709 lines
26 KiB
Rust
709 lines
26 KiB
Rust
//! A frontend for building Cretonne IR from other languages.
|
|
use cretonne_codegen::cursor::{Cursor, FuncCursor};
|
|
use cretonne_codegen::entity::{EntityMap, EntityRef, EntitySet};
|
|
use cretonne_codegen::ir;
|
|
use cretonne_codegen::ir::function::DisplayFunction;
|
|
use cretonne_codegen::ir::{DataFlowGraph, Ebb, ExtFuncData, FuncRef, Function, GlobalVar,
|
|
GlobalVarData, Heap, HeapData, Inst, InstBuilderBase, InstructionData,
|
|
JumpTable, JumpTableData, SigRef, Signature, StackSlot, StackSlotData,
|
|
Type, Value};
|
|
use cretonne_codegen::isa::TargetIsa;
|
|
use cretonne_codegen::packed_option::PackedOption;
|
|
use ssa::{Block, SSABuilder, SideEffects};
|
|
|
|
/// Structure used for translating a series of functions into Cretonne IR.
|
|
///
|
|
/// In order to reduce memory reallocations when compiling multiple functions,
|
|
/// `FunctionBuilderContext` holds various data structures which are cleared between
|
|
/// functions, rather than dropped, preserving the underlying allocations.
|
|
///
|
|
/// The `Variable` parameter can be any index-like type that can be made to
|
|
/// implement `EntityRef`. For frontends that don't have an obvious type to
|
|
/// use here, `variable::Variable` can be used.
|
|
pub struct FunctionBuilderContext<Variable>
|
|
where
|
|
Variable: EntityRef,
|
|
{
|
|
ssa: SSABuilder<Variable>,
|
|
ebbs: EntityMap<Ebb, EbbData>,
|
|
types: EntityMap<Variable, Type>,
|
|
}
|
|
|
|
/// Temporary object used to build a single Cretonne IR `Function`.
|
|
pub struct FunctionBuilder<'a, Variable: 'a>
|
|
where
|
|
Variable: EntityRef,
|
|
{
|
|
/// The function currently being built.
|
|
/// This field is public so the function can be re-borrowed.
|
|
pub func: &'a mut Function,
|
|
|
|
/// Source location to assign to all new instructions.
|
|
srcloc: ir::SourceLoc,
|
|
|
|
func_ctx: &'a mut FunctionBuilderContext<Variable>,
|
|
position: Position,
|
|
}
|
|
|
|
#[derive(Clone, Default)]
|
|
struct EbbData {
|
|
filled: bool,
|
|
pristine: bool,
|
|
user_param_count: usize,
|
|
}
|
|
|
|
struct Position {
|
|
ebb: PackedOption<Ebb>,
|
|
basic_block: PackedOption<Block>,
|
|
}
|
|
|
|
impl Position {
|
|
fn at(ebb: Ebb, basic_block: Block) -> Self {
|
|
Self {
|
|
ebb: PackedOption::from(ebb),
|
|
basic_block: PackedOption::from(basic_block),
|
|
}
|
|
}
|
|
|
|
fn default() -> Self {
|
|
Self {
|
|
ebb: PackedOption::default(),
|
|
basic_block: PackedOption::default(),
|
|
}
|
|
}
|
|
|
|
fn is_default(&self) -> bool {
|
|
self.ebb.is_none() && self.basic_block.is_none()
|
|
}
|
|
}
|
|
|
|
impl<Variable> FunctionBuilderContext<Variable>
|
|
where
|
|
Variable: EntityRef,
|
|
{
|
|
/// Creates a FunctionBuilderContext structure. The structure is automatically cleared after
|
|
/// each [`FunctionBuilder`](struct.FunctionBuilder.html) completes translating a function.
