Files
wasmtime/crates/jit/src/instantiate.rs
Alex Crichton cd53bed898 Implement AOT compilation for components (#5160)
* Pull `Module` out of `ModuleTextBuilder`

This commit is the first in what will likely be a number towards
preparing for serializing a compiled component to bytes, a precompiled
artifact. To that end my rough plan is to merge all of the compiled
artifacts for a component into one large object file instead of having
lots of separate object files and lots of separate mmaps to manage. To
that end I plan on eventually using `ModuleTextBuilder` to build one
large text section for all core wasm modules and trampolines, meaning
that `ModuleTextBuilder` is no longer specific to one module. I've
extracted out functionality such as function name calculation as well as
relocation resolving (now a closure passed in) in preparation for this.

For now this just keeps tests passing, and the trajectory for this
should become more clear over the following commits.

* Remove component-specific object emission

This commit removes the `ComponentCompiler::emit_obj` function in favor
of `Compiler::emit_obj`, now renamed `append_code`. This involved
significantly refactoring code emission to take a flat list of functions
into `append_code` and the caller is responsible for weaving together
various "families" of functions and un-weaving them afterwards.

* Consolidate ELF parsing in `CodeMemory`

This commit moves the ELF file parsing and section iteration from
`CompiledModule` into `CodeMemory` so one location keeps track of
section ranges and such. This is in preparation for sharing much of this
code with components which needs all the same sections to get tracked
but won't be using `CompiledModule`. A small side benefit from this is
that the section parsing done in `CodeMemory` and `CompiledModule` is no
longer duplicated.

* Remove separately tracked traps in components

Previously components would generate an "always trapping" function
and the metadata around which pc was allowed to trap was handled
manually for components. With recent refactorings the Wasmtime-standard
trap section in object files is now being generated for components as
well which means that can be reused instead of custom-tracking this
metadata. This commit removes the manual tracking for the `always_trap`
functions and plumbs the necessary bits around to make components look
more like modules.

* Remove a now-unnecessary `Arc` in `Module`

Not expected to have any measurable impact on performance, but
complexity-wise this should make it a bit easier to understand the
internals since there's no longer any need to store this somewhere else
than its owner's location.

* Merge compilation artifacts of components

This commit is a large refactoring of the component compilation process
to produce a single artifact instead of multiple binary artifacts. The
core wasm compilation process is refactored as well to share as much
code as necessary with the component compilation process.

This method of representing a compiled component necessitated a few
medium-sized changes internally within Wasmtime:

* A new data structure was created, `CodeObject`, which represents
  metadata about a single compiled artifact. This is then stored as an
  `Arc` within a component and a module. For `Module` this is always
  uniquely owned and represents a shuffling around of data from one
  owner to another. For a `Component`, however, this is shared amongst
  all loaded modules and the top-level component.

* The "module registry" which is used for symbolicating backtraces and
  for trap information has been updated to account for a single region
  of loaded code holding possibly multiple modules. This involved adding
  a second-level `BTreeMap` for now. This will likely slow down
  instantiation slightly but if it poses an issue in the future this
  should be able to be represented with a more clever data structure.

This commit additionally solves a number of longstanding issues with
components such as compiling only one host-to-wasm trampoline per
signature instead of possibly once-per-module. Additionally the
`SignatureCollection` registration now happens once-per-component
instead of once-per-module-within-a-component.

* Fix compile errors from prior commits

* Support AOT-compiling components

This commit adds support for AOT-compiled components in the same manner
as `Module`, specifically adding:

* `Engine::precompile_component`
* `Component::serialize`
* `Component::deserialize`
* `Component::deserialize_file`

Internally the support for components looks quite similar to `Module`.
All the prior commits to this made adding the support here
(unsurprisingly) easy. Components are represented as a single object
file as are modules, and the functions for each module are all piled
into the same object file next to each other (as are areas such as data
sections). Support was also added here to quickly differentiate compiled
components vs compiled modules via the `e_flags` field in the ELF
header.

