A CallConv enum on every function signature makes it possible to
generate calls to functions with different calling conventions within
the same ISA / within a single function.
The calling conventions also serve as a way of customizing Cretonne's
behavior when embedded inside a VM. As an example, the SpiderWASM
calling convention is used to compile WebAssembly functions that run
inside the SpiderMonkey virtual machine.
All function signatures must have a calling convention at the end, so
this changes the textual IL syntax.
Before:
sig1 = signature(i32, f64) -> f64
After
sig1 = (i32, f64) -> f64 native
sig2 = (i32) spiderwasm
When printing functions, the signature goes after the return types:
function %r1() -> i32, f32 spiderwasm {
ebb1:
...
}
In the parser, this calling convention is optional and defaults to
"native". This is mostly to avoid updating all the existing test cases
under filetests/. When printing a function, the calling convention is
always included, including for "native" functions.
683 lines
27 KiB
Rust
683 lines
27 KiB
Rust
//! A frontend for building Cretonne IL from other languages.
|
|
use cretonne::ir::{Ebb, Type, Value, Function, Inst, JumpTable, StackSlot, JumpTableData,
|
|
StackSlotData, DataFlowGraph, InstructionData, ExtFuncData, FuncRef, SigRef,
|
|
Signature, InstBuilderBase};
|
|
use cretonne::ir::instructions::BranchInfo;
|
|
use cretonne::ir::function::DisplayFunction;
|
|
use cretonne::isa::TargetIsa;
|
|
use ssa::{SSABuilder, SideEffects, Block};
|
|
use cretonne::entity_map::{EntityMap, PrimaryEntityData};
|
|
use cretonne::entity_ref::EntityRef;
|
|
use std::hash::Hash;
|
|
|
|
/// Permanent structure used for translating into Cretonne IL.
|
|
pub struct ILBuilder<Variable>
|
|
where Variable: EntityRef + Hash + Default
|
|
{
|
|
ssa: SSABuilder<Variable>,
|
|
ebbs: EntityMap<Ebb, EbbData>,
|
|
types: EntityMap<Variable, Type>,
|
|
function_args_values: Vec<Value>,
|
|
}
|
|
|
|
|
|
/// Temporary object used to build a Cretonne IL `Function`.
|
|
pub struct FunctionBuilder<'a, Variable: 'a>
|
|
where Variable: EntityRef + Hash + Default
|
|
{
|
|
func: &'a mut Function,
|
|
builder: &'a mut ILBuilder<Variable>,
|
|
position: Position,
|
|
pristine: bool,
|
|
}
|
|
|
|
#[derive(Clone, Default)]
|
|
struct EbbData {
|
|
filled: bool,
|
|
pristine: bool,
|
|
user_arg_count: usize,
|
|
}
|
|
|
|
impl PrimaryEntityData for EbbData {}
|
|
|
|
struct Position {
|
|
ebb: Ebb,
|
|
basic_block: Block,
|
|
}
|
|
|
|
impl<Variable> ILBuilder<Variable>
|
|
where Variable: EntityRef + Hash + Default
|
|
{
|
|
/// Creates a ILBuilder structure. The structure is automatically cleared each time it is
|
|
/// passed to a [`FunctionBuilder`](struct.FunctionBuilder.html) for creation.
|
|
pub fn new() -> ILBuilder<Variable> {
|
|
ILBuilder {
|
|
ssa: SSABuilder::new(),
|
|
ebbs: EntityMap::new(),
|
|
types: EntityMap::new(),
|
|
function_args_values: Vec::new(),
|
|
}
|
|
}
|
|
|
|
fn clear(&mut self) {
|
|
self.ssa.clear();
|
|
self.ebbs.clear();
|
|
self.types.clear();
|
|
self.function_args_values.clear();
|
|
}
|
|
}
|
|
|
|
/// Implementation of the [`InstBuilder`](../cretonne/ir/builder/trait.InstBuilder.html) that has
|
|
/// one convenience method per Cretonne IL instruction.
