Files
wasmtime/tests/all/wast.rs
Alex Crichton 0313e30d76 Remove dependency on TargetIsa from Wasmtime crates (#3178)
This commit started off by deleting the `cranelift_codegen::settings`
reexport in the `wasmtime-environ` crate and then basically played
whack-a-mole until everything compiled again. The main result of this is
that the `wasmtime-*` family of crates have generally less of a
dependency on the `TargetIsa` trait and type from Cranelift. While the
dependency isn't entirely severed yet this is at least a significant
start.

This commit is intended to be largely refactorings, no functional
changes are intended here. The refactorings are:

* A `CompilerBuilder` trait has been added to `wasmtime_environ` which
  server as an abstraction used to create compilers and configure them
  in a uniform fashion. The `wasmtime::Config` type now uses this
  instead of cranelift-specific settings. The `wasmtime-jit` crate
  exports the ability to create a compiler builder from a
  `CompilationStrategy`, which only works for Cranelift right now. In a
  cranelift-less build of Wasmtime this is expected to return a trait
  object that fails all requests to compile.

* The `Compiler` trait in the `wasmtime_environ` crate has been souped
  up with a number of methods that Wasmtime and other crates needed.

* The `wasmtime-debug` crate is now moved entirely behind the
  `wasmtime-cranelift` crate.

* The `wasmtime-cranelift` crate is now only depended on by the
  `wasmtime-jit` crate.

* Wasm types in `cranelift-wasm` no longer contain their IR type,
  instead they only contain the `WasmType`. This is required to get
  everything to align correctly but will also be required in a future
  refactoring where the types used by `cranelift-wasm` will be extracted
  to a separate crate.

* I moved around a fair bit of code in `wasmtime-cranelift`.

* Some gdb-specific jit-specific code has moved from `wasmtime-debug` to
  `wasmtime-jit`.
2021-08-16 09:55:39 -05:00

169 lines
6.0 KiB
Rust

use std::path::Path;
use std::sync::{Condvar, Mutex};
use wasmtime::{
Config, Engine, InstanceAllocationStrategy, InstanceLimits, ModuleLimits,
PoolingAllocationStrategy, Store, Strategy,
};
use wasmtime_wast::WastContext;
include!(concat!(env!("OUT_DIR"), "/wast_testsuite_tests.rs"));
// Each of the tests included from `wast_testsuite_tests` will call this
// function which actually executes the `wast` test suite given the `strategy`
// to compile it.
fn run_wast(wast: &str, strategy: Strategy, pooling: bool) -> anyhow::Result<()> {
let wast = Path::new(wast);
let simd = feature_found(wast, "simd");
let memory64 = feature_found(wast, "memory64");
let multi_memory = feature_found(wast, "multi-memory");
let module_linking = feature_found(wast, "module-linking");
let threads = feature_found(wast, "threads");
let bulk_mem = memory64 || multi_memory || feature_found(wast, "bulk-memory-operations");
// Some simd tests assume support for multiple tables, which are introduced
// by reference types.
let reftypes = simd || feature_found(wast, "reference-types");
// Threads & simd aren't implemented in the old backend, so skip those
// tests.
if (threads || simd) && cfg!(feature = "old-x86-backend") {
return Ok(());
}
let mut cfg = Config::new();
cfg.wasm_simd(simd)
.wasm_bulk_memory(bulk_mem)
.wasm_reference_types(reftypes || module_linking)
.wasm_multi_memory(multi_memory || module_linking)
.wasm_module_linking(module_linking)
.wasm_threads(threads)
.wasm_memory64(memory64)
.strategy(strategy)?
.cranelift_debug_verifier(true);
if feature_found(wast, "canonicalize-nan") {
cfg.cranelift_nan_canonicalization(true);
}
let test_allocates_lots_of_memory = wast.ends_with("more-than-4gb.wast");
// By default we'll allocate huge chunks (6gb) of the address space for each
// linear memory. This is typically fine but when we emulate tests with QEMU
// it turns out that it causes memory usage to balloon massively. Leave a
// knob here so on CI we can cut down the memory usage of QEMU and avoid the
// OOM killer.
//
// Locally testing this out this drops QEMU's memory usage running this
// tests suite from 10GiB to 600MiB. Previously we saw that crossing the
// 10GiB threshold caused our processes to get OOM killed on CI.
if std::env::var("WASMTIME_TEST_NO_HOG_MEMORY").is_ok() {
// The pooling allocator hogs ~6TB of virtual address space for each
// store, so if we don't to hog memory then ignore pooling tests.
if pooling {
return Ok(());
}
// If the test allocates a lot of memory, that's considered "hogging"
// memory, so skip it.
if test_allocates_lots_of_memory {
return Ok(());
}
// Don't use 4gb address space reservations when not hogging memory.
cfg.static_memory_maximum_size(0);
}
let _pooling_lock = if pooling {
// Some memory64 tests take more than 4gb of resident memory to test,
// but we don't want to configure the pooling allocator to allow that
// (that's a ton of memory to reserve), so we skip those tests.
if test_allocates_lots_of_memory {
return Ok(());
}
// The limits here are crafted such that the wast tests should pass.
// However, these limits may become insufficient in the future as the wast tests change.
// If a wast test fails because of a limit being "exceeded" or if memory/table
// fails to grow, the values here will need to be adjusted.
cfg.allocation_strategy(InstanceAllocationStrategy::Pooling {
strategy: PoolingAllocationStrategy::NextAvailable,
module_limits: ModuleLimits {
imported_memories: 2,
imported_tables: 2,
imported_globals: 11,
memories: 2,
tables: 4,
globals: 11,
memory_pages: 805,
..Default::default()
},
instance_limits: InstanceLimits {
count: 450,
..Default::default()
},
});
Some(lock_pooling())
} else {
None
};
let store = Store::new(&Engine::new(&cfg)?, ());
let mut wast_context = WastContext::new(store);
wast_context.register_spectest()?;
wast_context.run_file(wast)?;
Ok(())
}
fn feature_found(path: &Path, name: &str) -> bool {
path.iter().any(|part| match part.to_str() {
Some(s) => s.contains(name),
None => false,
})
}
// The pooling tests make about 6TB of address space reservation which means
// that we shouldn't let too many of them run concurrently at once. On
// high-cpu-count systems (e.g. 80 threads) this leads to mmap failures because
// presumably too much of the address space has been reserved with our limits
// specified above. By keeping the number of active pooling-related tests to a
// specified maximum we can put a cap on the virtual address space reservations
// made.
fn lock_pooling() -> impl Drop {
const MAX_CONCURRENT_POOLING: u32 = 8;
lazy_static::lazy_static! {
static ref ACTIVE: MyState = MyState::default();
}
#[derive(Default)]
struct MyState {
lock: Mutex<u32>,
waiters: Condvar,
}
impl MyState {
fn lock(&self) -> impl Drop + '_ {
let state = self.lock.lock().unwrap();
let mut state = self
.waiters
.wait_while(state, |cnt| *cnt >= MAX_CONCURRENT_POOLING)
.unwrap();
*state += 1;
LockGuard { state: self }
}
}
struct LockGuard<'a> {
state: &'a MyState,
}
impl Drop for LockGuard<'_> {
fn drop(&mut self) {
*self.state.lock.lock().unwrap() -= 1;
self.state.waiters.notify_one();
}
}
ACTIVE.lock()
}