* Prevent serializing exported modules on components

The current representation of a module within a component means that the
implementation of `Module::serialize` will not work if the module is
exported from a component. The reason for this is that `serialize`
doesn't actually do anything and simply returns the underlying mmap as a
list of bytes. The mmap, however, has `.wasmtime.info` describing
component metadata as opposed to this module's metadata. While rewriting
this section could be implemented it's not so easy to do so and is
otherwise seen as not super important of a feature right now anyway.

* Fix windows build

* Fix an unused function warning

* Update crates/environ/src/compilation.rs

Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>

Co-authored-by: Nick Fitzgerald <fitzgen@gmail.com>
2022-11-02 15:26:26 +00:00

691 lines
26 KiB
Rust

//! Define the `instantiate` function, which takes a byte array containing an
//! encoded wasm module and returns a live wasm instance. Also, define
//! `CompiledModule` to allow compiling and instantiating to be done as separate
//! steps.
use crate::code_memory::CodeMemory;
use crate::debug::create_gdbjit_image;
use crate::ProfilingAgent;
use anyhow::{bail, Context, Error, Result};
use object::write::{Object, SectionId, StandardSegment, WritableBuffer};
use object::SectionKind;
use serde::{Deserialize, Serialize};
use std::convert::TryFrom;
use std::ops::Range;
use std::str;
use std::sync::Arc;
use thiserror::Error;
use wasmtime_environ::obj;
use wasmtime_environ::{
CompileError, DefinedFuncIndex, FuncIndex, FunctionLoc, MemoryInitialization, Module,
ModuleTranslation, PrimaryMap, SignatureIndex, StackMapInformation, Tunables, WasmFunctionInfo,
};
use wasmtime_runtime::{
CompiledModuleId, CompiledModuleIdAllocator, GdbJitImageRegistration, InstantiationError,
MmapVec, VMFunctionBody, VMTrampoline,
};
/// An error condition while setting up a wasm instance, be it validation,
/// compilation, or instantiation.
#[derive(Error, Debug)]
pub enum SetupError {
/// The module did not pass validation.
#[error("Validation error: {0}")]
Validate(String),
/// A wasm translation error occurred.
#[error("WebAssembly failed to compile")]
Compile(#[from] CompileError),
/// Some runtime resource was unavailable or insufficient, or the start function
/// trapped.
#[error("Instantiation failed during setup")]
Instantiate(#[from] InstantiationError),
/// Debug information generation error occurred.
#[error("Debug information error")]
DebugInfo(#[from] anyhow::Error),
}
/// Secondary in-memory results of compilation.
///
/// This opaque structure can be optionally passed back to
/// `CompiledModule::from_artifacts` to avoid decoding extra information there.
#[derive(Serialize, Deserialize)]
pub struct CompiledModuleInfo {
/// Type information about the compiled WebAssembly module.
module: Module,
/// Metadata about each compiled function.
funcs: PrimaryMap<DefinedFuncIndex, (WasmFunctionInfo, FunctionLoc)>,
/// Sorted list, by function index, of names we have for this module.
func_names: Vec<FunctionName>,
/// The trampolines compiled into the text section and their start/length
/// relative to the start of the text section.
pub trampolines: Vec<(SignatureIndex, FunctionLoc)>,
/// General compilation metadata.
meta: Metadata,
}
#[derive(Serialize, Deserialize)]
struct FunctionName {
idx: FuncIndex,
offset: u32,
len: u32,
}
#[derive(Serialize, Deserialize)]
struct Metadata {
/// Whether or not native debug information is available in `obj`
native_debug_info_present: bool,
/// Whether or not the original wasm module contained debug information that
/// we skipped and did not parse.
has_unparsed_debuginfo: bool,
/// Offset in the original wasm file to the code section.
code_section_offset: u64,
