Files
wasmtime/src/backend.rs

928 lines
27 KiB
Rust

#![allow(dead_code)] // for now
use dynasmrt::x64::Assembler;
use dynasmrt::{AssemblyOffset, DynamicLabel, DynasmApi, DynasmLabelApi, ExecutableBuffer};
use error::Error;
use std::iter;
/// Size of a pointer on the target in bytes.
const WORD_SIZE: u32 = 8;
type GPR = u8;
#[derive(Copy, Clone)]
struct GPRs {
bits: u16,
}
impl GPRs {
fn new() -> Self {
Self { bits: 0 }
}
}
const RAX: u8 = 0;
const RCX: u8 = 1;
const RDX: u8 = 2;
const RBX: u8 = 3;
const RSP: u8 = 4;
const RBP: u8 = 5;
const RSI: u8 = 6;
const RDI: u8 = 7;
const R8: u8 = 8;
const R9: u8 = 9;
const R10: u8 = 10;
const R11: u8 = 11;
const R12: u8 = 12;
const R13: u8 = 13;
const R14: u8 = 14;
const R15: u8 = 15;
const NUM_GPRS: u8 = 16;
impl GPRs {
fn take(&mut self) -> GPR {
let lz = self.bits.trailing_zeros();
assert!(lz < 16, "ran out of free GPRs");
let gpr = lz as GPR;
self.mark_used(gpr);
gpr
}
fn mark_used(&mut self, gpr: GPR) {
self.bits &= !(1 << gpr as u16);
}
fn release(&mut self, gpr: GPR) {
assert!(!self.is_free(gpr), "released register was already free",);
self.bits |= 1 << gpr;
}
fn free_count(&self) -> u32 {
self.bits.count_ones()
}
fn is_free(&self, gpr: GPR) -> bool {
(self.bits & (1 << gpr)) != 0
}
}
#[derive(Copy, Clone)]
pub struct Registers {
scratch: GPRs,
}
impl Default for Registers {
fn default() -> Self {
Self::new()
}
}
impl Registers {
pub fn new() -> Self {
let mut result = Self {
scratch: GPRs::new(),
};
// Give ourselves a few scratch registers to work with, for now.
for &scratch in SCRATCH_REGS {
result.release_scratch_gpr(scratch);
}
result
}
// TODO: Add function that takes a scratch register if possible
// but otherwise gives a fresh stack location.
pub fn take_scratch_gpr(&mut self) -> GPR {
self.scratch.take()
}
pub fn release_scratch_gpr(&mut self, gpr: GPR) {
self.scratch.release(gpr);
}
pub fn is_free(&self, gpr: GPR) -> bool {
self.scratch.is_free(gpr)
}
pub fn free_scratch(&self) -> u32 {
self.scratch.free_count()
}
}
/// Describes location of a value.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum ValueLocation {
/// Value exists in a register.
Reg(GPR),
/// Value exists on the stack. This is an offset relative to the
/// first local, and so will have to be adjusted with `adjusted_offset`
/// before reading (as RSP may have been changed by `push`/`pop`).
Stack(i32),
/// Value is a literal (TODO: Support more than just `i32`)
Immediate(i32),
}
// TODO: This assumes only system-v calling convention.
// In system-v calling convention the first 6 arguments are passed via registers.
// All rest arguments are passed on the stack.
const ARGS_IN_GPRS: &[GPR] = &[RDI, RSI, RDX, RCX, R8, R9];
// RAX is reserved for return values. In the future we want a system to allow
// use of specific registers by saving/restoring them. This would allow using
// RAX as a scratch register when we're not calling a function, and would also
// allow us to call instructions that require specific registers.
