// Return a reference to the vmctx used by compiled wasm code.
|
|
pub fn vmctx(&self) -> &VMContext {
|
|
self.instance().vmctx()
|
|
}
|
|
|
|
/// Return a raw pointer to the vmctx used by compiled wasm code.
|
|
#[inline]
|
|
pub fn vmctx_ptr(&self) -> *mut VMContext {
|
|
self.instance().vmctx_ptr()
|
|
}
|
|
|
|
/// Return a reference to a module.
|
|
pub fn module(&self) -> &Arc<Module> {
|
|
self.instance().module()
|
|
}
|
|
|
|
/// Lookup a function by index.
|
|
pub fn get_exported_func(&mut self, export: FuncIndex) -> ExportFunction {
|
|
self.instance_mut().get_exported_func(export)
|
|
}
|
|
|
|
/// Lookup a global by index.
|
|
pub fn get_exported_global(&mut self, export: GlobalIndex) -> ExportGlobal {
|
|
self.instance_mut().get_exported_global(export)
|
|
}
|
|
|
|
/// Lookup a memory by index.
|
|
pub fn get_exported_memory(&mut self, export: MemoryIndex) -> ExportMemory {
|
|
self.instance_mut().get_exported_memory(export)
|
|
}
|
|
|
|
/// Lookup a table by index.
|
|
pub fn get_exported_table(&mut self, export: TableIndex) -> ExportTable {
|
|
self.instance_mut().get_exported_table(export)
|
|
}
|
|
|
|
/// Lookup an item with the given index.
|
|
pub fn get_export_by_index(&mut self, export: EntityIndex) -> Export {
|
|
match export {
|
|
EntityIndex::Function(i) => Export::Function(self.get_exported_func(i)),
|
|
EntityIndex::Global(i) => Export::Global(self.get_exported_global(i)),
|
|
EntityIndex::Table(i) => Export::Table(self.get_exported_table(i)),
|
|
EntityIndex::Memory(i) => Export::Memory(self.get_exported_memory(i)),
|
|
}
|
|
}
|
|
|
|
/// Return an iterator over the exports of this instance.
|
|
///
|
|
/// Specifically, it provides access to the key-value pairs, where the keys
|
|
/// are export names, and the values are export declarations which can be
|
|
/// resolved `lookup_by_declaration`.
|
|
pub fn exports(&self) -> indexmap::map::Iter<String, EntityIndex> {
|
|
self.instance().exports()
|
|
}
|
|
|
|
/// Return a reference to the custom state attached to this instance.
|
|
pub fn host_state(&self) -> &dyn Any {
|
|
self.instance().host_state()
|
|
}
|
|
|
|
/// Get a memory defined locally within this module.
|
|
pub fn get_defined_memory(&mut self, index: DefinedMemoryIndex) -> *mut Memory {
|
|
self.instance_mut().get_defined_memory(index)
|
|
}
|
|
|
|
/// Return the table index for the given `VMTableDefinition` in this instance.
|
|
pub unsafe fn table_index(&self, table: &VMTableDefinition) -> DefinedTableIndex {
|
|
self.instance().table_index(table)
|
|
}
|
|
|
|
/// Get a table defined locally within this module.
|
|
pub fn get_defined_table(&mut self, index: DefinedTableIndex) -> *mut Table {
|
|
self.instance_mut().get_defined_table(index)
|
|
}
|
|
|
|
/// Get a table defined locally within this module, lazily
|
|
/// initializing the given range first.
|
|
pub fn get_defined_table_with_lazy_init(
|
|
&mut self,
|
|
index: DefinedTableIndex,
|
|
range: impl Iterator<Item = u32>,
|
|
) -> *mut Table {
|
|
let index = self.instance().module().table_index(index);
|
|
self.instance_mut().get_table_with_lazy_init(index, range)
|
|
}
|
|
|
|
/// Return a reference to the contained `Instance`.
|
|
#[inline]
|
|
pub(crate) fn instance(&self) -> &Instance {
|
|
unsafe { &*(self.instance as *const Instance) }
|
|
}
|
|
|
|
pub(crate) fn instance_mut(&mut self) -> &mut Instance {
|
|
unsafe { &mut *self.instance }
|
|
}
|
|
|
|
/// Returns the `Store` pointer that was stored on creation
|
|
#[inline]
|
|
pub fn store(&self) -> *mut dyn Store {
|
|
self.instance().store()
|
|
}
|
|
|
|
/// Configure the `*mut dyn Store` internal pointer after-the-fact.
|
|
///
|
|
/// This is provided for the original `Store` itself to configure the first
|
|
/// self-pointer after the original `Box` has been initialized.
|
|
pub unsafe fn set_store(&mut self, store: *mut dyn Store) {
|
|
self.instance_mut().set_store(Some(store));
|
|
}
|
|
|
|
/// Returns a clone of this instance.
|
|
///
|
|
/// This is unsafe because the returned handle here is just a cheap clone
|
|
/// of the internals, there's no lifetime tracking around its validity.
|
|
/// You'll need to ensure that the returned handles all go out of scope at
|
|
/// the same time.
|
|
#[inline]
|
|
pub unsafe fn clone(&self) -> InstanceHandle {
|
|
InstanceHandle {
|
|
instance: self.instance,
|
|
}
|
|
}
|
|
}
|