/// Whether or not custom wasm-specific dwarf sections were inserted into
/// the ELF image.
///
/// Note that even if this flag is `true` sections may be missing if they
/// weren't found in the original wasm module itself.
has_wasm_debuginfo: bool,
}
/// Helper structure to create an ELF file as a compilation artifact.
///
/// This structure exposes the process which Wasmtime will encode a core wasm
/// module into an ELF file, notably managing data sections and all that good
/// business going into the final file.
pub struct ObjectBuilder<'a> {
/// The `object`-crate-defined ELF file write we're using.
obj: Object<'a>,
/// General compilation configuration.
tunables: &'a Tunables,
/// The section identifier for "rodata" which is where wasm data segments
/// will go.
data: SectionId,
/// The section identifier for function name information, or otherwise where
/// the `name` custom section of wasm is copied into.
///
/// This is optional and lazily created on demand.
names: Option<SectionId>,
}
impl<'a> ObjectBuilder<'a> {
/// Creates a new builder for the `obj` specified.
pub fn new(mut obj: Object<'a>, tunables: &'a Tunables) -> ObjectBuilder<'a> {
let data = obj.add_section(
obj.segment_name(StandardSegment::Data).to_vec(),
obj::ELF_WASM_DATA.as_bytes().to_vec(),
SectionKind::ReadOnlyData,
);
ObjectBuilder {
obj,
tunables,
data,
names: None,
}
}
/// Completes compilation of the `translation` specified, inserting
/// everything necessary into the `Object` being built.
///
/// This function will consume the final results of compiling a wasm module
/// and finish the ELF image in-progress as part of `self.obj` by appending
/// any compiler-agnostic sections.
///
/// The auxiliary `CompiledModuleInfo` structure returned here has also been
/// serialized into the object returned, but if the caller will quickly
/// turn-around and invoke `CompiledModule::from_artifacts` after this then
/// the information can be passed to that method to avoid extra
/// deserialization. This is done to avoid a serialize-then-deserialize for
/// API calls like `Module::new` where the compiled module is immediately
/// going to be used.
///
/// The various arguments here are:
///
/// * `translation` - the core wasm translation that's being completed.
///
/// * `funcs` - compilation metadata about functions within the translation
/// as well as where the functions are located in the text section.
///
/// * `trampolines` - list of all trampolines necessary for this module
/// and where they're located in the text section.
///
/// Returns the `CompiledModuleInfo` corresopnding to this core wasm module
/// as a result of this append operation. This is then serialized into the
/// final artifact by the caller.
pub fn append(
&mut self,
translation: ModuleTranslation<'_>,
funcs: PrimaryMap<DefinedFuncIndex, (WasmFunctionInfo, FunctionLoc)>,
trampolines: Vec<(SignatureIndex, FunctionLoc)>,
) -> Result<CompiledModuleInfo> {
let ModuleTranslation {
mut module,
debuginfo,
has_unparsed_debuginfo,
data,
data_align,
passive_data,
..
} = translation;
// Place all data from the wasm module into a section which will the
// source of the data later at runtime. This additionally keeps track of
// the offset of
let mut total_data_len = 0;
let data_offset = self
.obj
.append_section_data(self.data, &[], data_align.unwrap_or(1));
for (i, data) in data.iter().enumerate() {
// The first data segment has its alignment specified as the alignment
// for the entire section, but everything afterwards is adjacent so it
// has alignment of 1.
let align = if i == 0 { data_align.unwrap_or(1) } else { 1 };
self.obj.append_section_data(self.data, data, align);
total_data_len += data.len();
}
for data in passive_data.iter() {
self.obj.append_section_data(self.data, data, 1);
}