|
|
pub struct FuncInstBuilder<'short, 'long: 'short, Variable: 'long>
|
|
where Variable: EntityRef + Hash + Default
|
|
{
|
|
builder: &'short mut FunctionBuilder<'long, Variable>,
|
|
ebb: Ebb,
|
|
}
|
|
|
|
impl<'short, 'long, Variable> FuncInstBuilder<'short, 'long, Variable>
|
|
where Variable: EntityRef + Hash + Default
|
|
{
|
|
fn new<'s, 'l>(builder: &'s mut FunctionBuilder<'l, Variable>,
|
|
ebb: Ebb)
|
|
-> FuncInstBuilder<'s, 'l, Variable> {
|
|
FuncInstBuilder { builder, ebb }
|
|
}
|
|
}
|
|
|
|
impl<'short, 'long, Variable> InstBuilderBase<'short> for FuncInstBuilder<'short, 'long, Variable>
|
|
where Variable: EntityRef + Hash + Default
|
|
{
|
|
fn data_flow_graph(&self) -> &DataFlowGraph {
|
|
&self.builder.func.dfg
|
|
}
|
|
|
|
fn data_flow_graph_mut(&mut self) -> &mut DataFlowGraph {
|
|
&mut self.builder.func.dfg
|
|
}
|
|
|
|
// This implementation is richer than `InsertBuilder` because we use the data of the
|
|
// instruction being inserted to add related info to the DFG and the SSA building system,
|
|
// and perform debug sanity checks.
|
|
fn build(self, data: InstructionData, ctrl_typevar: Type) -> (Inst, &'short mut DataFlowGraph) {
|
|
if data.opcode().is_return() {
|
|
self.builder
|
|
.check_return_args(data.arguments(&self.builder.func.dfg.value_lists))
|
|
}
|
|
// We only insert the Ebb in the layout when an instruction is added to it
|
|
if self.builder.builder.ebbs[self.builder.position.ebb].pristine {
|
|
if !self.builder
|
|
.func
|
|
.layout
|
|
.is_ebb_inserted(self.builder.position.ebb) {
|
|
self.builder
|
|
.func
|
|
.layout
|
|
.append_ebb(self.builder.position.ebb);
|
|
}
|
|
self.builder.builder.ebbs[self.builder.position.ebb].pristine = false;
|
|
} else {
|
|
debug_assert!(!self.builder.builder.ebbs[self.builder.position.ebb].filled,
|
|
"you cannot add an instruction to a block already filled");
|
|
}
|
|
let inst = self.builder.func.dfg.make_inst(data.clone());
|
|
self.builder.func.dfg.make_inst_results(inst, ctrl_typevar);
|
|
self.builder.func.layout.append_inst(inst, self.ebb);
|
|
if data.opcode().is_branch() {
|
|
match data.branch_destination() {
|
|
Some(dest_ebb) => {
|
|
// If the user has supplied jump arguments we must adapt the arguments of
|
|
// the destination ebb
|
|
// TODO: find a way not to allocate a vector
|
|
let args_types: Vec<Type> =
|
|
match data.analyze_branch(&self.builder.func.dfg.value_lists) {
|
|
BranchInfo::SingleDest(_, args) => {
|
|
args.iter()
|
|
.map(|arg| self.builder.func.dfg.value_type(arg.clone()))
|
|
.collect()
|
|
}
|
|
_ => panic!("should not happen"),
|
|
};
|
|
self.builder
|
|
.ebb_args_adjustement(dest_ebb, args_types.as_slice());
|
|
self.builder.declare_successor(dest_ebb, inst);
|
|
}
|
|
None => {
|
|
// branch_destination() doesn't detect jump_tables
|
|
match data {
|
|
// If jump table we declare all entries successor
|
|
// TODO: not collect with vector?
