This commit is intended to be the first of many in implementing the module linking proposal. At this time this builds on #2059 so it shouldn't land yet. The goal of this commit is to compile bare-bones modules which use module linking, e.g. those with nested modules. My hope with module linking is that almost everything in wasmtime only needs mild refactorings to handle it. The goal is that all per-module structures are still per-module and at the top level there's just a `Vec` containing a bunch of modules. That's implemented currently where `wasmtime::Module` contains `Arc<[CompiledModule]>` and an index of which one it's pointing to. This should enable serialization/deserialization of any module in a nested modules scenario, no matter how you got it. Tons of features of the module linking proposal are missing from this commit. For example instantiation flat out doesn't work, nor does import/export of modules or instances. That'll be coming as future commits, but the purpose here is to start laying groundwork in Wasmtime for handling lots of modules in lots of places.
Lightbeam
Lightbeam is an optimising one-pass streaming compiler for WebAssembly, intended for use in Wasmtime.
Quality of output
Already - with a very small number of relatively simple optimisation rules - Lightbeam produces surprisingly high-quality output considering how restricted it is. It even produces better code than Cranelift, Firefox or both for some workloads. Here's a very simple example, this recursive fibonacci function in Rust:
fn fib(n: i32) -> i32 {
if n == 0 || n == 1 {
1
} else {
fib(n - 1) + fib(n - 2)
}
}
When compiled with optimisations enabled, rustc will produce the following WebAssembly:
(module
(func $fib (param $p0 i32) (result i32)
(local $l1 i32)
(set_local $l1
(i32.const 1))
(block $B0
(br_if $B0
(i32.lt_u
(get_local $p0)
(i32.const 2)))
(set_local $l1
(i32.const 1))
(loop $L1
(set_local $l1
(i32.add
(call $fib
(i32.add
(get_local $p0)
(i32.const -1)))
(get_local $l1)))
(br_if $L1
(i32.gt_u
(tee_local $p0
(i32.add
(get_local $p0)
(i32.const -2)))
(i32.const 1)))))
(get_local $l1)))
Firefox's optimising compiler produces the following assembly (labels cleaned up somewhat):
fib:
sub rsp, 0x18
cmp qword ptr [r14 + 0x28], rsp
jae stack_overflow
mov dword ptr [rsp + 0xc], edi
cmp edi, 2
jae .Lelse
mov eax, 1
mov dword ptr [rsp + 8], eax
jmp .Lreturn
.Lelse:
mov dword ptr [rsp + 0xc], edi
mov eax, 1
mov dword ptr [rsp + 8], eax
.Lloop:
mov edi, dword ptr [rsp + 0xc]
add edi, -1
call 0
mov ecx, dword ptr [rsp + 8]
add ecx, eax
mov dword ptr [rsp + 8], ecx
mov ecx, dword ptr [rsp + 0xc]
add ecx, -2
mov dword ptr [rsp + 0xc], ecx
cmp ecx, 1
ja .Lloop
.Lreturn:
mov eax, dword ptr [rsp + 8]
nop
add rsp, 0x18
ret
Cranelift with optimisations enabled produces similar:
fib:
push rbp
mov rbp, rsp
sub rsp, 0x20
mov qword ptr [rsp + 0x10], rdi
mov dword ptr [rsp + 0x1c], esi
mov eax, 1
mov dword ptr [rsp + 0x18], eax
mov eax, dword ptr [rsp + 0x1c]
cmp eax, 2
jb .Lreturn
movabs rax, 0
mov qword ptr [rsp + 8], rax
.Lloop:
mov eax, dword ptr [rsp + 0x1c]
add eax, -1
mov rcx, qword ptr [rsp + 8]
mov rdx, qword ptr [rsp + 0x10]
mov rdi, rdx
mov esi, eax
call rcx
mov ecx, dword ptr [rsp + 0x18]
add eax, ecx
mov dword ptr [rsp + 0x18], eax
mov eax, dword ptr [rsp + 0x1c]
add eax, -2
mov dword ptr [rsp + 0x1c], eax
mov eax, dword ptr [rsp + 0x1c]
cmp eax, 1
ja .Lloop
.Lreturn:
mov eax, dword ptr [rsp + 0x18]
add rsp, 0x20
pop rbp
ret
Whereas Lightbeam produces smaller code with far fewer memory accesses than both (and fewer blocks than Firefox's output):
fib:
cmp esi, 2
mov eax, 1
jb .Lreturn
mov eax, 1
.Lloop:
mov rcx, rsi
add ecx, 0xffffffff
push rsi
push rax
push rax
mov rsi, rcx
call fib
add eax, [rsp + 8]
mov rcx, [rsp + 0x10]
add ecx, 0xfffffffe
cmp ecx, 1
mov rsi, rcx
lea rsp, [rsp + 0x18]
ja .Lloop
.Lreturn:
ret
Now obviously I'm not advocating for replacing Firefox's optimising compiler with Lightbeam since the latter can only really produce better code when receiving optimised WebAssembly (and so debug-mode or hand-written WebAssembly may produce much worse output). However, this shows that even with the restrictions of a streaming compiler it's absolutely possible to produce high-quality assembly output. For the assembly above, the Lightbeam output runs within 15% of native speed. This is paramount for one of Lightbeam's intended usecases for real-time systems that want good runtime performance but cannot tolerate compiler bombs.
Specification compliance
Lightbeam passes 100% of the specification test suite, but that doesn't necessarily mean that it's 100% specification-compliant. Hopefully as we run a fuzzer against it we can find any issues and get Lightbeam to a state where it can be used in production.
Getting involved
You can file issues in the Wasmtime issue tracker. If you want to get involved jump into the Bytecode Alliance Zulip and someone can direct you to the right place. I wish I could say "the most useful thing you can do is play with it and open issues where you find problems" but until it passes the spec suite that won't be very helpful.