Files
wasmtime/cranelift/codegen/src/ir/instructions.rs
Chris Fallin cdbe76a1d4 Remove uses of matches!() macro, incompatible with Firefox build.
When we vendor Cranelift into Firefox, we need to be able to build with
the Firefox CI setup (unless we carry patches on top of upstream).
Unfortunately, the Firefox CI currently appears to build with a slightly
older version of Rust: I can't work out which version exactly, but one
without stable support for `matches!()`.

A recent attempt to version-bump Cranelift failed with build errors at
the two locations in this patch:

https://treeherder.mozilla.org/logviewer.html#/jobs?job_id=305994046&repo=autoland&lineNumber=24829

I also see a bunch of uses of `matches!()` in Peepmatic, but those
crates are not built by Firefox, so we can leave them be for now, I
think.
2020-06-11 15:11:10 -07:00

778 lines
26 KiB
Rust

//! Instruction formats and opcodes.
//!
//! The `instructions` module contains definitions for instruction formats, opcodes, and the
//! in-memory representation of IR instructions.
//!
//! A large part of this module is auto-generated from the instruction descriptions in the meta
//! directory.
use alloc::vec::Vec;
use core::fmt::{self, Display, Formatter};
use core::ops::{Deref, DerefMut};
use core::str::FromStr;
use crate::ir::{self, trapcode::TrapCode, types, Block, FuncRef, JumpTable, SigRef, Type, Value};
use crate::isa;
use crate::bitset::BitSet;
use crate::entity;
/// Some instructions use an external list of argument values because there is not enough space in
/// the 16-byte `InstructionData` struct. These value lists are stored in a memory pool in
/// `dfg.value_lists`.
pub type ValueList = entity::EntityList<Value>;
/// Memory pool for holding value lists. See `ValueList`.
pub type ValueListPool = entity::ListPool<Value>;
// Include code generated by `cranelift-codegen/meta/src/gen_inst.rs`. This file contains:
//
// - The `pub enum InstructionFormat` enum with all the instruction formats.
// - The `pub enum InstructionData` enum with all the instruction data fields.
// - The `pub enum Opcode` definition with all known opcodes,
// - The `const OPCODE_FORMAT: [InstructionFormat; N]` table.
// - The private `fn opcode_name(Opcode) -> &'static str` function, and
// - The hash table `const OPCODE_HASH_TABLE: [Opcode; N]`.
//
// For value type constraints:
//
// - The `const OPCODE_CONSTRAINTS : [OpcodeConstraints; N]` table.
// - The `const TYPE_SETS : [ValueTypeSet; N]` table.
// - The `const OPERAND_CONSTRAINTS : [OperandConstraint; N]` table.
//
include!(concat!(env!("OUT_DIR"), "/opcodes.rs"));
impl Display for Opcode {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{}", opcode_name(*self))
}
}
impl Opcode {
/// Get the instruction format for this opcode.
pub fn format(self) -> InstructionFormat {
OPCODE_FORMAT[self as usize - 1]
}
/// Get the constraint descriptor for this opcode.
/// Panic if this is called on `NotAnOpcode`.
pub fn constraints(self) -> OpcodeConstraints {
OPCODE_CONSTRAINTS[self as usize - 1]
}
}
// This trait really belongs in cranelift-reader where it is used by the `.clif` file parser, but since
// it critically depends on the `opcode_name()` function which is needed here anyway, it lives in
// this module. This also saves us from running the build script twice to generate code for the two
// separate crates.
impl FromStr for Opcode {
type Err = &'static str;
/// Parse an Opcode name from a string.
fn from_str(s: &str) -> Result<Self, &'static str> {
use crate::constant_hash::{probe, simple_hash, Table};
impl<'a> Table<&'a str> for [Option<Opcode>] {
fn len(&self) -> usize {
self.len()
}
fn key(&self, idx: usize) -> Option<&'a str> {
self[idx].map(opcode_name)
}
}
match probe::<&str, [Option<Self>]>(&OPCODE_HASH_TABLE, s, simple_hash(s)) {
Err(_) => Err("Unknown opcode"),
// We unwrap here because probe() should have ensured that the entry
// at this index is not None.
Ok(i) => Ok(OPCODE_HASH_TABLE[i].unwrap()),
}
}
}
/// A variable list of `Value` operands used for function call arguments and passing arguments to
/// basic blocks.
