566 lines
21 KiB
Rust
566 lines
21 KiB
Rust
//! A pre-legalization rewriting pass.
|
|
|
|
#![allow(non_snake_case)]
|
|
|
|
use cursor::{Cursor, FuncCursor};
|
|
use divconst_magic_numbers::{magicS32, magicS64, magicU32, magicU64};
|
|
use divconst_magic_numbers::{MS32, MS64, MU32, MU64};
|
|
use ir::dfg::ValueDef;
|
|
use ir::instructions::Opcode;
|
|
use ir::types::{I32, I64};
|
|
use ir::Inst;
|
|
use ir::{DataFlowGraph, Function, InstBuilder, InstructionData, Type, Value};
|
|
use timing;
|
|
|
|
//----------------------------------------------------------------------
|
|
//
|
|
// Pattern-match helpers and transformation for div and rem by constants.
|
|
|
|
// Simple math helpers
|
|
|
|
/// if `x` is a power of two, or the negation thereof, return the power along
|
|
/// with a boolean that indicates whether `x` is negative. Else return None.
|
|
#[inline]
|
|
fn isPowerOf2_S32(x: i32) -> Option<(bool, u32)> {
|
|
// We have to special-case this because abs(x) isn't representable.
|
|
if x == -0x8000_0000 {
|
|
return Some((true, 31));
|
|
}
|
|
let abs_x = i32::wrapping_abs(x) as u32;
|
|
if abs_x.is_power_of_two() {
|
|
return Some((x < 0, abs_x.trailing_zeros()));
|
|
}
|
|
None
|
|
}
|
|
|
|
/// Same comments as for isPowerOf2_S64 apply.
|
|
#[inline]
|
|
fn isPowerOf2_S64(x: i64) -> Option<(bool, u32)> {
|
|
// We have to special-case this because abs(x) isn't representable.
|
|
if x == -0x8000_0000_0000_0000 {
|
|
return Some((true, 63));
|
|
}
|
|
let abs_x = i64::wrapping_abs(x) as u64;
|
|
if abs_x.is_power_of_two() {
|
|
return Some((x < 0, abs_x.trailing_zeros()));
|
|
}
|
|
None
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
enum DivRemByConstInfo {
|
|
DivU32(Value, u32), // In all cases, the arguments are:
|
|
DivU64(Value, u64), // left operand, right operand
|
|
DivS32(Value, i32),
|
|
DivS64(Value, i64),
|
|
RemU32(Value, u32),
|
|
RemU64(Value, u64),
|
|
RemS32(Value, i32),
|
|
RemS64(Value, i64),
|
|
}
|
|
|
|
/// Possibly create a DivRemByConstInfo from the given components, by
|
|
/// figuring out which, if any, of the 8 cases apply, and also taking care to
|
|
/// sanity-check the immediate.
|
|
fn package_up_divrem_info(
|
|
argL: Value,
|
|
argL_ty: Type,
|
|
argRs: i64,
|
|
isSigned: bool,
|
|
isRem: bool,
|
|
) -> Option<DivRemByConstInfo> {
|
|
let argRu: u64 = argRs as u64;
|
|
if !isSigned && argL_ty == I32 && argRu < 0x1_0000_0000 {
|
|
let con = if isRem {
|
|
DivRemByConstInfo::RemU32
|
|
} else {
|
|
DivRemByConstInfo::DivU32
|
|
};
|
|
return Some(con(argL, argRu as u32));
|
|
}
|
|
if !isSigned && argL_ty == I64 {
|
|
// unsigned 64, no range constraint
|
|
let con = if isRem {
|
|
DivRemByConstInfo::RemU64
|
|
} else {
|
|
DivRemByConstInfo::DivU64
|
|
};
|
|
return Some(con(argL, argRu));
|
|
}
|
|
if isSigned && argL_ty == I32 && (argRu <= 0x7fff_ffff || argRu >= 0xffff_ffff_8000_0000) {
|
|
let con = if isRem {
|
|
DivRemByConstInfo::RemS32
|
|
} else {
|
|
DivRemByConstInfo::DivS32
|
|
};
|
|
return Some(con(argL, argRu as i32));
|
|
}
|
|
if isSigned && argL_ty == I64 {
|
|
// signed 64, no range constraint
|
|
let con = if isRem {
|
|
DivRemByConstInfo::RemS64
|
|
} else {
|
|
DivRemByConstInfo::DivS64
|
|
};
|
|
return Some(con(argL, argRu as i64));
|
|
}
|
|
None
|
|
}
|
|
|
|
/// Examine `idata` to see if it is a div or rem by a constant, and if so
|
|
/// return the operands, signedness, operation size and div-vs-rem-ness in a
|
|
/// handy bundle.
