Files
wasmtime/cranelift/codegen/src/peepmatic.rs
Nick Fitzgerald c015d69eb8 peepmatic: Do not use paths in linear IR
Rather than using paths from the root instruction to the instruction we are
matching against or checking if it is constant or whatever, use temporary
variables. When we successfully match an instruction's opcode, we simultaneously
define these temporaries for the instruction's operands. This is similar to how
open-coding these matches in Rust would use `match` expressions with pattern
matching to bind the operands to variables at the same time.

This saves about 1.8% of instructions retired when Peepmatic is enabled.
2020-10-13 11:03:48 -07:00

1331 lines
44 KiB
Rust

//! Glue for working with `peepmatic`-generated peephole optimizers.
use crate::cursor::{Cursor, FuncCursor};
use crate::ir::{
dfg::DataFlowGraph,
entities::{Inst, Value},
immediates::{Imm64, Uimm64},
instructions::{InstructionData, Opcode},
types, InstBuilder,
};
use crate::isa::TargetIsa;
use cranelift_codegen_shared::condcodes::IntCC;
use peepmatic_runtime::{
cc::ConditionCode,
instruction_set::InstructionSet,
part::{Constant, Part},
r#type::{BitWidth, Kind, Type},
PeepholeOptimizations, PeepholeOptimizer,
};
use std::borrow::Cow;
use std::boxed::Box;
use std::convert::{TryFrom, TryInto};
use std::iter;
use std::ptr;
use std::sync::atomic::{AtomicPtr, Ordering};
peepmatic_traits::define_parse_and_typing_rules_for_operator! {
Opcode {
adjust_sp_down => AdjustSpDown {
parameters(iNN);
result(void);
}
adjust_sp_down_imm => AdjustSpDownImm {
immediates(iNN);
result(void);
}
band => Band {
parameters(iNN, iNN);
result(iNN);
}
band_imm => BandImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
bconst => Bconst {
immediates(b1);
result(bNN);
}
bint => Bint {
parameters(bNN);
result(iNN);
}
bor => Bor {
parameters(iNN, iNN);
result(iNN);
}
bor_imm => BorImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
brnz => Brnz {
parameters(bool_or_int);
result(void);
}
brz => Brz {
parameters(bool_or_int);
result(void);
}
bxor => Bxor {
parameters(iNN, iNN);
result(iNN);
}
bxor_imm => BxorImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
iadd => Iadd {
parameters(iNN, iNN);
result(iNN);
}
iadd_imm => IaddImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
icmp => Icmp {
immediates(cc);
parameters(iNN, iNN);
result(b1);
}
icmp_imm => IcmpImm {
immediates(cc, iNN);
parameters(iNN);
result(b1);
}
iconst => Iconst {
immediates(iNN);
result(iNN);
}
ifcmp => Ifcmp {
parameters(iNN, iNN);
result(cpu_flags);
}
ifcmp_imm => IfcmpImm {
immediates(iNN);
parameters(iNN);
result(cpu_flags);
}
imul => Imul {
parameters(iNN, iNN);
result(iNN);
}
imul_imm => ImulImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
ireduce => Ireduce {
parameters(iNN);
result(iMM);
is_reduce(true);
}
irsub_imm => IrsubImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
ishl => Ishl {
parameters(iNN, iNN);
result(iNN);
}
ishl_imm => IshlImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
isub => Isub {
parameters(iNN, iNN);
result(iNN);
}
rotl => Rotl {
parameters(iNN, iNN);
result(iNN);
}
rotl_imm => RotlImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
rotr => Rotr {
parameters(iNN, iNN);
result(iNN);
}
rotr_imm => RotrImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
sdiv => Sdiv {
parameters(iNN, iNN);
result(iNN);
}
sdiv_imm => SdivImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
select => Select {
parameters(bool_or_int, any_t, any_t);
result(any_t);
}
sextend => Sextend {
parameters(iNN);
result(iMM);
is_extend(true);
}
srem => Srem {
parameters(iNN, iNN);
result(iNN);
}
srem_imm => SremImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
sshr => Sshr {
parameters(iNN, iNN);
result(iNN);
}
sshr_imm => SshrImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
trapnz => Trapnz {
parameters(bool_or_int);
result(void);
}
trapz => Trapz {
parameters(bool_or_int);
result(void);
}
udiv => Udiv {
parameters(iNN, iNN);
result(iNN);
}
udiv_imm => UdivImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
uextend => Uextend {
parameters(iNN);
result(iMM);
is_extend(true);
}
urem => Urem {
parameters(iNN, iNN);
result(iNN);
}
urem_imm => UremImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
ushr => Ushr {
parameters(iNN, iNN);
result(iNN);
}
ushr_imm => UshrImm {
immediates(iNN);
parameters(iNN);
result(iNN);
}
}
parse_cfg(feature = "rebuild-peephole-optimizers");
}
/// Code required to rebuild Peepmatic-based peephole optimizers.