#[derive(Clone, Debug)]
pub struct VariableArgs(Vec<Value>);
impl VariableArgs {
/// Create an empty argument list.
pub fn new() -> Self {
Self(Vec::new())
}
/// Add an argument to the end.
pub fn push(&mut self, v: Value) {
self.0.push(v)
}
/// Check if the list is empty.
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Convert this to a value list in `pool` with `fixed` prepended.
pub fn into_value_list(self, fixed: &[Value], pool: &mut ValueListPool) -> ValueList {
let mut vlist = ValueList::default();
vlist.extend(fixed.iter().cloned(), pool);
vlist.extend(self.0, pool);
vlist
}
}
// Coerce `VariableArgs` into a `&[Value]` slice.
impl Deref for VariableArgs {
type Target = [Value];
fn deref(&self) -> &[Value] {
&self.0
}
}
impl DerefMut for VariableArgs {
fn deref_mut(&mut self) -> &mut [Value] {
&mut self.0
}
}
impl Display for VariableArgs {
fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
for (i, val) in self.0.iter().enumerate() {
if i == 0 {
write!(fmt, "{}", val)?;
} else {
write!(fmt, ", {}", val)?;
}
}
Ok(())
}
}
impl Default for VariableArgs {
fn default() -> Self {
Self::new()
}
}
/// Analyzing an instruction.
///
/// Avoid large matches on instruction formats by using the methods defined here to examine
/// instructions.
impl InstructionData {
/// Return information about the destination of a branch or jump instruction.
///
/// Any instruction that can transfer control to another block reveals its possible destinations
/// here.
pub fn analyze_branch<'a>(&'a self, pool: &'a ValueListPool) -> BranchInfo<'a> {
match *self {
Self::Jump {
destination,
ref args,
..
} => BranchInfo::SingleDest(destination, args.as_slice(pool)),
Self::BranchInt {
destination,
ref args,
..
}
| Self::BranchFloat {
destination,
ref args,
..
}
| Self::Branch {
destination,
ref args,
..
} => BranchInfo::SingleDest(destination, &args.as_slice(pool)[1..]),
Self::BranchIcmp {
destination,
ref args,
..
} => BranchInfo::SingleDest(destination, &args.as_slice(pool)[2..]),
Self::BranchTable {
table, destination, ..
} => BranchInfo::Table(table, Some(destination)),
Self::IndirectJump { table, .. } => BranchInfo::Table(table, None),
_ => {
debug_assert!(!self.opcode().is_branch());
BranchInfo::NotABranch
}
}
}
/// Get the single destination of this branch instruction, if it is a single destination
/// branch or jump.
///
/// Multi-destination branches like `br_table` return `None`.
pub fn branch_destination(&self) -> Option<Block> {
match *self {
Self::Jump { destination, .. }
| Self::Branch { destination, .. }
| Self::BranchInt { destination, .. }
| Self::BranchFloat { destination, .. }
| Self::BranchIcmp { destination, .. } => Some(destination),
Self::BranchTable { .. } | Self::IndirectJump { .. } => None,
_ => {
debug_assert!(!self.opcode().is_branch());
None
}
}
}
/// Get a mutable reference to the single destination of this branch instruction, if it is a
/// single destination branch or jump.
///
/// Multi-destination branches like `br_table` return `None`.
pub fn branch_destination_mut(&mut self) -> Option<&mut Block> {
match *self {
Self::Jump {
ref mut destination,
..
}
| Self::Branch {
ref mut destination,
..
}
| Self::BranchInt {
ref mut destination,
..
}
| Self::BranchFloat {
ref mut destination,
..
}
| Self::BranchIcmp {
ref mut destination,
..
} => Some(destination),
Self::BranchTable { .. } => None,
_ => {
debug_assert!(!self.opcode().is_branch());
None
}
}
}
/// If this is a trapping instruction, get its trap code. Otherwise, return
/// `None`.
pub fn trap_code(&self) -> Option<TrapCode> {
match *self {
Self::CondTrap { code, .. }
| Self::FloatCondTrap { code, .. }
| Self::IntCondTrap { code, .. }
| Self::Trap { code, .. } => Some(code),
_ => None,
}
}
/// If this is a trapping instruction, get an exclusive reference to its
/// trap code. Otherwise, return `None`.
pub fn trap_code_mut(&mut self) -> Option<&mut TrapCode> {
match self {
Self::CondTrap { code, .. }
| Self::FloatCondTrap { code, .. }
| Self::IntCondTrap { code, .. }
| Self::Trap { code, .. } => Some(code),
_ => None,
}
}
/// Return information about a call instruction.
