This is the implementation of https://github.com/bytecodealliance/wasmtime/issues/4155, using the "inverted API" approach suggested by @cfallin (thanks!) in Cranelift, and trait object to provide a backend for an all-included experience in Wasmtime. After the suggestion of Chris, `Function` has been split into mostly two parts: - on the one hand, `FunctionStencil` contains all the fields required during compilation, and that act as a compilation cache key: if two function stencils are the same, then the result of their compilation (`CompiledCodeBase<Stencil>`) will be the same. This makes caching trivial, as the only thing to cache is the `FunctionStencil`. - on the other hand, `FunctionParameters` contain the... function parameters that are required to finalize the result of compilation into a `CompiledCode` (aka `CompiledCodeBase<Final>`) with proper final relocations etc., by applying fixups and so on. Most changes are here to accomodate those requirements, in particular that `FunctionStencil` should be `Hash`able to be used as a key in the cache: - most source locations are now relative to a base source location in the function, and as such they're encoded as `RelSourceLoc` in the `FunctionStencil`. This required changes so that there's no need to explicitly mark a `SourceLoc` as the base source location, it's automatically detected instead the first time a non-default `SourceLoc` is set. - user-defined external names in the `FunctionStencil` (aka before this patch `ExternalName::User { namespace, index }`) are now references into an external table of `UserExternalNameRef -> UserExternalName`, present in the `FunctionParameters`, and must be explicitly declared using `Function::declare_imported_user_function`. - some refactorings have been made for function names: - `ExternalName` was used as the type for a `Function`'s name; while it thus allowed `ExternalName::Libcall` in this place, this would have been quite confusing to use it there. Instead, a new enum `UserFuncName` is introduced for this name, that's either a user-defined function name (the above `UserExternalName`) or a test case name. - The future of `ExternalName` is likely to become a full reference into the `FunctionParameters`'s mapping, instead of being "either a handle for user-defined external names, or the thing itself for other variants". I'm running out of time to do this, and this is not trivial as it implies touching ISLE which I'm less familiar with. The cache computes a sha256 hash of the `FunctionStencil`, and uses this as the cache key. No equality check (using `PartialEq`) is performed in addition to the hash being the same, as we hope that this is sufficient data to avoid collisions. A basic fuzz target has been introduced that tries to do the bare minimum: - check that a function successfully compiled and cached will be also successfully reloaded from the cache, and returns the exact same function. - check that a trivial modification in the external mapping of `UserExternalNameRef -> UserExternalName` hits the cache, and that other modifications don't hit the cache. - This last check is less efficient and less likely to happen, so probably should be rethought a bit. Thanks to both @alexcrichton and @cfallin for your very useful feedback on Zulip. Some numbers show that for a large wasm module we're using internally, this is a 20% compile-time speedup, because so many `FunctionStencil`s are the same, even within a single module. For a group of modules that have a lot of code in common, we get hit rates up to 70% when they're used together. When a single function changes in a wasm module, every other function is reloaded; that's still slower than I expect (between 10% and 50% of the overall compile time), so there's likely room for improvement. Fixes #4155.
This crate contains array-based data structures used by the core Cranelift code generator which use densely numbered entity references as mapping keys.
One major difference between this crate and crates like slotmap, slab, and generational-arena is that this crate currently provides no way to delete entities. This limits its use to situations where deleting isn't important, however this also makes it more efficient, because it doesn't need extra bookkeeping state to reuse the storage for deleted objects, or to ensure that new objects always have unique keys (eg. slotmap's and generational-arena's versioning).
Another major difference is that this crate protects against using a key from
one map to access an element in another. Where SlotMap, Slab, and Arena
have a value type parameter, PrimaryMap has a key type parameter and a value
type parameter. The crate also provides the entity_impl macro which makes it
easy to declare new unique types for use as keys. Any attempt to use a key in
a map it's not intended for is diagnosed with a type error.
Another is that this crate has two core map types, PrimaryMap and
SecondaryMap, which serve complementary purposes. A PrimaryMap creates its
own keys when elements are inserted, while an SecondaryMap reuses the keys
values of a PrimaryMap, conceptually storing additional data in the same
index space. SecondaryMap's values must implement Default and all elements
in an SecondaryMap initially have the value of default().
A common way to implement Default is to wrap a type in Option, however
this crate also provides the PackedOption utility which can use less memory
in some cases.
Additional utilities provided by this crate include:
EntityList, for allocating many small arrays (such as instruction operand lists in a compiler code generator).SparseMap: an alternative toSecondaryMapwhich can use less memory in some situations.EntitySet: a specialized form ofSecondaryMapusing a bitvector to record which entities are members of the set.