|
|
pub fn new() -> Self {
|
|
Self {
|
|
ssa: SSABuilder::new(),
|
|
ebbs: EntityMap::new(),
|
|
types: EntityMap::new(),
|
|
}
|
|
}
|
|
|
|
fn clear(&mut self) {
|
|
self.ssa.clear();
|
|
self.ebbs.clear();
|
|
self.types.clear();
|
|
}
|
|
|
|
fn is_empty(&self) -> bool {
|
|
self.ssa.is_empty() && self.ebbs.is_empty() && self.types.is_empty()
|
|
}
|
|
}
|
|
|
|
/// Implementation of the [`InstBuilder`](../codegen/ir/builder/trait.InstBuilder.html) that has
|
|
/// one convenience method per Cretonne IR instruction.
|
|
pub struct FuncInstBuilder<'short, 'long: 'short, Variable: 'long>
|
|
where
|
|
Variable: EntityRef,
|
|
{
|
|
builder: &'short mut FunctionBuilder<'long, Variable>,
|
|
ebb: Ebb,
|
|
}
|
|
|
|
impl<'short, 'long, Variable> FuncInstBuilder<'short, 'long, Variable>
|
|
where
|
|
Variable: EntityRef,
|
|
{
|
|
fn new<'s, 'l>(
|
|
builder: &'s mut FunctionBuilder<'l, Variable>,
|
|
ebb: Ebb,
|
|
) -> FuncInstBuilder<'s, 'l, Variable> {
|
|
FuncInstBuilder { builder, ebb }
|
|
}
|
|
}
|
|
|
|
impl<'short, 'long, Variable> InstBuilderBase<'short> for FuncInstBuilder<'short, 'long, Variable>
|
|
where
|
|
Variable: EntityRef,
|
|
{
|
|
fn data_flow_graph(&self) -> &DataFlowGraph {
|
|
&self.builder.func.dfg
|
|
}
|
|
|
|
fn data_flow_graph_mut(&mut self) -> &mut DataFlowGraph {
|
|
&mut self.builder.func.dfg
|
|
}
|
|
|
|
// This implementation is richer than `InsertBuilder` because we use the data of the
|
|
// instruction being inserted to add related info to the DFG and the SSA building system,
|
|
// and perform debug sanity checks.
|
|
fn build(self, data: InstructionData, ctrl_typevar: Type) -> (Inst, &'short mut DataFlowGraph) {
|
|
// We only insert the Ebb in the layout when an instruction is added to it
|
|
self.builder.ensure_inserted_ebb();
|
|
|
|
let inst = self.builder.func.dfg.make_inst(data.clone());
|
|
self.builder.func.dfg.make_inst_results(inst, ctrl_typevar);
|
|
self.builder.func.layout.append_inst(inst, self.ebb);
|
|
if !self.builder.srcloc.is_default() {
|
|
self.builder.func.srclocs[inst] = self.builder.srcloc;
|
|
}
|
|
|
|
if data.opcode().is_branch() {
|
|
match data.branch_destination() {
|
|
Some(dest_ebb) => {
|
|
// If the user has supplied jump arguments we must adapt the arguments of
|
|
// the destination ebb
|
|
self.builder.declare_successor(dest_ebb, inst);
|
|
}
|
|
None => {
|
|
// branch_destination() doesn't detect jump_tables
|
|
// If jump table we declare all entries successor
|
|
if let InstructionData::BranchTable { table, .. } = data {
|
|
// Unlike all other jumps/branches, jump tables are
|
|
// capable of having the same successor appear
|
|
// multiple times, so we must deduplicate.
|
|
let mut unique = EntitySet::<Ebb>::new();
|
|
for dest_ebb in self.builder
|
|
.func
|
|
.jump_tables
|
|
.get(table)
|
|
.expect("you are referencing an undeclared jump table")
|
|
.entries()
|
|
.map(|(_, ebb)| ebb)
|
|
.filter(|dest_ebb| unique.insert(*dest_ebb))
|
|
{
|
|
self.builder.func_ctx.ssa.declare_ebb_predecessor(
|
|
dest_ebb,
|
|
self.builder.position.basic_block.unwrap(),
|
|
inst,
|
|
)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if data.opcode().is_terminator() {
|
|
self.builder.fill_current_block()
|
|
} else if data.opcode().is_branch() {
|
|
self.builder.move_to_next_basic_block()
|
|
}
|
|
(inst, &mut self.builder.func.dfg)
|
|
}
|
|
}
|
|
|
|
/// This module allows you to create a function in Cretonne IR in a straightforward way, hiding
|
|
/// all the complexity of its internal representation.