///
/// Any instruction that can call another function reveals its call signature here.
pub fn analyze_call<'a>(&'a self, pool: &'a ValueListPool) -> CallInfo<'a> {
match *self {
Self::Call {
func_ref, ref args, ..
} => CallInfo::Direct(func_ref, args.as_slice(pool)),
Self::CallIndirect {
sig_ref, ref args, ..
} => CallInfo::Indirect(sig_ref, &args.as_slice(pool)[1..]),
_ => {
debug_assert!(!self.opcode().is_call());
CallInfo::NotACall
}
}
}
#[inline]
pub(crate) fn sign_extend_immediates(&mut self, ctrl_typevar: Type) {
if ctrl_typevar.is_invalid() {
return;
}
let bit_width = ctrl_typevar.bits();
match self {
Self::BinaryImm64 {
opcode,
arg: _,
imm,
} => {
if *opcode == Opcode::SdivImm || *opcode == Opcode::SremImm {
imm.sign_extend_from_width(bit_width);
}
}
Self::IntCompareImm {
opcode,
arg: _,
cond,
imm,
} => {
debug_assert_eq!(*opcode, Opcode::IcmpImm);
if cond.unsigned() != *cond {
imm.sign_extend_from_width(bit_width);
}
}
_ => {}
}
}
}
/// Information about branch and jump instructions.
pub enum BranchInfo<'a> {
/// This is not a branch or jump instruction.
/// This instruction will not transfer control to another block in the function, but it may still
/// affect control flow by returning or trapping.
NotABranch,
/// This is a branch or jump to a single destination block, possibly taking value arguments.
SingleDest(Block, &'a [Value]),
/// This is a jump table branch which can have many destination blocks and maybe one default block.
Table(JumpTable, Option<Block>),
}
/// Information about call instructions.
pub enum CallInfo<'a> {
/// This is not a call instruction.
NotACall,
/// This is a direct call to an external function declared in the preamble. See
/// `DataFlowGraph.ext_funcs`.
Direct(FuncRef, &'a [Value]),
/// This is an indirect call with the specified signature. See `DataFlowGraph.signatures`.
Indirect(SigRef, &'a [Value]),
}
/// Value type constraints for a given opcode.
///
/// The `InstructionFormat` determines the constraints on most operands, but `Value` operands and
/// results are not determined by the format. Every `Opcode` has an associated
/// `OpcodeConstraints` object that provides the missing details.
#[derive(Clone, Copy)]
pub struct OpcodeConstraints {
/// Flags for this opcode encoded as a bit field:
///
/// Bits 0-2:
/// Number of fixed result values. This does not include `variable_args` results as are
/// produced by call instructions.
///
/// Bit 3:
/// This opcode is polymorphic and the controlling type variable can be inferred from the
/// designated input operand. This is the `typevar_operand` index given to the
/// `InstructionFormat` meta language object. When this bit is not set, the controlling
/// type variable must be the first output value instead.
///
/// Bit 4:
/// This opcode is polymorphic and the controlling type variable does *not* appear as the
/// first result type.
///
/// Bits 5-7:
/// Number of fixed value arguments. The minimum required number of value operands.
flags: u8,
/// Permitted set of types for the controlling type variable as an index into `TYPE_SETS`.
typeset_offset: u8,
/// Offset into `OPERAND_CONSTRAINT` table of the descriptors for this opcode. The first
/// `num_fixed_results()` entries describe the result constraints, then follows constraints for
/// the fixed `Value` input operands. (`num_fixed_value_arguments()` of them).
constraint_offset: u16,
}
impl OpcodeConstraints {
/// Can the controlling type variable for this opcode be inferred from the designated value
/// input operand?
/// This also implies that this opcode is polymorphic.
pub fn use_typevar_operand(self) -> bool {
(self.flags & 0x8) != 0
}
/// Is it necessary to look at the designated value input operand in order to determine the
/// controlling type variable, or is it good enough to use the first return type?