///
/// This module is used to scope imports and dependencies that are only required
/// for building peephole optimizers (as opposed to just using pre-built
/// peephole optimizers). This helps ensure that our regular builds using
/// pre-built peephole optimizers stay lean.
#[cfg(feature = "rebuild-peephole-optimizers")]
mod rebuild {
use super::*;
use alloc::vec::Vec;
use std::fs;
use std::path::Path;
/// Rebuild the `preopt.peepmatic` peephole optimizer.
///
/// Saves and overwrites the old `preopt.serialized` build and returns a
/// copy of the result.
pub fn rebuild_preopt() -> Vec<u8> {
let codegen_path = Path::new(include_str!(concat!(
env!("OUT_DIR"),
"/CRANELIFT_CODEGEN_PATH"
)));
let source_path = codegen_path.join("src").join("preopt.peepmatic");
let preopt = peepmatic::compile_file::<Opcode>(&source_path)
.expect("failed to compile `src/preopt.peepmatic`");
let serialized_path = codegen_path.join("src").join("preopt.serialized");
preopt
.serialize_to_file(&serialized_path)
.expect("failed to serialize peephole optimizer to `src/preopt.serialized`");
fs::read(&serialized_path).expect("failed to read `src/preopt.serialized`")
}
}
/// Get the `preopt.peepmatic` peephole optimizer.
pub(crate) fn preopt<'a, 'b>(
isa: &'b dyn TargetIsa,
) -> PeepholeOptimizer<'static, 'a, &'b dyn TargetIsa> {
#[cfg(feature = "rebuild-peephole-optimizers")]
fn get_serialized() -> Cow<'static, [u8]> {
rebuild::rebuild_preopt().into()
}
#[cfg(not(feature = "rebuild-peephole-optimizers"))]
fn get_serialized() -> Cow<'static, [u8]> {
static SERIALIZED: &[u8] = include_bytes!("preopt.serialized");
SERIALIZED.into()
}
// Once initialized, this must never be re-assigned. The initialized value
// is semantically "static data" and is intentionally leaked for the whole
// program's lifetime.
static DESERIALIZED: AtomicPtr<PeepholeOptimizations<Opcode>> = AtomicPtr::new(ptr::null_mut());
// If `DESERIALIZED` has already been initialized, then just use it.
let ptr = DESERIALIZED.load(Ordering::SeqCst);
if let Some(peep_opts) = unsafe { ptr.as_ref() } {
return peep_opts.optimizer(isa);
}
// Otherwise, if `DESERIALIZED` hasn't been initialized, then we need to
// deserialize the peephole optimizations and initialize it. However,
// another thread could be doing the same thing concurrently, so there is a
// race to see who initializes `DESERIALIZED` first, and we need to be
// prepared to both win or lose that race.