|
|
///
|
|
/// The module is parametrized by one type which is the representation of variables in your
|
|
/// origin language. It offers a way to conveniently append instruction to your program flow.
|
|
/// You are responsible to split your instruction flow into extended blocks (declared with
|
|
/// `create_ebb`) whose properties are:
|
|
///
|
|
/// - branch and jump instructions can only point at the top of extended blocks;
|
|
/// - the last instruction of each block is a terminator instruction which has no natural successor,
|
|
/// and those instructions can only appear at the end of extended blocks.
|
|
///
|
|
/// The parameters of Cretonne IR instructions are Cretonne IR values, which can only be created
|
|
/// as results of other Cretonne IR instructions. To be able to create variables redefined multiple
|
|
/// times in your program, use the `def_var` and `use_var` command, that will maintain the
|
|
/// correspondence between your variables and Cretonne IR SSA values.
|
|
///
|
|
/// The first block for which you call `switch_to_block` will be assumed to be the beginning of
|
|
/// the function.
|
|
///
|
|
/// At creation, a `FunctionBuilder` instance borrows an already allocated `Function` which it
|
|
/// modifies with the information stored in the mutable borrowed
|
|
/// [`FunctionBuilderContext`](struct.FunctionBuilderContext.html). The function passed in
|
|
/// argument should be newly created with
|
|
/// [`Function::with_name_signature()`](../function/struct.Function.html), whereas the
|
|
/// `FunctionBuilderContext` can be kept as is between two function translations.
|
|
///
|
|
/// # Errors
|
|
///
|
|
/// The functions below will panic in debug mode whenever you try to modify the Cretonne IR
|
|
/// function in a way that violate the coherence of the code. For instance: switching to a new
|
|
/// `Ebb` when you haven't filled the current one with a terminator instruction, inserting a
|
|
/// return instruction with arguments that don't match the function's signature.
|
|
impl<'a, Variable> FunctionBuilder<'a, Variable>
|
|
where
|
|
Variable: EntityRef,
|
|
{
|
|
/// Creates a new FunctionBuilder structure that will operate on a `Function` using a
|
|
/// `FunctionBuilderContext`.
|
|
pub fn new(
|
|
func: &'a mut Function,
|
|
func_ctx: &'a mut FunctionBuilderContext<Variable>,
|
|
) -> FunctionBuilder<'a, Variable> {
|
|
debug_assert!(func_ctx.is_empty());
|
|
FunctionBuilder {
|
|
func,
|
|
srcloc: Default::default(),
|
|
func_ctx,
|
|
position: Position::default(),
|
|
}
|
|
}
|
|
|
|
/// Set the source location that should be assigned to all new instructions.
|
|
pub fn set_srcloc(&mut self, srcloc: ir::SourceLoc) {
|
|
self.srcloc = srcloc;
|
|
}
|
|
|
|
/// Creates a new `Ebb` and returns its reference.
|
|
pub fn create_ebb(&mut self) -> Ebb {
|
|
let ebb = self.func.dfg.make_ebb();
|
|
self.func_ctx.ssa.declare_ebb_header_block(ebb);
|
|
self.func_ctx.ebbs[ebb] = EbbData {
|
|
filled: false,
|
|
pristine: true,
|
|
user_param_count: 0,
|
|
};
|
|
ebb
|
|
}
|
|
|
|
/// After the call to this function, new instructions will be inserted into the designated
|
|
/// block, in the order they are declared. You must declare the types of the Ebb arguments
|
|
/// you will use here.