///
/// Most polymorphic instructions produce a single result with the type of the controlling type
/// variable. A few polymorphic instructions either don't produce any results, or produce
/// results with a fixed type. These instructions return `true`.
pub fn requires_typevar_operand(self) -> bool {
(self.flags & 0x10) != 0
}
/// Get the number of *fixed* result values produced by this opcode.
/// This does not include `variable_args` produced by calls.
pub fn num_fixed_results(self) -> usize {
(self.flags & 0x7) as usize
}
/// Get the number of *fixed* input values required by this opcode.
///
/// This does not include `variable_args` arguments on call and branch instructions.
///
/// The number of fixed input values is usually implied by the instruction format, but
/// instruction formats that use a `ValueList` put both fixed and variable arguments in the
/// list. This method returns the *minimum* number of values required in the value list.
pub fn num_fixed_value_arguments(self) -> usize {
((self.flags >> 5) & 0x7) as usize
}
/// Get the offset into `TYPE_SETS` for the controlling type variable.
/// Returns `None` if the instruction is not polymorphic.
fn typeset_offset(self) -> Option<usize> {
let offset = usize::from(self.typeset_offset);
if offset < TYPE_SETS.len() {
Some(offset)
} else {
None
}
}
/// Get the offset into OPERAND_CONSTRAINTS where the descriptors for this opcode begin.
fn constraint_offset(self) -> usize {
self.constraint_offset as usize
}
/// Get the value type of result number `n`, having resolved the controlling type variable to
/// `ctrl_type`.
pub fn result_type(self, n: usize, ctrl_type: Type) -> Type {
debug_assert!(n < self.num_fixed_results(), "Invalid result index");
if let ResolvedConstraint::Bound(t) =
OPERAND_CONSTRAINTS[self.constraint_offset() + n].resolve(ctrl_type)
{
t
} else {
panic!("Result constraints can't be free");
}
}
/// Get the value type of input value number `n`, having resolved the controlling type variable
/// to `ctrl_type`.
///
/// Unlike results, it is possible for some input values to vary freely within a specific
/// `ValueTypeSet`. This is represented with the `ArgumentConstraint::Free` variant.
pub fn value_argument_constraint(self, n: usize, ctrl_type: Type) -> ResolvedConstraint {
debug_assert!(
n < self.num_fixed_value_arguments(),
"Invalid value argument index"
);
let offset = self.constraint_offset() + self.num_fixed_results();
OPERAND_CONSTRAINTS[offset + n].resolve(ctrl_type)
}
/// Get the typeset of allowed types for the controlling type variable in a polymorphic
/// instruction.
pub fn ctrl_typeset(self) -> Option<ValueTypeSet> {
self.typeset_offset().map(|offset| TYPE_SETS[offset])
}
/// Is this instruction polymorphic?
pub fn is_polymorphic(self) -> bool {
self.ctrl_typeset().is_some()
}
}
type BitSet8 = BitSet<u8>;
type BitSet16 = BitSet<u16>;
/// A value type set describes the permitted set of types for a type variable.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct ValueTypeSet {
/// Allowed lane sizes
pub lanes: BitSet16,
/// Allowed int widths
pub ints: BitSet8,
/// Allowed float widths
pub floats: BitSet8,
/// Allowed bool widths
pub bools: BitSet8,
/// Allowed ref widths
pub refs: BitSet8,
}
impl ValueTypeSet {
/// Is `scalar` part of the base type set?
///
/// Note that the base type set does not have to be included in the type set proper.
fn is_base_type(self, scalar: Type) -> bool {
let l2b = scalar.log2_lane_bits();
if scalar.is_int() {
self.ints.contains(l2b)
} else if scalar.is_float() {
self.floats.contains(l2b)
} else if scalar.is_bool() {
self.bools.contains(l2b)
} else if scalar.is_ref() {
self.refs.contains(l2b)
} else {
false
}
}
/// Does `typ` belong to this set?
pub fn contains(self, typ: Type) -> bool {
let l2l = typ.log2_lane_count();
self.lanes.contains(l2l) && self.is_base_type(typ.lane_type())
}
/// Get an example member of this type set.