let peep_opts = PeepholeOptimizations::deserialize(&get_serialized())
.expect("should always be able to deserialize `preopt.serialized`");
let peep_opts = Box::into_raw(Box::new(peep_opts));
// Only update `DESERIALIZE` if it is still null, attempting to perform the
// one-time transition from null -> non-null.
if DESERIALIZED
.compare_and_swap(ptr::null_mut(), peep_opts, Ordering::SeqCst)
.is_null()
{
// We won the race to initialize `DESERIALIZED`.
debug_assert_eq!(DESERIALIZED.load(Ordering::SeqCst), peep_opts);
let peep_opts = unsafe { &*peep_opts };
return peep_opts.optimizer(isa);
}
// We lost the race to initialize `DESERIALIZED`. Drop our no-longer-needed
// instance of `peep_opts` and get the pointer to the instance that won the
// race.
let _ = unsafe { Box::from_raw(peep_opts) };
let peep_opts = DESERIALIZED.load(Ordering::SeqCst);
let peep_opts = unsafe { peep_opts.as_ref().unwrap() };
peep_opts.optimizer(isa)
}
/// Either a `Value` or an `Inst`.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum ValueOrInst {
Value(Value),
Inst(Inst),
}
impl ValueOrInst {
/// Get the underlying `Value` if any.
pub fn value(&self) -> Option<Value> {
match *self {
Self::Value(v) => Some(v),
Self::Inst(_) => None,
}
}
/// Get the underlying `Inst` if any.
pub fn inst(&self) -> Option<Inst> {
match *self {
Self::Inst(i) => Some(i),
Self::Value(_) => None,
}
}
/// Unwrap the underlying `Value`, panicking if it is not a `Value.
pub fn unwrap_value(&self) -> Value {
self.value().unwrap()
}
/// Unwrap the underlying `Inst`, panicking if it is not a `Inst.
pub fn unwrap_inst(&self) -> Inst {
self.inst().unwrap()
}
/// Is this a `Value`?
pub fn is_value(&self) -> bool {
self.value().is_some()
}
/// Is this an `Inst`?
pub fn is_inst(&self) -> bool {
self.inst().is_some()
}
fn resolve_inst(&self, dfg: &DataFlowGraph) -> Option<Inst> {
match *self {
ValueOrInst::Inst(i) => Some(i),
ValueOrInst::Value(v) => dfg.value_def(v).inst(),
}
}
fn result_bit_width(&self, dfg: &DataFlowGraph) -> u8 {
match *self {
ValueOrInst::Value(v) => dfg.value_type(v).bits().try_into().unwrap(),
ValueOrInst::Inst(inst) => {
let result = dfg.first_result(inst);
dfg.value_type(result).bits().try_into().unwrap()
}
}
}
fn to_constant(&self, pos: &mut FuncCursor) -> Option<Constant> {
let inst = self.resolve_inst(&pos.func.dfg)?;
match pos.func.dfg[inst] {
InstructionData::UnaryImm {
opcode: Opcode::Iconst,
imm,
} => {
let width = self.result_bit_width(&pos.func.dfg).try_into().unwrap();
let x: i64 = imm.into();
Some(Constant::Int(x as u64, width))
}
InstructionData::UnaryBool {
opcode: Opcode::Bconst,
imm,
} => {
let width = self.result_bit_width(&pos.func.dfg).try_into().unwrap();
Some(Constant::Bool(imm, width))
}
_ => None,
}
}
}
impl From<Value> for ValueOrInst {
fn from(v: Value) -> ValueOrInst {
ValueOrInst::Value(v)
}
}
impl From<Inst> for ValueOrInst {
fn from(i: Inst) -> ValueOrInst {
ValueOrInst::Inst(i)
}
}
/// Get the fixed bit width of `bit_width`, or if it is polymorphic, the bit
/// width of `root`.