|
|
///
|
|
/// When inserting the terminator instruction (which doesn't have a fallthrough to its immediate
|
|
/// successor), the block will be declared filled and it will not be possible to append
|
|
/// instructions to it.
|
|
pub fn switch_to_block(&mut self, ebb: Ebb) {
|
|
// First we check that the previous block has been filled.
|
|
debug_assert!(
|
|
self.position.is_default() || self.is_unreachable() || self.is_pristine() ||
|
|
self.is_filled(),
|
|
"you have to fill your block before switching"
|
|
);
|
|
// We cannot switch to a filled block
|
|
debug_assert!(
|
|
!self.func_ctx.ebbs[ebb].filled,
|
|
"you cannot switch to a block which is already filled"
|
|
);
|
|
|
|
let basic_block = self.func_ctx.ssa.header_block(ebb);
|
|
// Then we change the cursor position.
|
|
self.position = Position::at(ebb, basic_block);
|
|
}
|
|
|
|
/// Declares that all the predecessors of this block are known.
|
|
///
|
|
/// Function to call with `ebb` as soon as the last branch instruction to `ebb` has been
|
|
/// created. Forgetting to call this method on every block will cause inconsistencies in the
|
|
/// produced functions.
|
|
pub fn seal_block(&mut self, ebb: Ebb) {
|
|
let side_effects = self.func_ctx.ssa.seal_ebb_header_block(ebb, self.func);
|
|
self.handle_ssa_side_effects(side_effects);
|
|
}
|
|
|
|
/// Effectively calls seal_block on all blocks in the function.
|
|
///
|
|
/// It's more efficient to seal `Ebb`s as soon as possible, during
|
|
/// translation, but for frontends where this is impractical to do, this
|
|
/// function can be used at the end of translating all blocks to ensure
|
|
/// that everything is sealed.
|
|
pub fn seal_all_blocks(&mut self) {
|
|
let side_effects = self.func_ctx.ssa.seal_all_ebb_header_blocks(self.func);
|
|
self.handle_ssa_side_effects(side_effects);
|
|
}
|
|
|
|
/// In order to use a variable in a `use_var`, you need to declare its type with this method.
|
|
pub fn declare_var(&mut self, var: Variable, ty: Type) {
|
|
self.func_ctx.types[var] = ty;
|
|
}
|
|
|
|
/// Returns the Cretonne IR value corresponding to the utilization at the current program
|
|
/// position of a previously defined user variable.
|
|
pub fn use_var(&mut self, var: Variable) -> Value {
|
|
let ty = *self.func_ctx.types.get(var).expect(
|
|
"this variable is used but its type has not been declared",
|
|
);
|
|
let (val, side_effects) = self.func_ctx.ssa.use_var(
|
|
self.func,
|
|
var,
|
|
ty,
|
|
self.position.basic_block.unwrap(),
|
|
);
|
|
self.handle_ssa_side_effects(side_effects);
|
|
val
|
|
}
|
|
|
|
/// Register a new definition of a user variable. Panics if the type of the value is not the
|
|
/// same as the type registered for the variable.
|
|
pub fn def_var(&mut self, var: Variable, val: Value) {
|
|
self.func_ctx.ssa.def_var(
|
|
var,
|
|
val,
|
|
self.position.basic_block.unwrap(),
|
|
);
|
|
}
|
|
|
|
/// Creates a jump table in the function, to be used by `br_table` instructions.
|
|
pub fn create_jump_table(&mut self, data: JumpTableData) -> JumpTable {
|
|
self.func.create_jump_table(data)
|
|
}
|
|
|
|
/// Inserts an entry in a previously declared jump table.
|
|
pub fn insert_jump_table_entry(&mut self, jt: JumpTable, index: usize, ebb: Ebb) {
|
|
self.func.insert_jump_table_entry(jt, index, ebb)
|
|
}
|
|
|
|
/// Creates a stack slot in the function, to be used by `stack_load`, `stack_store` and
|
|
/// `stack_addr` instructions.