|
|
InstructionData::BranchTable { table, .. } => {
|
|
for dest_ebb in self.builder
|
|
.func
|
|
.jump_tables
|
|
.get(table)
|
|
.expect("you are referencing an undeclared jump table")
|
|
.entries()
|
|
.map(|(_, ebb)| ebb)
|
|
.collect::<Vec<Ebb>>() {
|
|
self.builder.declare_successor(dest_ebb, inst)
|
|
}
|
|
}
|
|
// If not we do nothing
|
|
_ => {}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if data.opcode().is_terminator() {
|
|
self.builder.fill_current_block()
|
|
} else if data.opcode().is_branch() {
|
|
self.builder.move_to_next_basic_block()
|
|
}
|
|
(inst, &mut self.builder.func.dfg)
|
|
}
|
|
}
|
|
|
|
/// This module allows you to create a function in Cretonne IL in a straightforward way, hiding
|
|
/// all the complexity of its internal representation.
|
|
///
|
|
/// The module is parametrized by one type which is the representation of variables in your
|
|
/// origin language. It offers a way to conveniently append instruction to your program flow.
|
|
/// You are responsible to split your instruction flow into extended blocks (declared with
|
|
/// `create_ebb`) whose properties are:
|
|
///
|
|
/// - branch and jump instructions can only point at the top of extended blocks;
|
|
/// - the last instruction of each block is a terminator instruction which has no natural sucessor,
|
|
/// and those instructions can only appear at the end of extended blocks.
|
|
///
|
|
/// The parameters of Cretonne IL instructions are Cretonne IL values, which can only be created
|
|
/// as results of other Cretonne IL instructions. To be able to create variables redefined multiple
|
|
/// times in your program, use the `def_var` and `use_var` command, that will maintain the
|
|
/// correspondance between your variables and Cretonne IL SSA values.
|
|
///
|
|
/// The first block for which you call `switch_to_block` will be assumed to be the beginning of
|
|
/// the function.
|
|
///
|
|
/// At creation, a `FunctionBuilder` instance borrows an already allocated `Function` which it
|
|
/// modifies with the information stored in the mutable borrowed
|
|
/// [`ILBuilder`](struct.ILBuilder.html). The function passed in argument should be newly created
|
|
/// with [`Function::with_name_signature()`](../function/struct.Function.html), whereas the
|
|
/// `ILBuilder` can be kept as is between two function translations.
|
|
///
|
|
/// # Errors
|
|
///
|
|
/// The functions below will panic in debug mode whenever you try to modify the Cretonne IL
|
|
/// function in a way that violate the coherence of the code. For instance: switching to a new
|
|
/// `Ebb` when you haven't filled the current one with a terminator instruction, inserting a
|
|
/// return instruction with arguments that don't match the function's signature.
|
|
impl<'a, Variable> FunctionBuilder<'a, Variable>
|
|
where Variable: EntityRef + Hash + Default
|
|
{
|
|
/// Creates a new FunctionBuilder structure that will operate on a `Function` using a
|
|
/// `IlBuilder`.
|
|
pub fn new(func: &'a mut Function,
|
|
builder: &'a mut ILBuilder<Variable>)
|
|
-> FunctionBuilder<'a, Variable> {
|
|
builder.clear();
|
|
FunctionBuilder {
|
|
func: func,
|
|
builder: builder,
|
|
position: Position {
|
|
ebb: Ebb::new(0),
|
|
basic_block: Block::new(0),
|
|
},
|
|
pristine: true,
|
|
}
|
|
}
|
|
|
|
/// Creates a new `Ebb` for the function and returns its reference.
|
|
pub fn create_ebb(&mut self) -> Ebb {
|
|
let ebb = self.func.dfg.make_ebb();
|
|
self.builder.ssa.declare_ebb_header_block(ebb);
|
|
*self.builder.ebbs.ensure(ebb) = EbbData {
|
|
filled: false,
|
|
pristine: true,
|
|
user_arg_count: 0,
|
|
};
|
|
ebb
|
|
}
|
|
|
|
/// After the call to this function, new instructions will be inserted into the designated
|
|
/// block, in the order they are declared. You must declare the types of the Ebb arguments
|
|
/// you will use here.