fn bit_width(dfg: &DataFlowGraph, bit_width: BitWidth, root: Inst) -> u8 {
bit_width.fixed_width().unwrap_or_else(|| {
let tyvar = dfg.ctrl_typevar(root);
let ty = dfg.compute_result_type(root, 0, tyvar).unwrap();
u8::try_from(ty.bits()).unwrap()
})
}
/// Convert the constant `c` into an instruction.
fn const_to_value<'a>(builder: impl InstBuilder<'a>, c: Constant, root: Inst) -> Value {
match c {
Constant::Bool(b, width) => {
let width = bit_width(builder.data_flow_graph(), width, root);
let ty = match width {
1 => types::B1,
8 => types::B8,
16 => types::B16,
32 => types::B32,
64 => types::B64,
128 => types::B128,
_ => unreachable!(),
};
builder.bconst(ty, b)
}
Constant::Int(x, width) => {
let width = bit_width(builder.data_flow_graph(), width, root);
let ty = match width {
8 => types::I8,
16 => types::I16,
32 => types::I32,
64 => types::I64,
128 => types::I128,
_ => unreachable!(),
};
builder.iconst(ty, x as i64)
}
}
}
fn part_to_value(pos: &mut FuncCursor, root: Inst, part: Part<ValueOrInst>) -> Option<Value> {
match part {
Part::Instruction(ValueOrInst::Inst(inst)) => {
pos.func.dfg.inst_results(inst).first().copied()
}
Part::Instruction(ValueOrInst::Value(v)) => Some(v),
Part::Constant(c) => Some(const_to_value(pos.ins(), c, root)),
Part::ConditionCode(_) => None,
}
}
impl TryFrom<Constant> for Imm64 {
type Error = &'static str;
fn try_from(c: Constant) -> Result<Self, Self::Error> {
match c {
Constant::Int(x, _) => Ok(Imm64::from(x as i64)),
Constant::Bool(..) => Err("cannot create Imm64 from Constant::Bool"),
}
}
}
impl Into<Constant> for Imm64 {
#[inline]
fn into(self) -> Constant {
let x: i64 = self.into();
Constant::Int(x as _, BitWidth::SixtyFour)
}
}
impl Into<Part<ValueOrInst>> for Imm64 {
#[inline]
fn into(self) -> Part<ValueOrInst> {
let c: Constant = self.into();
c.into()
}
}
fn part_to_imm64(pos: &mut FuncCursor, part: Part<ValueOrInst>) -> Imm64 {
return match part {
Part::Instruction(x) => match x.to_constant(pos).unwrap_or_else(|| cannot_convert()) {
Constant::Int(x, _) => (x as i64).into(),
Constant::Bool(..) => cannot_convert(),
},
Part::Constant(Constant::Int(x, _)) => (x as i64).into(),
Part::ConditionCode(_) | Part::Constant(Constant::Bool(..)) => cannot_convert(),
};
#[inline(never)]
#[cold]
fn cannot_convert() -> ! {
panic!("cannot convert part into `Imm64`")
}
}
impl Into<Constant> for Uimm64 {
#[inline]
fn into(self) -> Constant {
let x: u64 = self.into();
Constant::Int(x, BitWidth::SixtyFour)
}
}
impl Into<Part<ValueOrInst>> for Uimm64 {
#[inline]
fn into(self) -> Part<ValueOrInst> {
let c: Constant = self.into();
c.into()
}
}
fn peepmatic_to_intcc(cc: ConditionCode) -> IntCC {
match cc {
ConditionCode::Eq => IntCC::Equal,
ConditionCode::Ne => IntCC::NotEqual,
ConditionCode::Slt => IntCC::SignedLessThan,