|
|
pub fn create_stack_slot(&mut self, data: StackSlotData) -> StackSlot {
|
|
self.func.create_stack_slot(data)
|
|
}
|
|
|
|
/// Adds a signature which can later be used to declare an external function import.
|
|
pub fn import_signature(&mut self, signature: Signature) -> SigRef {
|
|
self.func.import_signature(signature)
|
|
}
|
|
|
|
/// Declare an external function import.
|
|
pub fn import_function(&mut self, data: ExtFuncData) -> FuncRef {
|
|
self.func.import_function(data)
|
|
}
|
|
|
|
/// Declares a global variable accessible to the function.
|
|
pub fn create_global_var(&mut self, data: GlobalVarData) -> GlobalVar {
|
|
self.func.create_global_var(data)
|
|
}
|
|
|
|
/// Declares a heap accessible to the function.
|
|
pub fn create_heap(&mut self, data: HeapData) -> Heap {
|
|
self.func.create_heap(data)
|
|
}
|
|
|
|
/// Returns an object with the [`InstBuilder`](../codegen/ir/builder/trait.InstBuilder.html)
|
|
/// trait that allows to conveniently append an instruction to the current `Ebb` being built.
|
|
pub fn ins<'short>(&'short mut self) -> FuncInstBuilder<'short, 'a, Variable> {
|
|
let ebb = self.position.ebb.unwrap();
|
|
FuncInstBuilder::new(self, ebb)
|
|
}
|
|
|
|
/// Make sure that the current EBB is inserted in the layout.
|
|
pub fn ensure_inserted_ebb(&mut self) {
|
|
let ebb = self.position.ebb.unwrap();
|
|
if self.func_ctx.ebbs[ebb].pristine {
|
|
if !self.func.layout.is_ebb_inserted(ebb) {
|
|
self.func.layout.append_ebb(ebb);
|
|
}
|
|
self.func_ctx.ebbs[ebb].pristine = false;
|
|
} else {
|
|
debug_assert!(
|
|
!self.func_ctx.ebbs[ebb].filled,
|
|
"you cannot add an instruction to a block already filled"
|
|
);
|
|
}
|
|
}
|
|
|
|
/// Returns a `FuncCursor` pointed at the current position ready for inserting instructions.
|
|
///
|
|
/// This can be used to insert SSA code that doesn't need to access locals and that doesn't
|
|
/// need to know about `FunctionBuilder` at all.
|
|
pub fn cursor(&mut self) -> FuncCursor {
|
|
self.ensure_inserted_ebb();
|
|
FuncCursor::new(self.func)
|
|
.with_srcloc(self.srcloc)
|
|
.at_bottom(self.position.ebb.unwrap())
|
|
}
|
|
|
|
/// Append parameters to the given `Ebb` corresponding to the function
|
|
/// parameters. This can be used to set up the ebb parameters for the
|
|
/// entry block.
|
|
pub fn append_ebb_params_for_function_params(&mut self, ebb: Ebb) {
|
|
// These parameters count as "user" parameters here because they aren't
|
|
// inserted by the SSABuilder.
|
|
let user_param_count = &mut self.func_ctx.ebbs[ebb].user_param_count;
|
|
for argtyp in &self.func.signature.params {
|
|
*user_param_count += 1;
|
|
self.func.dfg.append_ebb_param(ebb, argtyp.value_type);
|
|
}
|
|
}
|
|
|
|
/// Append parameters to the given `Ebb` corresponding to the function
|
|
/// return values. This can be used to set up the ebb parameters for a
|
|
/// function exit block.
|
|
pub fn append_ebb_params_for_function_returns(&mut self, ebb: Ebb) {
|
|
// These parameters count as "user" parameters here because they aren't
|
|
// inserted by the SSABuilder.
