Files
wasmtime/tests/all/custom_signal_handler.rs
Alex Crichton 4c82da440a Move most wasmtime tests into one test suite (#1544)
* Move most wasmtime tests into one test suite

This commit moves most wasmtime tests into a single test suite which
gets compiled into one executable instead of having lots of test
executables. The goal here is to reduce disk space on CI, and this
should be achieved by having fewer executables which means fewer copies
of `libwasmtime.rlib` linked across binaries on the system. More
importantly though this means that DWARF debug information should only
be in one executable rather than duplicated across many.

* Share more build caches

Globally set `RUSTFLAGS` to `-Dwarnings` instead of individually so all
build steps share the same value.

* Allow some dead code in cranelift-codegen

Prevents having to fix all warnings for all possible feature
combinations, only the main ones which come up.

* Update some debug file paths
2020-04-17 17:22:12 -05:00

286 lines
9.6 KiB
Rust

#[cfg(not(target_os = "windows"))]
mod tests {
use anyhow::Result;
use std::rc::Rc;
use std::sync::atomic::{AtomicBool, Ordering};
use wasmtime::unix::InstanceExt;
use wasmtime::*;
const WAT1: &str = r#"
(module
(func $read (export "read") (result i32)
(i32.load (i32.const 0))
)
(func $read_out_of_bounds (export "read_out_of_bounds") (result i32)
(i32.load
(i32.mul
;; memory size in Wasm pages
(memory.size)
;; Wasm page size
(i32.const 65536)
)
)
)
(func $start
(i32.store (i32.const 0) (i32.const 123))
)
(start $start)
(memory (export "memory") 1 4)
)
"#;
const WAT2: &str = r#"
(module
(import "other_module" "read" (func $other_module.read (result i32)))
(func $run (export "run") (result i32)
call $other_module.read)
)
"#;
fn invoke_export(instance: &Instance, func_name: &str) -> Result<Box<[Val]>> {
let ret = instance
.get_export(func_name)
.unwrap()
.func()
.unwrap()
.call(&[])?;
Ok(ret)
}
// Locate "memory" export, get base address and size and set memory protection to PROT_NONE
fn set_up_memory(instance: &Instance) -> (*mut u8, usize) {
let mem_export = instance.get_export("memory").unwrap().memory().unwrap();
let base = mem_export.data_ptr();
let length = mem_export.data_size();
// So we can later trigger SIGSEGV by performing a read
unsafe {
libc::mprotect(base as *mut libc::c_void, length, libc::PROT_NONE);
}
println!("memory: base={:?}, length={}", base, length);
(base, length)
}
fn handle_sigsegv(
base: *mut u8,
length: usize,
signum: libc::c_int,
siginfo: *const libc::siginfo_t,
) -> bool {
println!("Hello from instance signal handler!");
// SIGSEGV on Linux, SIGBUS on Mac
if libc::SIGSEGV == signum || libc::SIGBUS == signum {
let si_addr: *mut libc::c_void = unsafe { (*siginfo).si_addr() };
// Any signal from within module's memory we handle ourselves
let result = (si_addr as u64) < (base as u64) + (length as u64);
// Remove protections so the execution may resume
unsafe {
libc::mprotect(
base as *mut libc::c_void,
length,
libc::PROT_READ | libc::PROT_WRITE,
);
}
println!("signal handled: {}", result);
result
} else {
// Otherwise, we forward to wasmtime's signal handler.
false
}
}
#[test]
fn test_custom_signal_handler_single_instance() -> Result<()> {
let engine = Engine::new(&Config::default());
let store = Store::new(&engine);
let module = Module::new(&store, WAT1)?;
let instance = Instance::new(&module, &[])?;
let (base, length) = set_up_memory(&instance);
unsafe {
instance.set_signal_handler(move |signum, siginfo, _| {
handle_sigsegv(base, length, signum, siginfo)
});
}
let exports = instance.exports();
assert!(!exports.is_empty());
// these invoke wasmtime_call_trampoline from action.rs
{
println!("calling read...");
let result = invoke_export(&instance, "read").expect("read succeeded");
assert_eq!(123, result[0].unwrap_i32());
}
{
println!("calling read_out_of_bounds...");
let trap = invoke_export(&instance, "read_out_of_bounds")
.unwrap_err()
.downcast::<Trap>()?;
assert!(
trap.message()
.starts_with("wasm trap: out of bounds memory access"),
"bad trap message: {:?}",
trap.message()
);
}