// If any names are present in the module then the `ELF_NAME_DATA` section
// is create and appended.
let mut func_names = Vec::new();
if debuginfo.name_section.func_names.len() > 0 {
let name_id = *self.names.get_or_insert_with(|| {
self.obj.add_section(
self.obj.segment_name(StandardSegment::Data).to_vec(),
obj::ELF_NAME_DATA.as_bytes().to_vec(),
SectionKind::ReadOnlyData,
)
});
let mut sorted_names = debuginfo.name_section.func_names.iter().collect::<Vec<_>>();
sorted_names.sort_by_key(|(idx, _name)| *idx);
for (idx, name) in sorted_names {
let offset = self.obj.append_section_data(name_id, name.as_bytes(), 1);
let offset = match u32::try_from(offset) {
Ok(offset) => offset,
Err(_) => bail!("name section too large (> 4gb)"),
};
let len = u32::try_from(name.len()).unwrap();
func_names.push(FunctionName {
idx: *idx,
offset,
len,
});
}
}
// Data offsets in `MemoryInitialization` are offsets within the
// `translation.data` list concatenated which is now present in the data
// segment that's appended to the object. Increase the offsets by
// `self.data_size` to account for any previously added module.
let data_offset = u32::try_from(data_offset).unwrap();
match &mut module.memory_initialization {
MemoryInitialization::Segmented(list) => {
for segment in list {
segment.data.start = segment.data.start.checked_add(data_offset).unwrap();
segment.data.end = segment.data.end.checked_add(data_offset).unwrap();
}
}
MemoryInitialization::Static { map } => {
for (_, segment) in map {
if let Some(segment) = segment {
segment.data.start = segment.data.start.checked_add(data_offset).unwrap();
segment.data.end = segment.data.end.checked_add(data_offset).unwrap();
}
}
}
}
// Data offsets for passive data are relative to the start of
// `translation.passive_data` which was appended to the data segment
// of this object, after active data in `translation.data`. Update the
// offsets to account prior modules added in addition to active data.
let data_offset = data_offset + u32::try_from(total_data_len).unwrap();
for (_, range) in module.passive_data_map.iter_mut() {
range.start = range.start.checked_add(data_offset).unwrap();
range.end = range.end.checked_add(data_offset).unwrap();
}
// Insert the wasm raw wasm-based debuginfo into the output, if
// requested. Note that this is distinct from the native debuginfo
// possibly generated by the native compiler, hence these sections
// getting wasm-specific names.
if self.tunables.parse_wasm_debuginfo {
self.push_debug(&debuginfo.dwarf.debug_abbrev);
self.push_debug(&debuginfo.dwarf.debug_addr);
self.push_debug(&debuginfo.dwarf.debug_aranges);
self.push_debug(&debuginfo.dwarf.debug_info);
self.push_debug(&debuginfo.dwarf.debug_line);
self.push_debug(&debuginfo.dwarf.debug_line_str);
self.push_debug(&debuginfo.dwarf.debug_str);
self.push_debug(&debuginfo.dwarf.debug_str_offsets);
self.push_debug(&debuginfo.debug_ranges);
self.push_debug(&debuginfo.debug_rnglists);
}
Ok(CompiledModuleInfo {
module,
funcs,
trampolines,
func_names,
meta: Metadata {
native_debug_info_present: self.tunables.generate_native_debuginfo,
has_unparsed_debuginfo,
code_section_offset: debuginfo.wasm_file.code_section_offset,
has_wasm_debuginfo: self.tunables.parse_wasm_debuginfo,
},
})
}
fn push_debug<'b, T>(&mut self, section: &T)
where
T: gimli::Section<gimli::EndianSlice<'b, gimli::LittleEndian>>,
{
let data = section.reader().slice();
if data.is_empty() {
return;
}
let section_id = self.obj.add_section(
self.obj.segment_name(StandardSegment::Debug).to_vec(),
format!("{}.wasm", T::id().name()).into_bytes(),
SectionKind::Debug,
);
self.obj.append_section_data(section_id, data, 1);
}
/// Creates the `ELF_WASMTIME_INFO` section from the given serializable data
/// structure.
pub fn serialize_info<T>(&mut self, info: &T)
where