|
|
///
|
|
/// When inserting the terminator instruction (which doesn't have a falltrough to its immediate
|
|
/// successor), the block will be declared filled and it will not be possible to append
|
|
/// instructions to it.
|
|
pub fn switch_to_block(&mut self, ebb: Ebb, jump_args: &[Type]) -> &[Value] {
|
|
if self.pristine {
|
|
self.fill_function_args_values(ebb);
|
|
}
|
|
if !self.builder.ebbs[self.position.ebb].pristine {
|
|
// First we check that the previous block has been filled.
|
|
debug_assert!(self.is_unreachable() || self.builder.ebbs[self.position.ebb].filled,
|
|
"you have to fill your block before switching");
|
|
}
|
|
// We cannot switch to a filled block
|
|
debug_assert!(!self.builder.ebbs[ebb].filled,
|
|
"you cannot switch to a block which is already filled");
|
|
|
|
let basic_block = self.builder.ssa.header_block(ebb);
|
|
// Then we change the cursor position.
|
|
self.position = Position {
|
|
ebb: ebb,
|
|
basic_block: basic_block,
|
|
};
|
|
self.ebb_args_adjustement(ebb, jump_args);
|
|
self.func.dfg.ebb_args(ebb)
|
|
}
|
|
|
|
/// Declares that all the predecessors of this block are known.
|
|
///
|
|
/// Function to call with `ebb` as soon as the last branch instruction to `ebb` has been
|
|
/// created. Forgetting to call this method on every block will cause inconsistences in the
|
|
/// produced functions.
|
|
pub fn seal_block(&mut self, ebb: Ebb) {
|
|
let side_effects = self.builder
|
|
.ssa
|
|
.seal_ebb_header_block(ebb,
|
|
&mut self.func.dfg,
|
|
&mut self.func.layout,
|
|
&mut self.func.jump_tables);
|
|
self.handle_ssa_side_effects(side_effects);
|
|
}
|
|
|
|
/// In order to use a variable in a `use_var`, you need to declare its type with this method.
|
|
pub fn declare_var(&mut self, var: Variable, ty: Type) {
|
|
*self.builder.types.ensure(var) = ty;
|
|
}
|
|
|
|
/// Returns the Cretonne IL value corresponding to the utilization at the current program
|
|
/// position of a previously defined user variable.
|
|
pub fn use_var(&mut self, var: Variable) -> Value {
|
|
let ty = *self.builder
|
|
.types
|
|
.get(var)
|
|
.expect("this variable is used but its type has not been declared");
|
|
let (val, side_effects) = self.builder
|
|
.ssa
|
|
.use_var(&mut self.func.dfg,
|
|
&mut self.func.layout,
|
|
&mut self.func.jump_tables,
|
|
var,
|
|
ty,
|
|
self.position.basic_block);
|
|
self.handle_ssa_side_effects(side_effects);
|
|
val
|
|
}
|
|
|
|
/// Register a new definition of a user variable. Panics if the type of the value is not the
|
|
/// same as the type registered for the variable.
|
|
pub fn def_var(&mut self, var: Variable, val: Value) {
|
|
debug_assert!(self.func.dfg.value_type(val) == self.builder.types[var],
|
|
"the type of the value is not the type registered for the variable");
|
|
self.builder
|
|
.ssa
|
|
.def_var(var, val, self.position.basic_block);
|
|
}
|
|
|
|
/// Returns the value corresponding to the `i`-th argument of the function as defined by
|
|
/// the function signature. Panics if `i` is out of bounds or if called before the first call
|
|
/// to `switch_to_block`.