// these invoke wasmtime_call_trampoline from callable.rs
{
let read_func = exports[0]
.func()
.expect("expected a 'read' func in the module");
println!("calling read...");
let result = read_func.call(&[]).expect("expected function not to trap");
assert_eq!(123i32, result[0].clone().unwrap_i32());
}
{
let read_out_of_bounds_func = exports[1]
.func()
.expect("expected a 'read_out_of_bounds' func in the module");
println!("calling read_out_of_bounds...");
let trap = read_out_of_bounds_func
.call(&[])
.unwrap_err()
.downcast::<Trap>()?;
assert!(trap
.message()
.starts_with("wasm trap: out of bounds memory access"));
}
Ok(())
}
#[test]
fn test_custom_signal_handler_multiple_instances() -> Result<()> {
let engine = Engine::new(&Config::default());
let store = Store::new(&engine);
let module = Module::new(&store, WAT1)?;
// Set up multiple instances
let instance1 = Instance::new(&module, &[])?;
let instance1_handler_triggered = Rc::new(AtomicBool::new(false));
unsafe {
let (base1, length1) = set_up_memory(&instance1);
instance1.set_signal_handler({
let instance1_handler_triggered = instance1_handler_triggered.clone();
move |_signum, _siginfo, _context| {
// Remove protections so the execution may resume
libc::mprotect(
base1 as *mut libc::c_void,
length1,
libc::PROT_READ | libc::PROT_WRITE,
);
instance1_handler_triggered.store(true, Ordering::SeqCst);
println!(
"Hello from instance1 signal handler! {}",
instance1_handler_triggered.load(Ordering::SeqCst)
);
true
}
});
}
let instance2 = Instance::new(&module, &[]).expect("failed to instantiate module");
let instance2_handler_triggered = Rc::new(AtomicBool::new(false));
unsafe {
let (base2, length2) = set_up_memory(&instance2);
instance2.set_signal_handler({
let instance2_handler_triggered = instance2_handler_triggered.clone();
move |_signum, _siginfo, _context| {
// Remove protections so the execution may resume
libc::mprotect(
base2 as *mut libc::c_void,
length2,
libc::PROT_READ | libc::PROT_WRITE,
);
instance2_handler_triggered.store(true, Ordering::SeqCst);
println!(
"Hello from instance2 signal handler! {}",
instance2_handler_triggered.load(Ordering::SeqCst)
);
true
}
});
}
// Invoke both instances and trigger both signal handlers
// First instance1
{
let exports1 = instance1.exports();
assert!(!exports1.is_empty());
println!("calling instance1.read...");
let result = invoke_export(&instance1, "read").expect("read succeeded");
assert_eq!(123, result[0].unwrap_i32());
assert_eq!(
instance1_handler_triggered.load(Ordering::SeqCst),
true,
"instance1 signal handler has been triggered"
);
}
// And then instance2
{
let exports2 = instance2.exports();
assert!(!exports2.is_empty());
println!("calling instance2.read...");
let result = invoke_export(&instance2, "read").expect("read succeeded");
assert_eq!(123, result[0].unwrap_i32());
assert_eq!(
instance2_handler_triggered.load(Ordering::SeqCst),
true,
"instance1 signal handler has been triggered"
);
}
Ok(())
}
#[test]
fn test_custom_signal_handler_instance_calling_another_instance() -> Result<()> {
let engine = Engine::new(&Config::default());
let store = Store::new(&engine);
// instance1 which defines 'read'
let module1 = Module::new(&store, WAT1)?;
let instance1 = Instance::new(&module1, &[])?;
let (base1, length1) = set_up_memory(&instance1);
unsafe {
instance1.set_signal_handler(move |signum, siginfo, _| {
println!("instance1");
handle_sigsegv(base1, length1, signum, siginfo)
});
}
let instance1_exports = instance1.exports();
assert!(!instance1_exports.is_empty());
let instance1_read = instance1_exports[0].clone();
// instance2 wich calls 'instance1.read'
let module2 = Module::new(&store, WAT2)?;
let instance2 = Instance::new(&module2, &[instance1_read])?;
// since 'instance2.run' calls 'instance1.read' we need to set up the signal handler to handle
// SIGSEGV originating from within the memory of instance1
unsafe {
instance2.set_signal_handler(move |signum, siginfo, _| {
handle_sigsegv(base1, length1, signum, siginfo)
});
}
println!("calling instance2.run");
let result = invoke_export(&instance2, "run")?;
assert_eq!(123, result[0].unwrap_i32());
Ok(())
}
}