Files
wasmtime/src/libcretonne/cfg.rs
Morgan Phillips bdab73b0c7 Cargo-fmt fixes
2016-07-21 15:24:07 -07:00

303 lines
9.5 KiB
Rust

//! A control flow graph represented as mappings of extended basic blocks to their predecessors
//! and successors. Successors are represented as extended basic blocks while predecessors are
//! represented by basic blocks.
//! BasicBlocks are denoted by tuples of EBB and branch/jump instructions. Each predecessor
//! tuple corresponds to the end of a basic block.
//!
//! ```c
//! Ebb0:
//! ... ; beginning of basic block
//!
//! ...
//!
//! brz vx, Ebb1 ; end of basic block
//!
//! ... ; beginning of basic block
//!
//! ...
//!
//! jmp Ebb2 ; end of basic block
//! ```
//!
//! Here Ebb1 and Ebb2 would each have a single predecessor denoted as (Ebb0, `brz vx, Ebb1`)
//! and (Ebb0, `jmp Ebb2`) respectively.
use repr::Function;
use repr::entities::{Inst, Ebb};
use repr::instructions::InstructionData;
use entity_map::EntityMap;
use std::collections::BTreeSet;
/// A basic block denoted by its enclosing Ebb and last instruction.
pub type BasicBlock = (Ebb, Inst);
/// Storing predecessors in a BTreeSet ensures that their ordering is
/// stable with no duplicates.
pub type BasicBlockSet = BTreeSet<BasicBlock>;
/// A container for the successors and predecessors of some Ebb.
#[derive(Debug)]
pub struct CFGNode {
pub successors: BTreeSet<Ebb>,
pub predecessors: BasicBlockSet,
}
impl CFGNode {
/// CFG Node successors stripped of loop edges.
pub fn children(&self) -> Vec<Ebb> {
let pred_ebbs = self.predecessors.iter().map(|&(ebb, _)| ebb).collect();
let children = self.successors.difference(&pred_ebbs).cloned().collect();
children
}
}
impl CFGNode {
pub fn new() -> CFGNode {
CFGNode {
successors: BTreeSet::new(),
predecessors: BTreeSet::new(),
}
}
}
/// The Control Flow Graph maintains a mapping of ebbs to their predecessors
/// and successors where predecessors are basic blocks and successors are
/// extended basic blocks.
#[derive(Debug)]
pub struct ControlFlowGraph {
data: EntityMap<Ebb, CFGNode>,
}
impl ControlFlowGraph {
/// During initialization mappings will be generated for any existing
/// blocks within the CFG's associated function.
pub fn new(func: &Function) -> ControlFlowGraph {
let mut cfg = ControlFlowGraph { data: EntityMap::new() };
// Even ebbs without predecessors should show up in the CFG, albeit
// with no entires.
for _ in &func.layout {
cfg.push_ebb();
}
for ebb in &func.layout {
for inst in func.layout.ebb_insts(ebb) {
match func.dfg[inst] {
InstructionData::Branch { ty: _, opcode: _, ref data } => {
cfg.add_successor(ebb, data.destination);
cfg.add_predecessor(data.destination, (ebb, inst));
}
InstructionData::Jump { ty: _, opcode: _, ref data } => {
cfg.add_successor(ebb, data.destination);
cfg.add_predecessor(data.destination, (ebb, inst));
}
_ => (),
}
}
}
cfg
}
pub fn push_ebb(&mut self) {
self.data.push(CFGNode::new());
}
pub fn add_successor(&mut self, from: Ebb, to: Ebb) {
self.data[from].successors.insert(to);
}
pub fn add_predecessor(&mut self, ebb: Ebb, predecessor: BasicBlock) {
self.data[ebb].predecessors.insert(predecessor);
}
pub fn get_predecessors(&self, ebb: Ebb) -> &BasicBlockSet {
&self.data[ebb].predecessors
}
pub fn get_successors(&self, ebb: Ebb) -> &BTreeSet<Ebb> {
&self.data[ebb].successors
}
pub fn get_children(&self, ebb: Ebb) -> Vec<Ebb> {
self.data[ebb].children()
}
pub fn postorder_ebbs(&self) -> Vec<Ebb> {
if self.len() < 1 {
return Vec::new();
}
let mut stack_a = vec![Ebb::with_number(0).unwrap()];
let mut stack_b = Vec::new();
while stack_a.len() > 0 {
let cur = stack_a.pop().unwrap();
for child in self.get_children(cur) {
stack_a.push(child);
}
stack_b.push(cur);
}
stack_b
}
pub fn len(&self) -> usize {
self.data.len()
}
pub fn predecessors_iter(&self) -> CFGPredecessorsIter {
CFGPredecessorsIter {
cur: 0,
cfg: &self,
}
}
}
/// Iterate through every mapping of ebb to predecessors in the CFG
pub struct CFGPredecessorsIter<'a> {
cfg: &'a ControlFlowGraph,
cur: usize,
}
impl<'a> Iterator for CFGPredecessorsIter<'a> {