|
|
pub fn arg_value(&self, i: usize) -> Value {
|
|
debug_assert!(!self.pristine, "you have to call switch_to_block first.");
|
|
self.builder.function_args_values[i]
|
|
}
|
|
|
|
/// Creates a jump table in the function, to be used by `br_table` instructions.
|
|
pub fn create_jump_table(&mut self) -> JumpTable {
|
|
self.func.jump_tables.push(JumpTableData::new())
|
|
}
|
|
|
|
/// Inserts an entry in a previously declared jump table.
|
|
pub fn insert_jump_table_entry(&mut self, jt: JumpTable, index: usize, ebb: Ebb) {
|
|
self.func.jump_tables[jt].set_entry(index, ebb);
|
|
}
|
|
|
|
/// Creates a stack slot in the function, to be used by `stack_load`, `stack_store` and
|
|
/// `stack_addr` instructions.
|
|
pub fn create_stack_slot(&mut self, data: StackSlotData) -> StackSlot {
|
|
self.func.stack_slots.push(data)
|
|
}
|
|
|
|
/// Adds a signature which can later be used to declare an external function import.
|
|
pub fn import_signature(&mut self, signature: Signature) -> SigRef {
|
|
self.func.dfg.signatures.push(signature)
|
|
}
|
|
|
|
/// Declare an external function import.
|
|
pub fn import_function(&mut self, data: ExtFuncData) -> FuncRef {
|
|
self.func.dfg.ext_funcs.push(data)
|
|
}
|
|
|
|
/// Returns an object with the [`InstBuilder`](../cretonne/ir/builder/trait.InstBuilder.html)
|
|
/// trait that allows to conveniently append an instruction to the current `Ebb` being built.
|
|
pub fn ins<'short>(&'short mut self) -> FuncInstBuilder<'short, 'a, Variable> {
|
|
let ebb = self.position.ebb;
|
|
FuncInstBuilder::new(self, ebb)
|
|
}
|
|
}
|
|
|
|
/// All the functions documented in the previous block are write-only and help you build a valid
|
|
/// Cretonne IL functions via multiple debug asserts. However, you might need to improve the
|
|
/// performance of your translation perform more complex transformations to your Cretonne IL
|
|
/// function. The functions below help you inspect the function you're creating and modify it
|
|
/// in ways that can be unsafe if used incorrectly.
|
|
impl<'a, Variable> FunctionBuilder<'a, Variable>
|
|
where Variable: EntityRef + Hash + Default
|
|
{
|
|
/// Retrieves all the arguments for an `Ebb` currently infered from the jump instructions
|
|
/// inserted that target it and the SSA construction.
|
|
pub fn ebb_args(&self, ebb: Ebb) -> &[Value] {
|
|
self.func.dfg.ebb_args(ebb)
|
|
}
|
|
|
|
/// Retrieves the signature with reference `sigref` previously added with `import_signature`.
|
|
pub fn signature(&self, sigref: SigRef) -> Option<&Signature> {
|
|
self.func.dfg.signatures.get(sigref)
|
|
}
|
|
|
|
/// Creates a argument for a specific `Ebb` by appending it to the list of already existing
|
|
/// arguments.
|
|
///
|
|
/// **Note:** this function has to be called at the creation of the `Ebb` before adding
|
|
/// instructions to it, otherwise this could interfere with SSA construction.
|
|
pub fn append_ebb_arg(&mut self, ebb: Ebb, ty: Type) -> Value {
|
|
debug_assert!(self.builder.ebbs[ebb].pristine);
|
|
self.func.dfg.append_ebb_arg(ebb, ty)
|
|
}
|
|
|
|
/// Returns the result values of an instruction.
|
|
pub fn inst_results(&self, inst: Inst) -> &[Value] {
|
|
self.func.dfg.inst_results(inst)
|
|
}
|
|
|
|
/// Changes the destination of a jump instruction after creation.