|
|
fn get_div_info(inst: Inst, dfg: &DataFlowGraph) -> Option<DivRemByConstInfo> {
|
|
let idata: &InstructionData = &dfg[inst];
|
|
|
|
if let InstructionData::BinaryImm { opcode, arg, imm } = *idata {
|
|
let (isSigned, isRem) = match opcode {
|
|
Opcode::UdivImm => (false, false),
|
|
Opcode::UremImm => (false, true),
|
|
Opcode::SdivImm => (true, false),
|
|
Opcode::SremImm => (true, true),
|
|
_other => return None,
|
|
};
|
|
// Pull the operation size (type) from the left arg
|
|
let argL_ty = dfg.value_type(arg);
|
|
return package_up_divrem_info(arg, argL_ty, imm.into(), isSigned, isRem);
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
/// Actually do the transformation given a bundle containing the relevant
|
|
/// information. `divrem_info` describes a div or rem by a constant, that
|
|
/// `pos` currently points at, and `inst` is the associated instruction.
|
|
/// `inst` is replaced by a sequence of other operations that calculate the
|
|
/// same result. Note that there are various `divrem_info` cases where we
|
|
/// cannot do any transformation, in which case `inst` is left unchanged.
|
|
fn do_divrem_transformation(divrem_info: &DivRemByConstInfo, pos: &mut FuncCursor, inst: Inst) {
|
|
let isRem = match *divrem_info {
|
|
DivRemByConstInfo::DivU32(_, _)
|
|
| DivRemByConstInfo::DivU64(_, _)
|
|
| DivRemByConstInfo::DivS32(_, _)
|
|
| DivRemByConstInfo::DivS64(_, _) => false,
|
|
DivRemByConstInfo::RemU32(_, _)
|
|
| DivRemByConstInfo::RemU64(_, _)
|
|
| DivRemByConstInfo::RemS32(_, _)
|
|
| DivRemByConstInfo::RemS64(_, _) => true,
|
|
};
|
|
|
|
match *divrem_info {
|
|
// -------------------- U32 --------------------
|
|
|
|
// U32 div, rem by zero: ignore
|
|
DivRemByConstInfo::DivU32(_n1, 0) | DivRemByConstInfo::RemU32(_n1, 0) => {}
|
|
|
|
// U32 div by 1: identity
|
|
// U32 rem by 1: zero
|
|
DivRemByConstInfo::DivU32(n1, 1) | DivRemByConstInfo::RemU32(n1, 1) => {
|
|
if isRem {
|
|
pos.func.dfg.replace(inst).iconst(I32, 0);
|
|
} else {
|
|
pos.func.dfg.replace(inst).copy(n1);
|
|
}
|
|
}
|
|
|
|
// U32 div, rem by a power-of-2
|
|
DivRemByConstInfo::DivU32(n1, d) | DivRemByConstInfo::RemU32(n1, d)
|
|
if d.is_power_of_two() =>
|
|
{
|
|
debug_assert!(d >= 2);
|
|
// compute k where d == 2^k
|
|
let k = d.trailing_zeros();
|
|
debug_assert!(k >= 1 && k <= 31);
|
|
if isRem {
|
|
let mask = (1u64 << k) - 1;
|
|
pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
|
|
} else {
|
|
pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
|
|
}
|
|
}
|
|
|
|
// U32 div, rem by non-power-of-2
|
|
DivRemByConstInfo::DivU32(n1, d) | DivRemByConstInfo::RemU32(n1, d) => {
|
|
debug_assert!(d >= 3);
|
|
let MU32 {
|
|
mulBy,
|
|
doAdd,
|
|
shiftBy,
|
|
} = magicU32(d);
|
|
let qf; // final quotient
|
|
let q0 = pos.ins().iconst(I32, mulBy as i64);
|
|
let q1 = pos.ins().umulhi(n1, q0);
|
|
if doAdd {
|
|
debug_assert!(shiftBy >= 1 && shiftBy <= 32);
|
|
let t1 = pos.ins().isub(n1, q1);
|
|
let t2 = pos.ins().ushr_imm(t1, 1);
|
|
let t3 = pos.ins().iadd(t2, q1);
|
|
// I never found any case where shiftBy == 1 here.
