Files
wasmtime/lib/jit/src/link.rs
Dan Gohman ca2fdc5ccb Update no_std support.
This `no_std` support isn't complete though, as some dependencies
don't support it.
2019-01-03 14:16:48 -08:00

364 lines
14 KiB
Rust

//! Linking for JIT-compiled code.
use crate::resolver::Resolver;
use core::ptr::write_unaligned;
use cranelift_codegen::binemit::Reloc;
use cranelift_entity::PrimaryMap;
use cranelift_wasm::{DefinedFuncIndex, Global, GlobalInit, Memory, Table, TableElementType};
use std::vec::Vec;
use wasmtime_environ::{
MemoryPlan, MemoryStyle, Module, Relocation, RelocationTarget, Relocations, TablePlan,
};
use wasmtime_runtime::libcalls;
use wasmtime_runtime::{
Export, Imports, LinkError, VMFunctionBody, VMFunctionImport, VMGlobalImport, VMMemoryImport,
VMTableImport,
};
/// Links a module that has been compiled with `compiled_module` in `wasmtime-environ`.
pub fn link_module(
module: &Module,
allocated_functions: &PrimaryMap<DefinedFuncIndex, *mut [VMFunctionBody]>,
relocations: Relocations,
resolver: &mut dyn Resolver,
) -> Result<Imports, LinkError> {
let mut function_imports = PrimaryMap::with_capacity(module.imported_funcs.len());
for (index, (ref module_name, ref field)) in module.imported_funcs.iter() {
match resolver.resolve(module_name, field) {
Some(export_value) => match export_value {
Export::Function {
address,
signature,
vmctx,
} => {
let import_signature = &module.signatures[module.functions[index]];
if signature != *import_signature {
// TODO: If the difference is in the calling convention,
// we could emit a wrapper function to fix it up.
return Err(LinkError(
format!("{}/{}: exported function with signature {} incompatible with function import with signature {}",
module_name, field,
signature, import_signature)
));
}
function_imports.push(VMFunctionImport {
body: address,
vmctx,
});
}
Export::Table { .. } | Export::Memory { .. } | Export::Global { .. } => {
return Err(LinkError(format!(
"{}/{}: export not compatible with function import",
module_name, field
)));
}
},
None => {
return Err(LinkError(format!(
"{}/{}: no provided import function",
module_name, field
)))
}
}
}
let mut table_imports = PrimaryMap::with_capacity(module.imported_tables.len());
for (index, (ref module_name, ref field)) in module.imported_tables.iter() {
match resolver.resolve(module_name, field) {
Some(export_value) => match export_value {
Export::Table {
definition,
vmctx,
table,
} => {
let import_table = &module.table_plans[index];
if !is_table_compatible(&table, import_table) {
return Err(LinkError(format!(
"{}/{}: exported table incompatible with table import",
module_name, field,
)));
}
table_imports.push(VMTableImport {
from: definition,
vmctx,
});
}
Export::Global { .. } | Export::Memory { .. } | Export::Function { .. } => {
return Err(LinkError(format!(
"{}/{}: export not compatible with table import",
module_name, field
)));
}
},
None => {
return Err(LinkError(format!(
"no provided import table for {}/{}",
module_name, field
)))
}
}
}
let mut memory_imports = PrimaryMap::with_capacity(module.imported_memories.len());
for (index, (ref module_name, ref field)) in module.imported_memories.iter() {
match resolver.resolve(module_name, field) {
Some(export_value) => match export_value {
Export::Memory {
definition,
vmctx,
memory,
} => {
let import_memory = &module.memory_plans[index];
if !is_memory_compatible(&memory, import_memory) {
return Err(LinkError(format!(
"{}/{}: exported memory incompatible with memory import",
module_name, field
)));
}
// Sanity-check: Ensure that the imported memory has at least
// guard-page protections the importing module expects it to have.
match (memory.style, &import_memory.style) {
(
MemoryStyle::Static { bound },
MemoryStyle::Static {
bound: import_bound,
},
) => {
assert!(bound >= *import_bound);
}
_ => (),
}
assert!(memory.offset_guard_size >= import_memory.offset_guard_size);
memory_imports.push(VMMemoryImport {
from: definition,
vmctx,
});
}
Export::Table { .. } | Export::Global { .. } | Export::Function { .. } => {
return Err(LinkError(format!(
"{}/{}: export not compatible with memory import",
module_name, field
)));
}
},
None => {
return Err(LinkError(format!(
"no provided import memory for {}/{}",
module_name, field
)))
}
}
}
let mut global_imports = PrimaryMap::with_capacity(module.imported_globals.len());
for (index, (ref module_name, ref field)) in module.imported_globals.iter() {
match resolver.resolve(module_name, field) {
Some(export_value) => match export_value {
Export::Global { definition, global } => {
let imported_global = module.globals[index];
if !is_global_compatible(&global, &imported_global) {
return Err(LinkError(format!(
"{}/{}: exported global incompatible with global import",
module_name, field
)));
}
global_imports.push(VMGlobalImport { from: definition });
}
Export::Table { .. } | Export::Memory { .. } | Export::Function { .. } => {
return Err(LinkError(format!(
"{}/{}: exported global incompatible with global import",
module_name, field
)));
}
},
None => {
return Err(LinkError(format!(
"no provided import global for {}/{}",
module_name, field
)))
}
}
}
// Apply relocations, now that we have virtual addresses for everything.