T: serde::Serialize,
{
let section = self.obj.add_section(
self.obj.segment_name(StandardSegment::Data).to_vec(),
obj::ELF_WASMTIME_INFO.as_bytes().to_vec(),
SectionKind::ReadOnlyData,
);
let data = bincode::serialize(info).unwrap();
self.obj.set_section_data(section, data, 1);
}
/// Creates a new `MmapVec` from `self.`
///
/// The returned `MmapVec` will contain the serialized version of `self`
/// and is sized appropriately to the exact size of the object serialized.
pub fn finish(self) -> Result<MmapVec> {
let mut result = ObjectMmap::default();
return match self.obj.emit(&mut result) {
Ok(()) => {
assert!(result.mmap.is_some(), "no reserve");
let mmap = result.mmap.expect("reserve not called");
assert_eq!(mmap.len(), result.len);
Ok(mmap)
}
Err(e) => match result.err.take() {
Some(original) => Err(original.context(e)),
None => Err(e.into()),
},
};
/// Helper struct to implement the `WritableBuffer` trait from the `object`
/// crate.
///
/// This enables writing an object directly into an mmap'd memory so it's
/// immediately usable for execution after compilation. This implementation
/// relies on a call to `reserve` happening once up front with all the needed
/// data, and the mmap internally does not attempt to grow afterwards.
#[derive(Default)]
struct ObjectMmap {
mmap: Option<MmapVec>,
len: usize,
err: Option<Error>,
}
impl WritableBuffer for ObjectMmap {
fn len(&self) -> usize {
self.len
}
fn reserve(&mut self, additional: usize) -> Result<(), ()> {
assert!(self.mmap.is_none(), "cannot reserve twice");
self.mmap = match MmapVec::with_capacity(additional) {
Ok(mmap) => Some(mmap),
Err(e) => {
self.err = Some(e);
return Err(());
}
};
Ok(())
}
fn resize(&mut self, new_len: usize) {
// Resizing always appends 0 bytes and since new mmaps start out as 0
// bytes we don't actually need to do anything as part of this other
// than update our own length.
if new_len <= self.len {
return;
}
self.len = new_len;
}
fn write_bytes(&mut self, val: &[u8]) {
let mmap = self.mmap.as_mut().expect("write before reserve");
mmap[self.len..][..val.len()].copy_from_slice(val);
self.len += val.len();
}
}
}
}
/// A compiled wasm module, ready to be instantiated.
pub struct CompiledModule {
module: Arc<Module>,
funcs: PrimaryMap<DefinedFuncIndex, (WasmFunctionInfo, FunctionLoc)>,
trampolines: Vec<(SignatureIndex, FunctionLoc)>,
meta: Metadata,
code_memory: Arc<CodeMemory>,
dbg_jit_registration: Option<GdbJitImageRegistration>,
/// A unique ID used to register this module with the engine.
unique_id: CompiledModuleId,
func_names: Vec<FunctionName>,
}
impl CompiledModule {
/// Creates `CompiledModule` directly from a precompiled artifact.
///
/// The `code_memory` argument is expected to be the result of a previous
/// call to `ObjectBuilder::finish` above. This is an ELF image, at this
/// time, which contains all necessary information to create a
/// `CompiledModule` from a compilation.
///
/// This method also takes `info`, an optionally-provided deserialization
/// of the artifacts' compilation metadata section. If this information is
/// not provided then the information will be
/// deserialized from the image of the compilation artifacts. Otherwise it
/// will be assumed to be what would otherwise happen if the section were
/// to be deserialized.
///
/// The `profiler` argument here is used to inform JIT profiling runtimes
/// about new code that is loaded.
pub fn from_artifacts(
code_memory: Arc<CodeMemory>,
info: CompiledModuleInfo,
profiler: &dyn ProfilingAgent,
id_allocator: &CompiledModuleIdAllocator,
) -> Result<Self> {
let mut ret = Self {
module: Arc::new(info.module),
funcs: info.funcs,
trampolines: info.trampolines,
dbg_jit_registration: None,
code_memory,
meta: info.meta,
unique_id: id_allocator.alloc(),
func_names: info.func_names,