|
|
// So there's no attempt to fold out a zero shift.
|
|
debug_assert_ne!(shiftBy, 1);
|
|
qf = pos.ins().ushr_imm(t3, (shiftBy - 1) as i64);
|
|
} else {
|
|
debug_assert!(shiftBy >= 0 && shiftBy <= 31);
|
|
// Whereas there are known cases here for shiftBy == 0.
|
|
if shiftBy > 0 {
|
|
qf = pos.ins().ushr_imm(q1, shiftBy as i64);
|
|
} else {
|
|
qf = q1;
|
|
}
|
|
}
|
|
// Now qf holds the final quotient. If necessary calculate the
|
|
// remainder instead.
|
|
if isRem {
|
|
let tt = pos.ins().imul_imm(qf, d as i64);
|
|
pos.func.dfg.replace(inst).isub(n1, tt);
|
|
} else {
|
|
pos.func.dfg.replace(inst).copy(qf);
|
|
}
|
|
}
|
|
|
|
// -------------------- U64 --------------------
|
|
|
|
// U64 div, rem by zero: ignore
|
|
DivRemByConstInfo::DivU64(_n1, 0) | DivRemByConstInfo::RemU64(_n1, 0) => {}
|
|
|
|
// U64 div by 1: identity
|
|
// U64 rem by 1: zero
|
|
DivRemByConstInfo::DivU64(n1, 1) | DivRemByConstInfo::RemU64(n1, 1) => {
|
|
if isRem {
|
|
pos.func.dfg.replace(inst).iconst(I64, 0);
|
|
} else {
|
|
pos.func.dfg.replace(inst).copy(n1);
|
|
}
|
|
}
|
|
|
|
// U64 div, rem by a power-of-2
|
|
DivRemByConstInfo::DivU64(n1, d) | DivRemByConstInfo::RemU64(n1, d)
|
|
if d.is_power_of_two() =>
|
|
{
|
|
debug_assert!(d >= 2);
|
|
// compute k where d == 2^k
|
|
let k = d.trailing_zeros();
|
|
debug_assert!(k >= 1 && k <= 63);
|
|
if isRem {
|
|
let mask = (1u64 << k) - 1;
|
|
pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
|
|
} else {
|
|
pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
|
|
}
|
|
}
|
|
|
|
// U64 div, rem by non-power-of-2
|
|
DivRemByConstInfo::DivU64(n1, d) | DivRemByConstInfo::RemU64(n1, d) => {
|
|
debug_assert!(d >= 3);
|
|
let MU64 {
|
|
mulBy,
|
|
doAdd,
|
|
shiftBy,
|
|
} = magicU64(d);
|
|
let qf; // final quotient
|
|
let q0 = pos.ins().iconst(I64, mulBy as i64);
|
|
let q1 = pos.ins().umulhi(n1, q0);
|
|
if doAdd {
|
|
debug_assert!(shiftBy >= 1 && shiftBy <= 64);
|
|
let t1 = pos.ins().isub(n1, q1);
|
|
let t2 = pos.ins().ushr_imm(t1, 1);
|
|
let t3 = pos.ins().iadd(t2, q1);
|
|
// I never found any case where shiftBy == 1 here.
|
|
// So there's no attempt to fold out a zero shift.
|
|
debug_assert_ne!(shiftBy, 1);
|
|
qf = pos.ins().ushr_imm(t3, (shiftBy - 1) as i64);
|
|
} else {
|
|
debug_assert!(shiftBy >= 0 && shiftBy <= 63);
|
|
// Whereas there are known cases here for shiftBy == 0.
|
|
if shiftBy > 0 {
|
|
qf = pos.ins().ushr_imm(q1, shiftBy as i64);
|
|
} else {
|
|
qf = q1;
|
|
}
|
|
}
|
|
// Now qf holds the final quotient. If necessary calculate the
|
|
// remainder instead.