ConditionCode::Sle => IntCC::SignedGreaterThanOrEqual,
ConditionCode::Sgt => IntCC::SignedGreaterThan,
ConditionCode::Sge => IntCC::SignedLessThanOrEqual,
ConditionCode::Ult => IntCC::UnsignedLessThan,
ConditionCode::Uge => IntCC::UnsignedGreaterThanOrEqual,
ConditionCode::Ugt => IntCC::UnsignedGreaterThan,
ConditionCode::Ule => IntCC::UnsignedLessThanOrEqual,
ConditionCode::Of => IntCC::Overflow,
ConditionCode::Nof => IntCC::NotOverflow,
}
}
fn intcc_to_peepmatic(cc: IntCC) -> ConditionCode {
match cc {
IntCC::Equal => ConditionCode::Eq,
IntCC::NotEqual => ConditionCode::Ne,
IntCC::SignedLessThan => ConditionCode::Slt,
IntCC::SignedGreaterThanOrEqual => ConditionCode::Sle,
IntCC::SignedGreaterThan => ConditionCode::Sgt,
IntCC::SignedLessThanOrEqual => ConditionCode::Sge,
IntCC::UnsignedLessThan => ConditionCode::Ult,
IntCC::UnsignedGreaterThanOrEqual => ConditionCode::Uge,
IntCC::UnsignedGreaterThan => ConditionCode::Ugt,
IntCC::UnsignedLessThanOrEqual => ConditionCode::Ule,
IntCC::Overflow => ConditionCode::Of,
IntCC::NotOverflow => ConditionCode::Nof,
}
}
fn peepmatic_ty_to_ir_ty(ty: Type, dfg: &DataFlowGraph, root: Inst) -> types::Type {
match (ty.kind, bit_width(dfg, ty.bit_width, root)) {
(Kind::Int, 8) => types::I8,
(Kind::Int, 16) => types::I16,
(Kind::Int, 32) => types::I32,
(Kind::Int, 64) => types::I64,
(Kind::Int, 128) => types::I128,
(Kind::Bool, 1) => types::B1,
(Kind::Bool, 8) => types::I8,
(Kind::Bool, 16) => types::I16,
(Kind::Bool, 32) => types::I32,
(Kind::Bool, 64) => types::I64,
(Kind::Bool, 128) => types::I128,
_ => unreachable!(),
}
}
// NB: the unsafe contract we must uphold here is that our implementation of
// `instruction_result_bit_width` must always return a valid, non-zero bit
// width.
unsafe impl<'a, 'b> InstructionSet<'b> for &'a dyn TargetIsa {
type Context = FuncCursor<'b>;
type Operator = Opcode;
type Instruction = ValueOrInst;
fn replace_instruction(
&self,
pos: &mut FuncCursor<'b>,
old: ValueOrInst,
new: Part<ValueOrInst>,
) -> ValueOrInst {
log::trace!("replace {:?} with {:?}", old, new);
let old_inst = old.resolve_inst(&pos.func.dfg).unwrap();
// Try to convert `new` to an instruction, because we prefer replacing
// an old instruction with a new one wholesale. However, if the
// replacement cannot be converted to an instruction (e.g. the
// right-hand side is a block/function parameter value) then we change
// the old instruction's result to an alias of the new value.
let new_inst = match new {
Part::Instruction(ValueOrInst::Inst(inst)) => Some(inst),
Part::Instruction(ValueOrInst::Value(_)) => {
// Do not try and follow the value definition. If we transplant
// this value's instruction, and there are other uses of this
// value, then we could mess up ordering between instructions.