type Item = (Ebb, &'a BasicBlockSet);
fn next(&mut self) -> Option<Self::Item> {
if self.cur < self.cfg.len() {
let ebb = Ebb::with_number(self.cur as u32).unwrap();
let bbs = self.cfg.get_predecessors(ebb);
self.cur += 1;
Some((ebb, bbs))
} else {
None
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use repr::Function;
use test_utils::make_inst;
#[test]
fn empty() {
let func = Function::new();
let cfg = ControlFlowGraph::new(&func);
assert_eq!(None, cfg.predecessors_iter().next());
}
#[test]
fn no_predecessors() {
let mut func = Function::new();
let ebb0 = func.dfg.make_ebb();
let ebb1 = func.dfg.make_ebb();
let ebb2 = func.dfg.make_ebb();
func.layout.append_ebb(ebb0);
func.layout.append_ebb(ebb1);
func.layout.append_ebb(ebb2);
let cfg = ControlFlowGraph::new(&func);
let nodes = cfg.predecessors_iter().collect::<Vec<_>>();
assert_eq!(nodes.len(), 3);
let mut fun_ebbs = func.layout.ebbs();
for (ebb, predecessors) in nodes {
assert_eq!(ebb, fun_ebbs.next().unwrap());
assert_eq!(predecessors.len(), 0);
assert_eq!(predecessors.len(), 0);
assert_eq!(cfg.get_successors(ebb).len(), 0);
}
}
#[test]
fn branches_and_jumps() {
let mut func = Function::new();
let ebb0 = func.dfg.make_ebb();
let ebb1 = func.dfg.make_ebb();
let ebb2 = func.dfg.make_ebb();
func.layout.append_ebb(ebb0);
func.layout.append_ebb(ebb1);
func.layout.append_ebb(ebb2);
let br_ebb0_ebb2 = make_inst::branch(&mut func, ebb2);
func.layout.append_inst(br_ebb0_ebb2, ebb0);
let jmp_ebb0_ebb1 = make_inst::jump(&mut func, ebb1);
func.layout.append_inst(jmp_ebb0_ebb1, ebb0);
let br_ebb1_ebb1 = make_inst::branch(&mut func, ebb1);
func.layout.append_inst(br_ebb1_ebb1, ebb1);
let jmp_ebb1_ebb2 = make_inst::jump(&mut func, ebb2);
func.layout.append_inst(jmp_ebb1_ebb2, ebb1);
let cfg = ControlFlowGraph::new(&func);
let ebb0_predecessors = cfg.get_predecessors(ebb0);
let ebb1_predecessors = cfg.get_predecessors(ebb1);
let ebb2_predecessors = cfg.get_predecessors(ebb2);
let ebb0_successors = cfg.get_successors(ebb0);
let ebb1_successors = cfg.get_successors(ebb1);
let ebb2_successors = cfg.get_successors(ebb2);
assert_eq!(ebb0_predecessors.len(), 0);
assert_eq!(ebb1_predecessors.len(), 2);
assert_eq!(ebb2_predecessors.len(), 2);
assert_eq!(ebb1_predecessors.contains(&(ebb0, jmp_ebb0_ebb1)), true);
assert_eq!(ebb1_predecessors.contains(&(ebb1, br_ebb1_ebb1)), true);
assert_eq!(ebb2_predecessors.contains(&(ebb0, br_ebb0_ebb2)), true);
assert_eq!(ebb2_predecessors.contains(&(ebb1, jmp_ebb1_ebb2)), true);
assert_eq!(ebb0_successors.len(), 2);
assert_eq!(ebb1_successors.len(), 2);
assert_eq!(ebb2_successors.len(), 0);
assert_eq!(ebb0_successors.contains(&ebb1), true);
assert_eq!(ebb0_successors.contains(&ebb2), true);
assert_eq!(ebb1_successors.contains(&ebb1), true);
assert_eq!(ebb1_successors.contains(&ebb2), true);
assert_eq!(cfg.get_children(ebb0), vec![ebb1, ebb2]);
assert_eq!(cfg.get_children(ebb1), vec![ebb2]);
assert_eq!(cfg.get_children(ebb2), Vec::new());
}
#[test]
fn postorder_traversal() {
let mut func = Function::new();
let ebb0 = func.dfg.make_ebb();
let ebb1 = func.dfg.make_ebb();
let ebb2 = func.dfg.make_ebb();
let ebb3 = func.dfg.make_ebb();
let ebb4 = func.dfg.make_ebb();
let ebb5 = func.dfg.make_ebb();
func.layout.append_ebb(ebb0);
func.layout.append_ebb(ebb1);
func.layout.append_ebb(ebb2);
func.layout.append_ebb(ebb3);
func.layout.append_ebb(ebb4);
func.layout.append_ebb(ebb5);
let br_ebb0_ebb1 = make_inst::branch(&mut func, ebb1);
func.layout.append_inst(br_ebb0_ebb1, ebb0);
let jmp_ebb0_ebb2 = make_inst::jump(&mut func, ebb2);
func.layout.append_inst(jmp_ebb0_ebb2, ebb0);
let jmp_ebb1_ebb3 = make_inst::jump(&mut func, ebb3);
func.layout.append_inst(jmp_ebb1_ebb3, ebb1);
let br_ebb2_ebb4 = make_inst::branch(&mut func, ebb4);
func.layout.append_inst(br_ebb2_ebb4, ebb2);
let jmp_ebb2_ebb5 = make_inst::jump(&mut func, ebb5);
func.layout.append_inst(jmp_ebb2_ebb5, ebb2);
let cfg = ControlFlowGraph::new(&func);
assert_eq!(cfg.postorder_ebbs(),
vec![ebb0, ebb2, ebb5, ebb4, ebb1, ebb3]);
}
}