|
|
if isRem {
|
|
let tt = pos.ins().imul_imm(qf, d as i64);
|
|
pos.func.dfg.replace(inst).isub(n1, tt);
|
|
} else {
|
|
pos.func.dfg.replace(inst).copy(qf);
|
|
}
|
|
}
|
|
|
|
// -------------------- S32 --------------------
|
|
|
|
// S32 div, rem by zero or -1: ignore
|
|
DivRemByConstInfo::DivS32(_n1, -1)
|
|
| DivRemByConstInfo::RemS32(_n1, -1)
|
|
| DivRemByConstInfo::DivS32(_n1, 0)
|
|
| DivRemByConstInfo::RemS32(_n1, 0) => {}
|
|
|
|
// S32 div by 1: identity
|
|
// S32 rem by 1: zero
|
|
DivRemByConstInfo::DivS32(n1, 1) | DivRemByConstInfo::RemS32(n1, 1) => {
|
|
if isRem {
|
|
pos.func.dfg.replace(inst).iconst(I32, 0);
|
|
} else {
|
|
pos.func.dfg.replace(inst).copy(n1);
|
|
}
|
|
}
|
|
|
|
DivRemByConstInfo::DivS32(n1, d) | DivRemByConstInfo::RemS32(n1, d) => {
|
|
if let Some((isNeg, k)) = isPowerOf2_S32(d) {
|
|
// k can be 31 only in the case that d is -2^31.
|
|
debug_assert!(k >= 1 && k <= 31);
|
|
let t1 = if k - 1 == 0 {
|
|
n1
|
|
} else {
|
|
pos.ins().sshr_imm(n1, (k - 1) as i64)
|
|
};
|
|
let t2 = pos.ins().ushr_imm(t1, (32 - k) as i64);
|
|
let t3 = pos.ins().iadd(n1, t2);
|
|
if isRem {
|
|
// S32 rem by a power-of-2
|
|
let t4 = pos.ins().band_imm(t3, i32::wrapping_neg(1 << k) as i64);
|
|
// Curiously, we don't care here what the sign of d is.
|
|
pos.func.dfg.replace(inst).isub(n1, t4);
|
|
} else {
|
|
// S32 div by a power-of-2
|
|
let t4 = pos.ins().sshr_imm(t3, k as i64);
|
|
if isNeg {
|
|
pos.func.dfg.replace(inst).irsub_imm(t4, 0);
|
|
} else {
|
|
pos.func.dfg.replace(inst).copy(t4);
|
|
}
|
|
}
|
|
} else {
|
|
// S32 div, rem by a non-power-of-2
|
|
debug_assert!(d < -2 || d > 2);
|
|
let MS32 { mulBy, shiftBy } = magicS32(d);
|
|
let q0 = pos.ins().iconst(I32, mulBy as i64);
|
|
let q1 = pos.ins().smulhi(n1, q0);
|
|
let q2 = if d > 0 && mulBy < 0 {
|
|
pos.ins().iadd(q1, n1)
|
|
} else if d < 0 && mulBy > 0 {
|
|
pos.ins().isub(q1, n1)
|
|
} else {
|
|
q1
|
|
};
|
|
debug_assert!(shiftBy >= 0 && shiftBy <= 31);
|
|
let q3 = if shiftBy == 0 {
|
|
q2
|
|
} else {
|
|
pos.ins().sshr_imm(q2, shiftBy as i64)
|
|
};
|
|
let t1 = pos.ins().ushr_imm(q3, 31);
|
|
let qf = pos.ins().iadd(q3, t1);
|
|
// Now qf holds the final quotient. If necessary calculate
|
|
// the remainder instead.