///
/// This is used for error messages to avoid suggesting invalid types.
pub fn example(self) -> Type {
let t = if self.ints.max().unwrap_or(0) > 5 {
types::I32
} else if self.floats.max().unwrap_or(0) > 5 {
types::F32
} else if self.bools.max().unwrap_or(0) > 5 {
types::B32
} else {
types::B1
};
t.by(1 << self.lanes.min().unwrap()).unwrap()
}
}
/// Operand constraints. This describes the value type constraints on a single `Value` operand.
enum OperandConstraint {
/// This operand has a concrete value type.
Concrete(Type),
/// This operand can vary freely within the given type set.
/// The type set is identified by its index into the TYPE_SETS constant table.
Free(u8),
/// This operand is the same type as the controlling type variable.
Same,
/// This operand is `ctrlType.lane_of()`.
LaneOf,
/// This operand is `ctrlType.as_bool()`.
AsBool,
/// This operand is `ctrlType.half_width()`.
HalfWidth,
/// This operand is `ctrlType.double_width()`.
DoubleWidth,
/// This operand is `ctrlType.half_vector()`.
HalfVector,
/// This operand is `ctrlType.double_vector()`.
DoubleVector,
/// This operand is `ctrlType.split_lanes()`.
SplitLanes,
}
impl OperandConstraint {
/// Resolve this operand constraint into a concrete value type, given the value of the
/// controlling type variable.
pub fn resolve(&self, ctrl_type: Type) -> ResolvedConstraint {
use self::OperandConstraint::*;
use self::ResolvedConstraint::Bound;
match *self {
Concrete(t) => Bound(t),
Free(vts) => ResolvedConstraint::Free(TYPE_SETS[vts as usize]),
Same => Bound(ctrl_type),
LaneOf => Bound(ctrl_type.lane_of()),
AsBool => Bound(ctrl_type.as_bool()),
HalfWidth => Bound(ctrl_type.half_width().expect("invalid type for half_width")),
DoubleWidth => Bound(
ctrl_type
.double_width()
.expect("invalid type for double_width"),
),
HalfVector => Bound(
ctrl_type
.half_vector()
.expect("invalid type for half_vector"),
),
DoubleVector => Bound(ctrl_type.by(2).expect("invalid type for double_vector")),
SplitLanes => Bound(
ctrl_type
.split_lanes()
.expect("invalid type for split_lanes"),
),
}
}
}
/// The type constraint on a value argument once the controlling type variable is known.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum ResolvedConstraint {
/// The operand is bound to a known type.
Bound(Type),
/// The operand type can vary freely within the given set.
Free(ValueTypeSet),
}
#[cfg(test)]
mod tests {
use super::*;
use alloc::string::ToString;
#[test]
fn opcodes() {
use core::mem;
let x = Opcode::Iadd;
let mut y = Opcode::Isub;
assert!(x != y);
y = Opcode::Iadd;
assert_eq!(x, y);
assert_eq!(x.format(), InstructionFormat::Binary);
assert_eq!(format!("{:?}", Opcode::IaddImm), "IaddImm");
assert_eq!(Opcode::IaddImm.to_string(), "iadd_imm");
// Check the matcher.
assert_eq!("iadd".parse::<Opcode>(), Ok(Opcode::Iadd));
assert_eq!("iadd_imm".parse::<Opcode>(), Ok(Opcode::IaddImm));
assert_eq!("iadd\0".parse::<Opcode>(), Err("Unknown opcode"));
assert_eq!("".parse::<Opcode>(), Err("Unknown opcode"));
assert_eq!("\0".parse::<Opcode>(), Err("Unknown opcode"));
// Opcode is a single byte, and because Option<Opcode> originally came to 2 bytes, early on
// Opcode included a variant NotAnOpcode to avoid the unnecessary bloat. Since then the Rust
// compiler has brought in NonZero optimization, meaning that an enum not using the 0 value
// can be optional for no size cost. We want to ensure Option<Opcode> remains small.
assert_eq!(mem::size_of::<Opcode>(), mem::size_of::<Option<Opcode>>());
}
#[test]
fn instruction_data() {
use core::mem;
// The size of the `InstructionData` enum is important for performance. It should not
// exceed 16 bytes. Use `Box<FooData>` out-of-line payloads for instruction formats that
// require more space than that. It would be fine with a data structure smaller than 16
// bytes, but what are the odds of that?