None
}
Part::Constant(c) => {
let v = const_to_value(pos.ins(), c, old_inst);
let inst = pos.func.dfg.value_def(v).unwrap_inst();
Some(inst)
}
Part::ConditionCode(_) => None,
};
match new_inst {
Some(new_inst) => {
pos.func.transplant_inst(old_inst, new_inst);
debug_assert_eq!(pos.current_inst(), Some(old_inst));
old_inst.into()
}
None => {
let new_value = part_to_value(pos, old_inst, new).unwrap();
let old_results = pos.func.dfg.detach_results(old_inst);
let old_results = old_results.as_slice(&pos.func.dfg.value_lists);
assert_eq!(old_results.len(), 1);
let old_value = old_results[0];
pos.func.dfg.change_to_alias(old_value, new_value);
pos.func.dfg.replace(old_inst).nop();
new_value.into()
}
}
}
fn operator<E>(
&self,
pos: &mut FuncCursor<'b>,
value_or_inst: ValueOrInst,
operands: &mut E,
) -> Option<Opcode>
where
E: Extend<Part<Self::Instruction>>,
{
let inst = value_or_inst.resolve_inst(&pos.func.dfg)?;
Some(match pos.func.dfg[inst] {
InstructionData::Binary {
opcode: opcode @ Opcode::Band,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Bor,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Bxor,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Iadd,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Ifcmp,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Imul,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Ishl,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Isub,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Rotl,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Rotr,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Sdiv,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Srem,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Sshr,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Udiv,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Urem,
args,
}
| InstructionData::Binary {
opcode: opcode @ Opcode::Ushr,
args,
} => {
operands.extend(args.iter().map(|v| Part::Instruction((*v).into())));
opcode
}
InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::BandImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::BorImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::BxorImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::IaddImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::IfcmpImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::ImulImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::IrsubImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::IshlImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::RotlImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::RotrImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::SdivImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::SremImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::SshrImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::UdivImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::UremImm,
imm,
arg,
}
| InstructionData::BinaryImm64 {
opcode: opcode @ Opcode::UshrImm,
imm,
arg,
} => {
operands.extend(
iter::once(imm.into()).chain(iter::once(Part::Instruction(arg.into()))),
);
opcode
}
InstructionData::Branch {
opcode: opcode @ Opcode::Brnz,
ref args,
destination: _,
}
| InstructionData::Branch {
opcode: opcode @ Opcode::Brz,
ref args,
destination: _,
} => {
operands.extend(
args.as_slice(&pos.func.dfg.value_lists)
.iter()
.map(|v| Part::Instruction((*v).into()))
// NB: Peepmatic only knows about the condition, not any
// of the arguments to the block, which are special
// cased elsewhere, if/when we actually replace the
// instruction.
.take(1),
);
opcode
}
InstructionData::CondTrap {
opcode: opcode @ Opcode::Trapnz,
arg,
code: _,
}
| InstructionData::CondTrap {
opcode: opcode @ Opcode::Trapz,
arg,
code: _,
} => {
operands.extend(iter::once(Part::Instruction(arg.into())));
opcode
}
InstructionData::IntCompare {
opcode: opcode @ Opcode::Icmp,
cond,
args,
} => {
operands.extend(
iter::once(intcc_to_peepmatic(cond).into())
.chain(args.iter().map(|v| Part::Instruction((*v).into()))),
);
opcode
}
InstructionData::IntCompareImm {