relocate(allocated_functions, relocations, module);
Ok(Imports::new(
function_imports,
table_imports,
memory_imports,
global_imports,
))
}
fn is_global_compatible(exported: &Global, imported: &Global) -> bool {
match imported.initializer {
GlobalInit::Import => (),
_ => panic!("imported Global should have an Imported initializer"),
}
let Global {
ty: exported_ty,
mutability: exported_mutability,
initializer: _exported_initializer,
} = exported;
let Global {
ty: imported_ty,
mutability: imported_mutability,
initializer: _imported_initializer,
} = imported;
exported_ty == imported_ty && imported_mutability == exported_mutability
}
fn is_table_element_type_compatible(
exported_type: TableElementType,
imported_type: TableElementType,
) -> bool {
match exported_type {
TableElementType::Func => match imported_type {
TableElementType::Func => true,
_ => false,
},
TableElementType::Val(exported_val_ty) => match imported_type {
TableElementType::Val(imported_val_ty) => exported_val_ty == imported_val_ty,
_ => false,
},
}
}
fn is_table_compatible(exported: &TablePlan, imported: &TablePlan) -> bool {
let TablePlan {
table:
Table {
ty: exported_ty,
minimum: exported_minimum,
maximum: exported_maximum,
},
style: _exported_style,
} = exported;
let TablePlan {
table:
Table {
ty: imported_ty,
minimum: imported_minimum,
maximum: imported_maximum,
},
style: _imported_style,
} = imported;
is_table_element_type_compatible(*exported_ty, *imported_ty)
&& imported_minimum <= exported_minimum
&& (imported_maximum.is_none()
|| (!exported_maximum.is_none()
&& imported_maximum.unwrap() >= exported_maximum.unwrap()))
}
fn is_memory_compatible(exported: &MemoryPlan, imported: &MemoryPlan) -> bool {
let MemoryPlan {
memory:
Memory {
minimum: exported_minimum,
maximum: exported_maximum,
shared: exported_shared,
},
style: _exported_style,
offset_guard_size: _exported_offset_guard_size,
} = exported;
let MemoryPlan {
memory:
Memory {
minimum: imported_minimum,
maximum: imported_maximum,
shared: imported_shared,
},
style: _imported_style,
offset_guard_size: _imported_offset_guard_size,
} = imported;
imported_minimum <= exported_minimum
&& (imported_maximum.is_none()
|| (!exported_maximum.is_none()
&& imported_maximum.unwrap() >= exported_maximum.unwrap()))
&& exported_shared == imported_shared
}
/// Performs the relocations inside the function bytecode, provided the necessary metadata.
fn relocate(
allocated_functions: &PrimaryMap<DefinedFuncIndex, *mut [VMFunctionBody]>,
relocations: PrimaryMap<DefinedFuncIndex, Vec<Relocation>>,
module: &Module,
) {
for (i, function_relocs) in relocations.into_iter() {
for r in function_relocs {
use self::libcalls::*;
let target_func_address: usize = match r.reloc_target {
RelocationTarget::UserFunc(index) => match module.defined_func_index(index) {
Some(f) => {
let fatptr: *const [VMFunctionBody] = allocated_functions[f];
fatptr as *const VMFunctionBody as usize
}
None => panic!("direct call to import"),
},
RelocationTarget::Memory32Grow => wasmtime_memory32_grow as usize,
RelocationTarget::Memory32Size => wasmtime_memory32_size as usize,
RelocationTarget::ImportedMemory32Grow => wasmtime_imported_memory32_grow as usize,
RelocationTarget::ImportedMemory32Size => wasmtime_imported_memory32_size as usize,
RelocationTarget::LibCall(libcall) => {
use cranelift_codegen::ir::LibCall::*;
match libcall {
CeilF32 => wasmtime_f32_ceil as usize,
FloorF32 => wasmtime_f32_floor as usize,
TruncF32 => wasmtime_f32_trunc as usize,
NearestF32 => wasmtime_f32_nearest as usize,
CeilF64 => wasmtime_f64_ceil as usize,
FloorF64 => wasmtime_f64_floor as usize,
TruncF64 => wasmtime_f64_trunc as usize,
NearestF64 => wasmtime_f64_nearest as usize,
#[cfg(not(target_os = "windows"))]
Probestack => __rust_probestack as usize,
#[cfg(all(target_os = "windows", target_pointer_width = "64"))]
Probestack => __chkstk as usize,
other => panic!("unexpected libcall: {}", other),
}
}
};
let fatptr: *const [VMFunctionBody] = allocated_functions[i];
let body = fatptr as *const VMFunctionBody;
match r.reloc {
#[cfg(target_pointer_width = "64")]
Reloc::Abs8 => unsafe {
let reloc_address = body.add(r.offset as usize) as usize;
let reloc_addend = r.addend as isize;
let reloc_abs = (target_func_address as u64)
.checked_add(reloc_addend as u64)
.unwrap();
write_unaligned(reloc_address as *mut u64, reloc_abs);
},
#[cfg(target_pointer_width = "32")]
Reloc::X86PCRel4 => unsafe {
let reloc_address = body.add(r.offset as usize) as usize;
let reloc_addend = r.addend as isize;
let reloc_delta_u32 = (target_func_address as u32)
.wrapping_sub(reloc_address as u32)
.checked_add(reloc_addend as u32)
.unwrap();
write_unaligned(reloc_address as *mut u32, reloc_delta_u32);
},
_ => panic!("unsupported reloc kind"),
}
}
}
}
/// A declaration for the stack probe function in Rust's standard library, for
/// catching callstack overflow.
extern "C" {
#[cfg(not(target_os = "windows"))]
pub fn __rust_probestack();
#[cfg(all(target_os = "windows", target_pointer_width = "64"))]
pub fn __chkstk();
}