|
|
let user_param_count = &mut self.func_ctx.ebbs[ebb].user_param_count;
|
|
for argtyp in &self.func.signature.returns {
|
|
*user_param_count += 1;
|
|
self.func.dfg.append_ebb_param(ebb, argtyp.value_type);
|
|
}
|
|
}
|
|
|
|
/// Declare that translation of the current function is complete. This
|
|
/// resets the state of the `FunctionBuilder` in preparation to be used
|
|
/// for another function.
|
|
pub fn finalize(&mut self) {
|
|
// Check that all the `Ebb`s are filled and sealed.
|
|
debug_assert!(
|
|
self.func_ctx.ebbs.iter().all(|(ebb, ebb_data)| {
|
|
ebb_data.pristine || self.func_ctx.ssa.is_sealed(ebb)
|
|
}),
|
|
"all blocks should be sealed before dropping a FunctionBuilder"
|
|
);
|
|
debug_assert!(
|
|
self.func_ctx.ebbs.values().all(|ebb_data| {
|
|
ebb_data.pristine || ebb_data.filled
|
|
}),
|
|
"all blocks should be filled before dropping a FunctionBuilder"
|
|
);
|
|
|
|
// Clear the state (but preserve the allocated buffers) in preparation
|
|
// for translation another function.
|
|
self.func_ctx.clear();
|
|
|
|
// Reset srcloc and position to initial states.
|
|
self.srcloc = Default::default();
|
|
self.position = Position::default();
|
|
}
|
|
}
|
|
|
|
/// All the functions documented in the previous block are write-only and help you build a valid
|
|
/// Cretonne IR functions via multiple debug asserts. However, you might need to improve the
|
|
/// performance of your translation perform more complex transformations to your Cretonne IR
|
|
/// function. The functions below help you inspect the function you're creating and modify it
|
|
/// in ways that can be unsafe if used incorrectly.
|
|
impl<'a, Variable> FunctionBuilder<'a, Variable>
|
|
where
|
|
Variable: EntityRef,
|
|
{
|
|
/// Retrieves all the parameters for an `Ebb` currently inferred from the jump instructions
|
|
/// inserted that target it and the SSA construction.
|
|
pub fn ebb_params(&self, ebb: Ebb) -> &[Value] {
|
|
self.func.dfg.ebb_params(ebb)
|
|
}
|
|
|
|
/// Retrieves the signature with reference `sigref` previously added with `import_signature`.
|
|
pub fn signature(&self, sigref: SigRef) -> Option<&Signature> {
|
|
self.func.dfg.signatures.get(sigref)
|
|
}
|
|
|
|
/// Creates a parameter for a specific `Ebb` by appending it to the list of already existing
|
|
/// parameters.
|
|
///
|
|
/// **Note:** this function has to be called at the creation of the `Ebb` before adding
|
|
/// instructions to it, otherwise this could interfere with SSA construction.
|
|
pub fn append_ebb_param(&mut self, ebb: Ebb, ty: Type) -> Value {
|
|
debug_assert!(self.func_ctx.ebbs[ebb].pristine);
|
|
debug_assert_eq!(
|
|
self.func_ctx.ebbs[ebb].user_param_count,
|
|
self.func.dfg.num_ebb_params(ebb)
|
|
);
|
|
self.func_ctx.ebbs[ebb].user_param_count += 1;
|
|
self.func.dfg.append_ebb_param(ebb, ty)
|
|
}
|
|
|
|
/// Returns the result values of an instruction.
|
|
pub fn inst_results(&self, inst: Inst) -> &[Value] {
|
|
self.func.dfg.inst_results(inst)
|
|
}
|
|
|
|
/// Changes the destination of a jump instruction after creation.
|
|
///
|
|
/// **Note:** You are responsible for maintaining the coherence with the arguments of
|
|
/// other jump instructions.