|
|
///
|
|
/// **Note:** You are responsible for maintaining the coherence with the arguments of
|
|
/// other jump instructions.
|
|
pub fn change_jump_destination(&mut self, inst: Inst, new_dest: Ebb) {
|
|
let old_dest =
|
|
self.func.dfg[inst]
|
|
.branch_destination_mut()
|
|
.expect("you want to change the jump destination of a non-jump instruction");
|
|
let pred = self.builder.ssa.remove_ebb_predecessor(*old_dest, inst);
|
|
*old_dest = new_dest;
|
|
self.builder
|
|
.ssa
|
|
.declare_ebb_predecessor(new_dest, pred, inst);
|
|
}
|
|
|
|
/// Returns `true` if and only if the current `Ebb` is sealed and has no predecessors declared.
|
|
///
|
|
/// The entry block of a function is never unreachable.
|
|
pub fn is_unreachable(&self) -> bool {
|
|
let is_entry = match self.func.layout.entry_block() {
|
|
None => false,
|
|
Some(entry) => self.position.ebb == entry,
|
|
};
|
|
(!is_entry && self.builder.ssa.is_sealed(self.position.ebb) &&
|
|
self.builder.ssa.predecessors(self.position.ebb).is_empty())
|
|
}
|
|
|
|
/// Returns `true` if and only if no instructions have been added since the last call to
|
|
/// `switch_to_block`.
|
|
pub fn is_pristine(&self) -> bool {
|
|
self.builder.ebbs[self.position.ebb].pristine
|
|
}
|
|
|
|
/// Returns `true` if and only if a terminator instruction has been inserted since the
|
|
/// last call to `switch_to_block`.
|
|
pub fn is_filled(&self) -> bool {
|
|
self.builder.ebbs[self.position.ebb].filled
|
|
}
|
|
|
|
/// Returns a displayable object for the function as it is.
|
|
///
|
|
/// Useful for debug purposes. Use it with `None` for standard printing.
|
|
pub fn display<'b, I: Into<Option<&'b TargetIsa>>>(&'b self, isa: I) -> DisplayFunction {
|
|
self.func.display(isa)
|
|
}
|
|
}
|
|
|
|
impl<'a, Variable> Drop for FunctionBuilder<'a, Variable>
|
|
where Variable: EntityRef + Hash + Default
|
|
{
|
|
/// When a `FunctionBuilder` goes out of scope, it means that the function is fully built.
|
|
/// We then proceed to check if all the `Ebb`s are filled and sealed
|
|
fn drop(&mut self) {
|
|
debug_assert!(self.builder
|
|
.ebbs
|
|
.keys()
|
|
.all(|ebb| {
|
|
self.builder.ebbs[ebb].pristine ||
|
|
(self.builder.ssa.is_sealed(ebb) &&
|
|
self.builder.ebbs[ebb].filled)
|
|
}),
|
|
"all blocks should be filled and sealed before dropping a FunctionBuilder")
|
|
}
|
|
}
|
|
|
|
// Helper functions
|
|
impl<'a, Variable> FunctionBuilder<'a, Variable>
|
|
where Variable: EntityRef + Hash + Default
|
|
{
|
|
fn move_to_next_basic_block(&mut self) {
|
|
self.position.basic_block = self.builder
|
|
.ssa
|
|
.declare_ebb_body_block(self.position.basic_block);
|
|
}
|
|
|
|
fn fill_current_block(&mut self) {
|
|
self.builder.ebbs[self.position.ebb].filled = true;
|
|
}
|
|
|
|
fn declare_successor(&mut self, dest_ebb: Ebb, jump_inst: Inst) {
|
|
self.builder
|
|
.ssa
|
|
.declare_ebb_predecessor(dest_ebb, self.position.basic_block, jump_inst);
|
|
}
|
|
|
|
fn check_return_args(&self, args: &[Value]) {
|
|
debug_assert_eq!(args.len(),
|
|
self.func.signature.return_types.len(),
|
|
"the number of returned values doesn't match the function signature ");
|
|