opcode: opcode @ Opcode::IcmpImm,
cond,
imm,
arg,
} => {
operands.extend(
iter::once(intcc_to_peepmatic(cond).into())
.chain(iter::once(Part::Constant(imm.into())))
.chain(iter::once(Part::Instruction(arg.into()))),
);
opcode
}
InstructionData::Ternary {
opcode: opcode @ Opcode::Select,
ref args,
} => {
operands.extend(args.iter().map(|v| Part::Instruction((*v).into())));
opcode
}
InstructionData::Unary {
opcode: opcode @ Opcode::AdjustSpDown,
arg,
}
| InstructionData::Unary {
opcode: opcode @ Opcode::Bint,
arg,
}
| InstructionData::Unary {
opcode: opcode @ Opcode::Ireduce,
arg,
}
| InstructionData::Unary {
opcode: opcode @ Opcode::Sextend,
arg,
}
| InstructionData::Unary {
opcode: opcode @ Opcode::Uextend,
arg,
} => {
operands.extend(iter::once(Part::Instruction(arg.into())));
opcode
}
InstructionData::UnaryBool { opcode, imm } => {
operands.extend(iter::once(Part::Constant(Constant::Bool(
imm,
BitWidth::Polymorphic,
))));
opcode
}
InstructionData::UnaryImm {
opcode: opcode @ Opcode::AdjustSpDownImm,
imm,
}
| InstructionData::UnaryImm {
opcode: opcode @ Opcode::Iconst,
imm,
} => {
operands.extend(iter::once(imm.into()));
opcode
}
ref otherwise => {
log::trace!("Not supported by Peepmatic: {:?}", otherwise);
return None;
}
})
}
fn make_inst_1(
&self,
pos: &mut FuncCursor<'b>,
root: ValueOrInst,
operator: Opcode,
r#type: Type,
a: Part<ValueOrInst>,
) -> ValueOrInst {
log::trace!("make_inst_1: {:?}({:?})", operator, a);
let root = root.resolve_inst(&pos.func.dfg).unwrap();
match operator {
Opcode::AdjustSpDown => {
let a = part_to_value(pos, root, a).unwrap();
pos.ins().adjust_sp_down(a).into()
}
Opcode::AdjustSpDownImm => {
let c = a.unwrap_constant();
let imm = Imm64::try_from(c).unwrap();
pos.ins().adjust_sp_down_imm(imm).into()
}
Opcode::Bconst => {
let c = a.unwrap_constant();
let val = const_to_value(pos.ins(), c, root);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Bint => {
let a = part_to_value(pos, root, a).unwrap();
let ty = peepmatic_ty_to_ir_ty(r#type, &pos.func.dfg, root);
let val = pos.ins().bint(ty, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Bnot => {
let a = part_to_value(pos, root, a).unwrap();
let val = pos.ins().bnot(a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Brnz => {
let a = part_to_value(pos, root, a).unwrap();
// NB: branching instructions must be the root of an
// optimization's right-hand side, so we get the destination
// block and arguments from the left-hand side's root. Peepmatic
// doesn't currently represent labels or varargs.
let block = pos.func.dfg[root].branch_destination().unwrap();
let args = pos.func.dfg.inst_args(root)[1..].to_vec();
pos.ins().brnz(a, block, &args).into()
}
Opcode::Brz => {
let a = part_to_value(pos, root, a).unwrap();
// See the comment in the `Opcode::Brnz` match argm.
let block = pos.func.dfg[root].branch_destination().unwrap();
let args = pos.func.dfg.inst_args(root)[1..].to_vec();
pos.ins().brz(a, block, &args).into()
}
Opcode::Iconst => {
let a = a.unwrap_constant();
let val = const_to_value(pos.ins(), a, root);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Ireduce => {
let a = part_to_value(pos, root, a).unwrap();
let ty = peepmatic_ty_to_ir_ty(r#type, &pos.func.dfg, root);
let val = pos.ins().ireduce(ty, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Sextend => {
let a = part_to_value(pos, root, a).unwrap();
let ty = peepmatic_ty_to_ir_ty(r#type, &pos.func.dfg, root);
let val = pos.ins().sextend(ty, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Trapnz => {
let a = part_to_value(pos, root, a).unwrap();
// NB: similar to branching instructions (see comment in the
// `Opcode::Brnz` match arm) trapping instructions must be the
// root of an optimization's right-hand side, and we get the
// trap code from the root of the left-hand side. Peepmatic
// doesn't currently represent trap codes.
let code = pos.func.dfg[root].trap_code().unwrap();
pos.ins().trapnz(a, code).into()
}
Opcode::Trapz => {
let a = part_to_value(pos, root, a).unwrap();
// See comment in the `Opcode::Trapnz` match arm.