|
|
pub fn change_jump_destination(&mut self, inst: Inst, new_dest: Ebb) {
|
|
let old_dest = self.func.dfg[inst].branch_destination_mut().expect(
|
|
"you want to change the jump destination of a non-jump instruction",
|
|
);
|
|
let pred = self.func_ctx.ssa.remove_ebb_predecessor(*old_dest, inst);
|
|
*old_dest = new_dest;
|
|
self.func_ctx.ssa.declare_ebb_predecessor(
|
|
new_dest,
|
|
pred,
|
|
inst,
|
|
);
|
|
}
|
|
|
|
/// Returns `true` if and only if the current `Ebb` is sealed and has no predecessors declared.
|
|
///
|
|
/// The entry block of a function is never unreachable.
|
|
pub fn is_unreachable(&self) -> bool {
|
|
let is_entry = match self.func.layout.entry_block() {
|
|
None => false,
|
|
Some(entry) => self.position.ebb.unwrap() == entry,
|
|
};
|
|
!is_entry && self.func_ctx.ssa.is_sealed(self.position.ebb.unwrap()) &&
|
|
self.func_ctx
|
|
.ssa
|
|
.predecessors(self.position.ebb.unwrap())
|
|
.is_empty()
|
|
}
|
|
|
|
/// Returns `true` if and only if no instructions have been added since the last call to
|
|
/// `switch_to_block`.
|
|
pub fn is_pristine(&self) -> bool {
|
|
self.func_ctx.ebbs[self.position.ebb.unwrap()].pristine
|
|
}
|
|
|
|
/// Returns `true` if and only if a terminator instruction has been inserted since the
|
|
/// last call to `switch_to_block`.
|
|
pub fn is_filled(&self) -> bool {
|
|
self.func_ctx.ebbs[self.position.ebb.unwrap()].filled
|
|
}
|
|
|
|
/// Returns a displayable object for the function as it is.
|
|
///
|
|
/// Useful for debug purposes. Use it with `None` for standard printing.
|
|
// Clippy thinks the lifetime that follows is needless, but rustc needs it
|
|
#[cfg_attr(feature = "cargo-clippy", allow(needless_lifetimes))]
|
|
pub fn display<'b, I: Into<Option<&'b TargetIsa>>>(&'b self, isa: I) -> DisplayFunction {
|
|
self.func.display(isa)
|
|
}
|
|
}
|
|
|
|
// Helper functions
|
|
impl<'a, Variable> FunctionBuilder<'a, Variable>
|
|
where
|
|
Variable: EntityRef,
|
|
{
|
|
fn move_to_next_basic_block(&mut self) {
|
|
self.position.basic_block = PackedOption::from(self.func_ctx.ssa.declare_ebb_body_block(
|
|
self.position.basic_block.unwrap(),
|
|
));
|
|
}
|
|
|
|
fn fill_current_block(&mut self) {
|
|
self.func_ctx.ebbs[self.position.ebb.unwrap()].filled = true;
|
|
}
|
|
|
|
fn declare_successor(&mut self, dest_ebb: Ebb, jump_inst: Inst) {
|
|
self.func_ctx.ssa.declare_ebb_predecessor(
|
|
dest_ebb,
|
|
self.position.basic_block.unwrap(),
|
|
jump_inst,
|
|
);
|
|
}
|
|
|
|
fn handle_ssa_side_effects(&mut self, side_effects: SideEffects) {
|
|
for split_ebb in side_effects.split_ebbs_created {
|
|
self.func_ctx.ebbs[split_ebb].filled = true
|
|
}
|
|
for modified_ebb in side_effects.instructions_added_to_ebbs {
|
|
self.func_ctx.ebbs[modified_ebb].pristine = false
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
|
|
use Variable;
|
|
use cretonne_codegen::entity::EntityRef;
|
|
use cretonne_codegen::ir::types::*;