|
|
if isRem {
|
|
let tt = pos.ins().imul_imm(qf, d as i64);
|
|
pos.func.dfg.replace(inst).isub(n1, tt);
|
|
} else {
|
|
pos.func.dfg.replace(inst).copy(qf);
|
|
}
|
|
}
|
|
}
|
|
|
|
// -------------------- S64 --------------------
|
|
|
|
// S64 div, rem by zero or -1: ignore
|
|
DivRemByConstInfo::DivS64(_n1, -1)
|
|
| DivRemByConstInfo::RemS64(_n1, -1)
|
|
| DivRemByConstInfo::DivS64(_n1, 0)
|
|
| DivRemByConstInfo::RemS64(_n1, 0) => {}
|
|
|
|
// S64 div by 1: identity
|
|
// S64 rem by 1: zero
|
|
DivRemByConstInfo::DivS64(n1, 1) | DivRemByConstInfo::RemS64(n1, 1) => {
|
|
if isRem {
|
|
pos.func.dfg.replace(inst).iconst(I64, 0);
|
|
} else {
|
|
pos.func.dfg.replace(inst).copy(n1);
|
|
}
|
|
}
|
|
|
|
DivRemByConstInfo::DivS64(n1, d) | DivRemByConstInfo::RemS64(n1, d) => {
|
|
if let Some((isNeg, k)) = isPowerOf2_S64(d) {
|
|
// k can be 63 only in the case that d is -2^63.
|
|
debug_assert!(k >= 1 && k <= 63);
|
|
let t1 = if k - 1 == 0 {
|
|
n1
|
|
} else {
|
|
pos.ins().sshr_imm(n1, (k - 1) as i64)
|
|
};
|
|
let t2 = pos.ins().ushr_imm(t1, (64 - k) as i64);
|
|
let t3 = pos.ins().iadd(n1, t2);
|
|
if isRem {
|
|
// S64 rem by a power-of-2
|
|
let t4 = pos.ins().band_imm(t3, i64::wrapping_neg(1 << k));
|
|
// Curiously, we don't care here what the sign of d is.
|
|
pos.func.dfg.replace(inst).isub(n1, t4);
|
|
} else {
|
|
// S64 div by a power-of-2
|
|
let t4 = pos.ins().sshr_imm(t3, k as i64);
|
|
if isNeg {
|
|
pos.func.dfg.replace(inst).irsub_imm(t4, 0);
|
|
} else {
|
|
pos.func.dfg.replace(inst).copy(t4);
|
|
}
|
|
}
|
|
} else {
|
|
// S64 div, rem by a non-power-of-2
|
|
debug_assert!(d < -2 || d > 2);
|
|
let MS64 { mulBy, shiftBy } = magicS64(d);
|
|
let q0 = pos.ins().iconst(I64, mulBy);
|
|
let q1 = pos.ins().smulhi(n1, q0);
|
|
let q2 = if d > 0 && mulBy < 0 {
|
|
pos.ins().iadd(q1, n1)
|
|
} else if d < 0 && mulBy > 0 {
|
|
pos.ins().isub(q1, n1)
|
|
} else {
|
|
q1
|
|
};
|
|
debug_assert!(shiftBy >= 0 && shiftBy <= 63);
|
|
let q3 = if shiftBy == 0 {
|
|
q2
|
|
} else {
|
|
pos.ins().sshr_imm(q2, shiftBy as i64)
|
|
};
|
|
let t1 = pos.ins().ushr_imm(q3, 63);
|
|
let qf = pos.ins().iadd(q3, t1);
|
|
// Now qf holds the final quotient. If necessary calculate
|
|
// the remainder instead.
|
|
if isRem {
|
|
let tt = pos.ins().imul_imm(qf, d);
|
|
pos.func.dfg.replace(inst).isub(n1, tt);
|
|
} else {
|
|
pos.func.dfg.replace(inst).copy(qf);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Apply basic simplifications.
|
|
///
|
|
/// This folds constants with arithmetic to form `_imm` instructions, and other
|
|
/// minor simplifications.