let code = pos.func.dfg[root].trap_code().unwrap();
pos.ins().trapz(a, code).into()
}
Opcode::Uextend => {
let a = part_to_value(pos, root, a).unwrap();
let ty = peepmatic_ty_to_ir_ty(r#type, &pos.func.dfg, root);
let val = pos.ins().uextend(ty, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
_ => unreachable!(),
}
}
fn make_inst_2(
&self,
pos: &mut FuncCursor<'b>,
root: ValueOrInst,
operator: Opcode,
_: Type,
a: Part<ValueOrInst>,
b: Part<ValueOrInst>,
) -> ValueOrInst {
log::trace!("make_inst_2: {:?}({:?}, {:?})", operator, a, b);
let root = root.resolve_inst(&pos.func.dfg).unwrap();
match operator {
Opcode::Band => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().band(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::BandImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().band_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Bor => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().bor(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::BorImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().bor_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Bxor => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().bxor(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::BxorImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().bxor_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Iadd => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().iadd(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::IaddImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().iadd_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Ifcmp => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().ifcmp(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::IfcmpImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().ifcmp_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Imul => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().imul(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::ImulImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().imul_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::IrsubImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().irsub_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Ishl => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().ishl(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::IshlImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().ishl_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Isub => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().isub(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Rotl => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().rotl(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::RotlImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().rotl_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Rotr => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().rotr(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::RotrImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().rotr_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Sdiv => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().sdiv(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::SdivImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().sdiv_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Srem => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().srem(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::SremImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().srem_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Sshr => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().sshr(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::SshrImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().sshr_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Udiv => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().udiv(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::UdivImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().udiv_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Urem => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().urem(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::UremImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().urem_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Ushr => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().ushr(a, b);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::UshrImm => {
let a = part_to_imm64(pos, a);
let b = part_to_value(pos, root, b).unwrap();
let val = pos.ins().ushr_imm(b, a);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
_ => unreachable!(),
}
}
fn make_inst_3(
&self,
pos: &mut FuncCursor<'b>,
root: ValueOrInst,
operator: Opcode,
_: Type,
a: Part<ValueOrInst>,
b: Part<ValueOrInst>,
c: Part<ValueOrInst>,
) -> ValueOrInst {
log::trace!("make_inst_3: {:?}({:?}, {:?}, {:?})", operator, a, b, c);
let root = root.resolve_inst(&pos.func.dfg).unwrap();
match operator {
Opcode::Icmp => {
let cond = a.unwrap_condition_code();
let cond = peepmatic_to_intcc(cond);
let b = part_to_value(pos, root, b).unwrap();
let c = part_to_value(pos, root, c).unwrap();
let val = pos.ins().icmp(cond, b, c);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::IcmpImm => {
let cond = a.unwrap_condition_code();
let cond = peepmatic_to_intcc(cond);
let imm = part_to_imm64(pos, b);
let c = part_to_value(pos, root, c).unwrap();
let val = pos.ins().icmp_imm(cond, c, imm);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
Opcode::Select => {
let a = part_to_value(pos, root, a).unwrap();
let b = part_to_value(pos, root, b).unwrap();
let c = part_to_value(pos, root, c).unwrap();
let val = pos.ins().select(a, b, c);
pos.func.dfg.value_def(val).unwrap_inst().into()
}
_ => unreachable!(),
}
}
fn instruction_to_constant(
&self,
pos: &mut FuncCursor<'b>,
value_or_inst: ValueOrInst,
) -> Option<Constant> {
value_or_inst.to_constant(pos)
}
fn instruction_result_bit_width(
&self,
pos: &mut FuncCursor<'b>,
value_or_inst: ValueOrInst,
) -> u8 {
value_or_inst.result_bit_width(&pos.func.dfg)
}
fn native_word_size_in_bits(&self, _pos: &mut FuncCursor<'b>) -> u8 {
self.pointer_bits()
}
}
#[cfg(test)]
#[cfg(feature = "x86")]
mod tests {
use super::*;
use crate::isa::lookup;
use crate::settings::{builder, Flags};
use std::str::FromStr;
use target_lexicon::triple;
#[test]
fn get_peepmatic_preopt() {
let isa = lookup(triple!("x86_64"))
.expect("expect x86 ISA")
.finish(Flags::new(builder()));
let _ = preopt(&*isa);
}
}