for (i, arg) in args.iter().enumerate() {
|
|
let valty = self.func.dfg.value_type(*arg);
|
|
debug_assert_eq!(valty,
|
|
self.func.signature.return_types[i].value_type,
|
|
"the types of the values returned don't match the \
|
|
function signature");
|
|
}
|
|
}
|
|
|
|
fn fill_function_args_values(&mut self, ebb: Ebb) {
|
|
debug_assert!(self.pristine);
|
|
for argtyp in self.func.signature.argument_types.iter() {
|
|
self.builder
|
|
.function_args_values
|
|
.push(self.func.dfg.append_ebb_arg(ebb, argtyp.value_type));
|
|
}
|
|
self.pristine = false;
|
|
}
|
|
|
|
|
|
fn ebb_args_adjustement(&mut self, dest_ebb: Ebb, jump_args: &[Type]) {
|
|
let ty_to_append: Option<Vec<Type>> =
|
|
if self.builder.ssa.predecessors(dest_ebb).len() == 0 ||
|
|
self.builder.ebbs[dest_ebb].pristine {
|
|
// This is the first jump instruction targeting this Ebb
|
|
// so the jump arguments supplied here are this Ebb' arguments
|
|
// However some of the arguments might already be there
|
|
// in the Ebb so we have to check they're consistent
|
|
let dest_ebb_args = self.func.dfg.ebb_args(dest_ebb);
|
|
debug_assert!(dest_ebb_args
|
|
.iter()
|
|
.zip(jump_args.iter().take(dest_ebb_args.len()))
|
|
.all(|(dest_arg, jump_arg)| {
|
|
*jump_arg == self.func.dfg.value_type(*dest_arg)
|
|
}),
|
|
"the jump argument supplied has not the \
|
|
same type as the corresponding dest ebb argument");
|
|
self.builder.ebbs[dest_ebb].user_arg_count = jump_args.len();
|
|
Some(jump_args
|
|
.iter()
|
|
.skip(dest_ebb_args.len())
|
|
.cloned()
|
|
.collect())
|
|
} else {
|
|
let dest_ebb_args = self.func.dfg.ebb_args(dest_ebb);
|
|
// The Ebb already has predecessors
|
|
// We check that the arguments supplied match those supplied
|
|
// previously.
|
|
debug_assert!(jump_args.len() == self.builder.ebbs[dest_ebb].user_arg_count,
|
|
"the jump instruction doesn't have the same \
|
|
number of arguments as its destination Ebb \
|
|
({} vs {}).",
|
|
jump_args.len(),
|
|
dest_ebb_args.len());
|
|
debug_assert!(jump_args
|
|
.iter()
|
|
.zip(dest_ebb_args
|
|
.iter()
|
|
.take(self.builder.ebbs[dest_ebb].user_arg_count)
|
|
)
|
|
.all(|(jump_arg, dest_arg)| {
|
|
*jump_arg == self.func.dfg.value_type(*dest_arg)
|
|
}),
|
|
"the jump argument supplied has not the \
|
|
same type as the corresponding dest ebb argument");
|
|
None
|
|
};
|
|
if let Some(ty_args) = ty_to_append {
|
|
for ty in ty_args {
|
|
self.func.dfg.append_ebb_arg(dest_ebb, ty);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn handle_ssa_side_effects(&mut self, side_effects: SideEffects) {
|
|
for split_ebb in side_effects.split_ebbs_created {
|
|
self.builder.ebbs.ensure(split_ebb).filled = true
|
|
}
|
|
for modified_ebb in side_effects.instructions_added_to_ebbs {
|
|
self.builder.ebbs[modified_ebb].pristine = false
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
|
|
use cretonne::entity_ref::EntityRef;
|
|
use cretonne::ir::{FunctionName, Function, CallConv, Signature, ArgumentType, InstBuilder};
|
|
use cretonne::ir::types::*;
|
|
use frontend::{ILBuilder, FunctionBuilder};
|
|
use cretonne::verifier::verify_function;
|
|
|
|
use std::u32;
|
|
|
|
// An opaque reference to variable.