|
|
fn simplify(pos: &mut FuncCursor, inst: Inst) {
|
|
match pos.func.dfg[inst] {
|
|
InstructionData::Binary { opcode, args } => {
|
|
if let ValueDef::Result(iconst_inst, _) = pos.func.dfg.value_def(args[1]) {
|
|
if let InstructionData::UnaryImm {
|
|
opcode: Opcode::Iconst,
|
|
mut imm,
|
|
} = pos.func.dfg[iconst_inst]
|
|
{
|
|
let new_opcode = match opcode {
|
|
Opcode::Iadd => Opcode::IaddImm,
|
|
Opcode::Imul => Opcode::ImulImm,
|
|
Opcode::Sdiv => Opcode::SdivImm,
|
|
Opcode::Udiv => Opcode::UdivImm,
|
|
Opcode::Srem => Opcode::SremImm,
|
|
Opcode::Urem => Opcode::UremImm,
|
|
Opcode::Band => Opcode::BandImm,
|
|
Opcode::Bor => Opcode::BorImm,
|
|
Opcode::Bxor => Opcode::BxorImm,
|
|
Opcode::Rotl => Opcode::RotlImm,
|
|
Opcode::Rotr => Opcode::RotrImm,
|
|
Opcode::Ishl => Opcode::IshlImm,
|
|
Opcode::Ushr => Opcode::UshrImm,
|
|
Opcode::Sshr => Opcode::SshrImm,
|
|
Opcode::Isub => {
|
|
imm = imm.wrapping_neg();
|
|
Opcode::IaddImm
|
|
}
|
|
_ => return,
|
|
};
|
|
let ty = pos.func.dfg.ctrl_typevar(inst);
|
|
pos.func
|
|
.dfg
|
|
.replace(inst)
|
|
.BinaryImm(new_opcode, ty, imm, args[0]);
|
|
}
|
|
} else if let ValueDef::Result(iconst_inst, _) = pos.func.dfg.value_def(args[0]) {
|
|
if let InstructionData::UnaryImm {
|
|
opcode: Opcode::Iconst,
|
|
imm,
|
|
} = pos.func.dfg[iconst_inst]
|
|
{
|
|
let new_opcode = match opcode {
|
|
Opcode::Isub => Opcode::IrsubImm,
|
|
_ => return,
|
|
};
|
|
let ty = pos.func.dfg.ctrl_typevar(inst);
|
|
pos.func
|
|
.dfg
|
|
.replace(inst)
|
|
.BinaryImm(new_opcode, ty, imm, args[1]);
|
|
}
|
|
}
|
|
}
|
|
InstructionData::IntCompare { opcode, cond, args } => {
|
|
debug_assert_eq!(opcode, Opcode::Icmp);
|
|
if let ValueDef::Result(iconst_inst, _) = pos.func.dfg.value_def(args[1]) {
|
|
if let InstructionData::UnaryImm {
|
|
opcode: Opcode::Iconst,
|
|
imm,
|
|
} = pos.func.dfg[iconst_inst]
|
|
{
|
|
pos.func.dfg.replace(inst).icmp_imm(cond, args[0], imm);
|
|
}
|
|
}
|
|
}
|
|
InstructionData::CondTrap { .. }
|
|
| InstructionData::Branch { .. }
|
|
| InstructionData::Ternary {
|
|
opcode: Opcode::Select,
|
|
..
|
|
} => {
|
|
// Fold away a redundant `bint`.
|
|
let maybe = {
|
|
let args = pos.func.dfg.inst_args(inst);
|
|
if let ValueDef::Result(def_inst, _) = pos.func.dfg.value_def(args[0]) {
|
|
if let InstructionData::Unary {
|
|
opcode: Opcode::Bint,
|
|
arg: bool_val,
|
|
} = pos.func.dfg[def_inst]
|
|
{
|
|
Some(bool_val)
|
|
} else {
|
|
None
|
|
}
|
|
} else {
|
|
None
|
|
}
|
|
};
|
|
if let Some(bool_val) = maybe {
|
|
let args = pos.func.dfg.inst_args_mut(inst);
|
|
args[0] = bool_val;
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
|
|
/// The main pre-opt pass.
|
|
pub fn do_preopt(func: &mut Function) {
|
|
let _tt = timing::preopt();
|
|
let mut pos = FuncCursor::new(func);
|
|
while let Some(_ebb) = pos.next_ebb() {
|
|
while let Some(inst) = pos.next_inst() {
|
|
// Apply basic simplifications.
|
|
simplify(&mut pos, inst);
|
|
|
|
//-- BEGIN -- division by constants ----------------
|
|
|
|
let mb_dri = get_div_info(inst, &pos.func.dfg);
|
|
if let Some(divrem_info) = mb_dri {
|
|
do_divrem_transformation(&divrem_info, &mut pos, inst);
|
|
continue;
|
|
}
|
|
|
|
//-- END -- division by constants ------------------
|
|
}
|
|
}
|
|
}
|