assert_eq!(mem::size_of::<InstructionData>(), 16);
}
#[test]
fn constraints() {
let a = Opcode::Iadd.constraints();
assert!(a.use_typevar_operand());
assert!(!a.requires_typevar_operand());
assert_eq!(a.num_fixed_results(), 1);
assert_eq!(a.num_fixed_value_arguments(), 2);
assert_eq!(a.result_type(0, types::I32), types::I32);
assert_eq!(a.result_type(0, types::I8), types::I8);
assert_eq!(
a.value_argument_constraint(0, types::I32),
ResolvedConstraint::Bound(types::I32)
);
assert_eq!(
a.value_argument_constraint(1, types::I32),
ResolvedConstraint::Bound(types::I32)
);
let b = Opcode::Bitcast.constraints();
assert!(!b.use_typevar_operand());
assert!(!b.requires_typevar_operand());
assert_eq!(b.num_fixed_results(), 1);
assert_eq!(b.num_fixed_value_arguments(), 1);
assert_eq!(b.result_type(0, types::I32), types::I32);
assert_eq!(b.result_type(0, types::I8), types::I8);
match b.value_argument_constraint(0, types::I32) {
ResolvedConstraint::Free(vts) => assert!(vts.contains(types::F32)),
_ => panic!("Unexpected constraint from value_argument_constraint"),
}
let c = Opcode::Call.constraints();
assert_eq!(c.num_fixed_results(), 0);
assert_eq!(c.num_fixed_value_arguments(), 0);
let i = Opcode::CallIndirect.constraints();
assert_eq!(i.num_fixed_results(), 0);
assert_eq!(i.num_fixed_value_arguments(), 1);
let cmp = Opcode::Icmp.constraints();
assert!(cmp.use_typevar_operand());
assert!(cmp.requires_typevar_operand());
assert_eq!(cmp.num_fixed_results(), 1);
assert_eq!(cmp.num_fixed_value_arguments(), 2);
}
#[test]
fn value_set() {
use crate::ir::types::*;
let vts = ValueTypeSet {
lanes: BitSet16::from_range(0, 8),
ints: BitSet8::from_range(4, 7),
floats: BitSet8::from_range(0, 0),
bools: BitSet8::from_range(3, 7),
refs: BitSet8::from_range(5, 7),
};
assert!(!vts.contains(I8));
assert!(vts.contains(I32));
assert!(vts.contains(I64));
assert!(vts.contains(I32X4));
assert!(!vts.contains(F32));
assert!(!vts.contains(B1));
assert!(vts.contains(B8));
assert!(vts.contains(B64));
assert!(vts.contains(R32));
assert!(vts.contains(R64));
assert_eq!(vts.example().to_string(), "i32");
let vts = ValueTypeSet {
lanes: BitSet16::from_range(0, 8),
ints: BitSet8::from_range(0, 0),
floats: BitSet8::from_range(5, 7),
bools: BitSet8::from_range(3, 7),
refs: BitSet8::from_range(0, 0),
};
assert_eq!(vts.example().to_string(), "f32");
let vts = ValueTypeSet {
lanes: BitSet16::from_range(1, 8),
ints: BitSet8::from_range(0, 0),
floats: BitSet8::from_range(5, 7),
bools: BitSet8::from_range(3, 7),
refs: BitSet8::from_range(0, 0),
};
assert_eq!(vts.example().to_string(), "f32x2");
let vts = ValueTypeSet {
lanes: BitSet16::from_range(2, 8),
ints: BitSet8::from_range(0, 0),
floats: BitSet8::from_range(0, 0),
bools: BitSet8::from_range(3, 7),
refs: BitSet8::from_range(0, 0),
};
assert!(!vts.contains(B32X2));
assert!(vts.contains(B32X4));
assert_eq!(vts.example().to_string(), "b32x4");
let vts = ValueTypeSet {
// TypeSet(lanes=(1, 256), ints=(8, 64))
lanes: BitSet16::from_range(0, 9),
ints: BitSet8::from_range(3, 7),
floats: BitSet8::from_range(0, 0),
bools: BitSet8::from_range(0, 0),
refs: BitSet8::from_range(0, 0),
};
assert!(vts.contains(I32));
assert!(vts.contains(I32X4));
assert!(!vts.contains(R32));
assert!(!vts.contains(R64));
}
}