|
|
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
|
|
pub struct Variable(u32);
|
|
impl EntityRef for Variable {
|
|
fn new(index: usize) -> Self {
|
|
assert!(index < (u32::MAX as usize));
|
|
Variable(index as u32)
|
|
}
|
|
|
|
fn index(self) -> usize {
|
|
self.0 as usize
|
|
}
|
|
}
|
|
impl Default for Variable {
|
|
fn default() -> Variable {
|
|
Variable(u32::MAX)
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn sample_function() {
|
|
let mut sig = Signature::new(CallConv::Native);
|
|
sig.return_types.push(ArgumentType::new(I32));
|
|
sig.argument_types.push(ArgumentType::new(I32));
|
|
|
|
let mut il_builder = ILBuilder::<Variable>::new();
|
|
let mut func = Function::with_name_signature(FunctionName::new("sample_function"), sig);
|
|
{
|
|
let mut builder = FunctionBuilder::<Variable>::new(&mut func, &mut il_builder);
|
|
|
|
let block0 = builder.create_ebb();
|
|
let block1 = builder.create_ebb();
|
|
let block2 = builder.create_ebb();
|
|
let x = Variable(0);
|
|
let y = Variable(1);
|
|
let z = Variable(2);
|
|
builder.declare_var(x, I32);
|
|
builder.declare_var(y, I32);
|
|
builder.declare_var(z, I32);
|
|
|
|
builder.switch_to_block(block0, &[]);
|
|
builder.seal_block(block0);
|
|
{
|
|
let tmp = builder.arg_value(0);
|
|
builder.def_var(x, tmp);
|
|
}
|
|
{
|
|
let tmp = builder.ins().iconst(I32, 2);
|
|
builder.def_var(y, tmp);
|
|
}
|
|
{
|
|
let arg1 = builder.use_var(x);
|
|
let arg2 = builder.use_var(y);
|
|
let tmp = builder.ins().iadd(arg1, arg2);
|
|
builder.def_var(z, tmp);
|
|
}
|
|
builder.ins().jump(block1, &[]);
|
|
|
|
builder.switch_to_block(block1, &[]);
|
|
{
|
|
let arg1 = builder.use_var(y);
|
|
let arg2 = builder.use_var(z);
|
|
let tmp = builder.ins().iadd(arg1, arg2);
|
|
builder.def_var(z, tmp);
|
|
}
|
|
{
|
|
let arg = builder.use_var(y);
|
|
builder.ins().brnz(arg, block2, &[]);
|
|
}
|
|
{
|
|
let arg1 = builder.use_var(z);
|
|
let arg2 = builder.use_var(x);
|
|
let tmp = builder.ins().isub(arg1, arg2);
|
|
builder.def_var(z, tmp);
|
|
}
|
|
{
|
|
let arg = builder.use_var(y);
|
|
builder.ins().return_(&[arg]);
|
|
}
|
|
|
|
builder.switch_to_block(block2, &[]);
|
|
builder.seal_block(block2);
|
|
|
|
{
|
|
let arg1 = builder.use_var(y);
|
|
let arg2 = builder.use_var(x);
|
|
let tmp = builder.ins().isub(arg1, arg2);
|
|
builder.def_var(y, tmp);
|
|
}
|
|
builder.ins().jump(block1, &[]);
|
|
builder.seal_block(block1);
|
|
}
|
|
|
|
let res = verify_function(&func, None);
|
|
// println!("{}", func.display(None));
|
|
match res {
|
|
Ok(_) => {}
|
|
Err(err) => panic!("{}{}", func.display(None), err),
|
|
}
|
|
}
|
|
}
|