};
ret.register_debug_and_profiling(profiler)?;
Ok(ret)
}
fn register_debug_and_profiling(&mut self, profiler: &dyn ProfilingAgent) -> Result<()> {
// Register GDB JIT images; initialize profiler and load the wasm module.
if self.meta.native_debug_info_present {
let text = self.text();
let bytes = create_gdbjit_image(self.mmap().to_vec(), (text.as_ptr(), text.len()))
.map_err(SetupError::DebugInfo)?;
profiler.module_load(self, Some(&bytes));
let reg = GdbJitImageRegistration::register(bytes);
self.dbg_jit_registration = Some(reg);
} else {
profiler.module_load(self, None);
}
Ok(())
}
/// Get this module's unique ID. It is unique with respect to a
/// single allocator (which is ordinarily held on a Wasm engine).
pub fn unique_id(&self) -> CompiledModuleId {
self.unique_id
}
/// Returns the underlying memory which contains the compiled module's
/// image.
pub fn mmap(&self) -> &MmapVec {
self.code_memory.mmap()
}
/// Returns the underlying owned mmap of this compiled image.
pub fn code_memory(&self) -> &Arc<CodeMemory> {
&self.code_memory
}
/// Returns the text section of the ELF image for this compiled module.
///
/// This memory should have the read/execute permissions.
pub fn text(&self) -> &[u8] {
self.code_memory.text()
}
/// Return a reference-counting pointer to a module.
pub fn module(&self) -> &Arc<Module> {
&self.module
}
/// Looks up the `name` section name for the function index `idx`, if one
/// was specified in the original wasm module.
pub fn func_name(&self, idx: FuncIndex) -> Option<&str> {
// Find entry for `idx`, if present.
let i = self.func_names.binary_search_by_key(&idx, |n| n.idx).ok()?;
let name = &self.func_names[i];
// Here we `unwrap` the `from_utf8` but this can theoretically be a
// `from_utf8_unchecked` if we really wanted since this section is
// guaranteed to only have valid utf-8 data. Until it's a problem it's
// probably best to double-check this though.
let data = self.code_memory().func_name_data();
Some(str::from_utf8(&data[name.offset as usize..][..name.len as usize]).unwrap())
}
/// Return a reference to a mutable module (if possible).
pub fn module_mut(&mut self) -> Option<&mut Module> {
Arc::get_mut(&mut self.module)
}
/// Returns the map of all finished JIT functions compiled for this module
#[inline]
pub fn finished_functions(
&self,
) -> impl ExactSizeIterator<Item = (DefinedFuncIndex, *const [VMFunctionBody])> + '_ {
let text = self.text();
self.funcs.iter().map(move |(i, (_, loc))| {
let func = &text[loc.start as usize..][..loc.length as usize];
(
i,
std::ptr::slice_from_raw_parts(func.as_ptr().cast::<VMFunctionBody>(), func.len()),
)
})
}
/// Returns the per-signature trampolines for this module.
pub fn trampolines(&self) -> impl Iterator<Item = (SignatureIndex, VMTrampoline, usize)> + '_ {
let text = self.text();
self.trampolines.iter().map(move |(signature, loc)| {
(
*signature,
unsafe {
let ptr = &text[loc.start as usize];
std::mem::transmute::<*const u8, VMTrampoline>(ptr)
},
loc.length as usize,
)
})
}
/// Returns the stack map information for all functions defined in this
/// module.
///
/// The iterator returned iterates over the span of the compiled function in
/// memory with the stack maps associated with those bytes.
pub fn stack_maps(
&self,
) -> impl Iterator<Item = (*const [VMFunctionBody], &[StackMapInformation])> {
self.finished_functions()
.map(|(_, f)| f)
.zip(self.funcs.values().map(|f| &f.0.stack_maps[..]))
}
/// Lookups a defined function by a program counter value.
///
/// Returns the defined function index and the relative address of
/// `text_offset` within the function itself.
pub fn func_by_text_offset(&self, text_offset: usize) -> Option<(DefinedFuncIndex, u32)> {
let text_offset = u32::try_from(text_offset).unwrap();
let index = match self
.funcs