|
|
use cretonne_codegen::ir::{AbiParam, CallConv, ExternalName, Function, InstBuilder, Signature};
|
|
use cretonne_codegen::settings;
|
|
use cretonne_codegen::verifier::verify_function;
|
|
use frontend::{FunctionBuilder, FunctionBuilderContext};
|
|
|
|
fn sample_function(lazy_seal: bool) {
|
|
let mut sig = Signature::new(CallConv::SystemV);
|
|
sig.returns.push(AbiParam::new(I32));
|
|
sig.params.push(AbiParam::new(I32));
|
|
|
|
let mut fn_ctx = FunctionBuilderContext::<Variable>::new();
|
|
let mut func = Function::with_name_signature(ExternalName::testcase("sample"), sig);
|
|
{
|
|
let mut builder = FunctionBuilder::<Variable>::new(&mut func, &mut fn_ctx);
|
|
|
|
let block0 = builder.create_ebb();
|
|
let block1 = builder.create_ebb();
|
|
let block2 = builder.create_ebb();
|
|
let x = Variable::new(0);
|
|
let y = Variable::new(1);
|
|
let z = Variable::new(2);
|
|
builder.declare_var(x, I32);
|
|
builder.declare_var(y, I32);
|
|
builder.declare_var(z, I32);
|
|
builder.append_ebb_params_for_function_params(block0);
|
|
|
|
builder.switch_to_block(block0);
|
|
if !lazy_seal {
|
|
builder.seal_block(block0);
|
|
}
|
|
{
|
|
let tmp = builder.ebb_params(block0)[0]; // the first function parameter
|
|
builder.def_var(x, tmp);
|
|
}
|
|
{
|
|
let tmp = builder.ins().iconst(I32, 2);
|
|
builder.def_var(y, tmp);
|
|
}
|
|
{
|
|
let arg1 = builder.use_var(x);
|
|
let arg2 = builder.use_var(y);
|
|
let tmp = builder.ins().iadd(arg1, arg2);
|
|
builder.def_var(z, tmp);
|
|
}
|
|
builder.ins().jump(block1, &[]);
|
|
|
|
builder.switch_to_block(block1);
|
|
{
|
|
let arg1 = builder.use_var(y);
|
|
let arg2 = builder.use_var(z);
|
|
let tmp = builder.ins().iadd(arg1, arg2);
|
|
builder.def_var(z, tmp);
|
|
}
|
|
{
|
|
let arg = builder.use_var(y);
|
|
builder.ins().brnz(arg, block2, &[]);
|
|
}
|
|
{
|
|
let arg1 = builder.use_var(z);
|
|
let arg2 = builder.use_var(x);
|
|
let tmp = builder.ins().isub(arg1, arg2);
|
|
builder.def_var(z, tmp);
|
|
}
|
|
{
|
|
let arg = builder.use_var(y);
|
|
builder.ins().return_(&[arg]);
|
|
}
|
|
|
|
builder.switch_to_block(block2);
|
|
if !lazy_seal {
|
|
builder.seal_block(block2);
|
|
}
|
|
|
|
{
|
|
let arg1 = builder.use_var(y);
|
|
let arg2 = builder.use_var(x);
|
|
let tmp = builder.ins().isub(arg1, arg2);
|
|
builder.def_var(y, tmp);
|
|
}
|
|
builder.ins().jump(block1, &[]);
|
|
if !lazy_seal {
|
|
builder.seal_block(block1);
|
|
}
|
|
|
|
if lazy_seal {
|
|
builder.seal_all_blocks();
|
|
}
|
|
|
|
builder.finalize();
|
|
}
|
|
|
|
let flags = settings::Flags::new(&settings::builder());
|
|
let res = verify_function(&func, &flags);
|
|
// println!("{}", func.display(None));
|
|
match res {
|
|
Ok(_) => {}
|
|
Err(err) => panic!("{}{}", func.display(None), err),
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn sample() {
|
|
sample_function(false)
|
|
}
|
|
|
|
#[test]
|
|
fn sample_with_lazy_seal() {
|
|
sample_function(true)
|
|
}
|
|
}
|