.binary_search_values_by_key(&text_offset, |(_, loc)| {
debug_assert!(loc.length > 0);
// Return the inclusive "end" of the function
loc.start + loc.length - 1
}) {
Ok(k) => {
// Exact match, pc is at the end of this function
k
}
Err(k) => {
// Not an exact match, k is where `pc` would be "inserted"
// Since we key based on the end, function `k` might contain `pc`,
// so we'll validate on the range check below
k
}
};
let (_, loc) = self.funcs.get(index)?;
let start = loc.start;
let end = loc.start + loc.length;
if text_offset < start || end < text_offset {
return None;
}
Some((index, text_offset - loc.start))
}
/// Gets the function location information for a given function index.
pub fn func_loc(&self, index: DefinedFuncIndex) -> &FunctionLoc {
&self
.funcs
.get(index)
.expect("defined function should be present")
.1
}
/// Gets the function information for a given function index.
pub fn wasm_func_info(&self, index: DefinedFuncIndex) -> &WasmFunctionInfo {
&self
.funcs
.get(index)
.expect("defined function should be present")
.0
}
/// Creates a new symbolication context which can be used to further
/// symbolicate stack traces.
///
/// Basically this makes a thing which parses debuginfo and can tell you
/// what filename and line number a wasm pc comes from.
pub fn symbolize_context(&self) -> Result<Option<SymbolizeContext<'_>>> {
use gimli::EndianSlice;
if !self.meta.has_wasm_debuginfo {
return Ok(None);
}
let dwarf = gimli::Dwarf::load(|id| -> Result<_> {
let data = self.code_memory().dwarf_section(id);
Ok(EndianSlice::new(data, gimli::LittleEndian))
})?;
let cx = addr2line::Context::from_dwarf(dwarf)
.context("failed to create addr2line dwarf mapping context")?;
Ok(Some(SymbolizeContext {
inner: cx,
code_section_offset: self.meta.code_section_offset,
}))
}
/// Returns whether the original wasm module had unparsed debug information
/// based on the tunables configuration.
pub fn has_unparsed_debuginfo(&self) -> bool {
self.meta.has_unparsed_debuginfo
}
/// Indicates whether this module came with n address map such that lookups
/// via `wasmtime_environ::lookup_file_pos` will succeed.
///
/// If this function returns `false` then `lookup_file_pos` will always
/// return `None`.
pub fn has_address_map(&self) -> bool {
!self.code_memory.address_map_data().is_empty()
}
/// Returns the bounds, in host memory, of where this module's compiled
/// image resides.
pub fn image_range(&self) -> Range<usize> {
let base = self.mmap().as_ptr() as usize;
let len = self.mmap().len();
base..base + len
}
}
type Addr2LineContext<'a> = addr2line::Context<gimli::EndianSlice<'a, gimli::LittleEndian>>;
/// A context which contains dwarf debug information to translate program
/// counters back to filenames and line numbers.
pub struct SymbolizeContext<'a> {
inner: Addr2LineContext<'a>,
code_section_offset: u64,
}
impl<'a> SymbolizeContext<'a> {
/// Returns access to the [`addr2line::Context`] which can be used to query
/// frame information with.
pub fn addr2line(&self) -> &Addr2LineContext<'a> {
&self.inner
}
/// Returns the offset of the code section in the original wasm file, used
/// to calculate lookup values into the DWARF.
pub fn code_section_offset(&self) -> u64 {
self.code_section_offset
}
}
/// Returns the range of `inner` within `outer`, such that `outer[range]` is the
/// same as `inner`.
///
/// This method requires that `inner` is a sub-slice of `outer`, and if that
/// isn't true then this method will panic.
pub fn subslice_range(inner: &[u8], outer: &[u8]) -> Range<usize> {
if inner.len() == 0 {
return 0..0;
}
assert!(outer.as_ptr() <= inner.as_ptr());
assert!((&inner[inner.len() - 1] as *const _) <= (&outer[outer.len() - 1] as *const _));
let start = inner.as_ptr() as usize - outer.as_ptr() as usize;
start..start + inner.len()
}