//
// List of scratch registers taken from https://wiki.osdev.org/System_V_ABI
const SCRATCH_REGS: &[GPR] = &[R10, R11];
pub struct CodeGenSession {
assembler: Assembler,
func_starts: Vec<(Option<AssemblyOffset>, DynamicLabel)>,
}
impl CodeGenSession {
pub fn new(func_count: u32) -> Self {
let mut assembler = Assembler::new().unwrap();
let func_starts = iter::repeat_with(|| (None, assembler.new_dynamic_label()))
.take(func_count as usize)
.collect::<Vec<_>>();
CodeGenSession {
assembler,
func_starts,
}
}
pub fn new_context(&mut self, func_idx: u32) -> Context {
{
let func_start = &mut self.func_starts[func_idx as usize];
// At this point we now the exact start address of this function. Save it
// and define dynamic label at this location.
func_start.0 = Some(self.assembler.offset());
self.assembler.dynamic_label(func_start.1);
}
Context {
asm: &mut self.assembler,
func_starts: &self.func_starts,
block_state: Default::default(),
locals: Default::default(),
}
}
pub fn into_translated_code_section(self) -> Result<TranslatedCodeSection, Error> {
let exec_buf = self
.assembler
.finalize()
.map_err(|_asm| Error::Assembler("assembler error".to_owned()))?;
let func_starts = self
.func_starts
.iter()
.map(|(offset, _)| offset.unwrap())
.collect::<Vec<_>>();
Ok(TranslatedCodeSection {
exec_buf,
func_starts,
})
}
}
#[derive(Debug)]
pub struct TranslatedCodeSection {
exec_buf: ExecutableBuffer,
func_starts: Vec<AssemblyOffset>,
}
impl TranslatedCodeSection {
pub fn func_start(&self, idx: usize) -> *const u8 {
let offset = self.func_starts[idx];
self.exec_buf.ptr(offset)
}
pub fn disassemble(&self) {
::disassemble::disassemble(&*self.exec_buf).unwrap();
}
}
// TODO: Immediates? We could implement on-the-fly const folding
#[derive(Copy, Clone)]
enum Value {
Local(u32),
Temp(GPR),
Immediate(i32),
}
impl Value {
fn immediate(&self) -> Option<i32> {
match *self {
Value::Immediate(i) => Some(i),
_ => None,
}
}
fn location(&self, locals: &Locals) -> ValueLocation {
match *self {
Value::Local(loc) => local_location(locals, loc),
Value::Temp(reg) => ValueLocation::Reg(reg),
Value::Immediate(reg) => ValueLocation::Immediate(reg),
}
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum StackValue {
Local(u32),
Temp(GPR),
Immediate(i32),
Pop,
}
impl StackValue {
fn location(&self, locals: &Locals) -> Option<ValueLocation> {
match *self {
StackValue::Local(loc) => Some(local_location(locals, loc)),
StackValue::Immediate(i) => Some(ValueLocation::Immediate(i)),
StackValue::Temp(reg) => Some(ValueLocation::Reg(reg)),
StackValue::Pop => None,
}
}
}
#[derive(Default)]
struct Locals {
// TODO: Use `ArrayVec` since we have a hard maximum (the number of registers)
locs: Vec<ValueLocation>,
}
#[derive(Default, Clone)]
pub struct BlockState {
stack: Stack,
pub depth: StackDepth,
regs: Registers,
}
fn adjusted_offset(ctx: &mut Context, offset: i32) -> i32 {
(ctx.block_state.depth.0 * WORD_SIZE) as i32 + offset
}
fn local_location(locals: &Locals, index: u32) -> ValueLocation {
locals
.locs
.get(index as usize)
.cloned()
.unwrap_or(ValueLocation::Stack(
(index.saturating_sub(ARGS_IN_GPRS.len() as u32) * WORD_SIZE) as _,
))
}
type Stack = Vec<StackValue>;
pub struct Context<'a> {
asm: &'a mut Assembler,
func_starts: &'a Vec<(Option<AssemblyOffset>, DynamicLabel)>,
/// Each push and pop on the value stack increments or decrements this value by 1 respectively.
block_state: BlockState,
locals: Locals,
}
impl<'a> Context<'a> {}
/// Label in code.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct Label(DynamicLabel);
/// Create a new undefined label.
pub fn create_label(ctx: &mut Context) -> Label {
Label(ctx.asm.new_dynamic_label())
}
/// Define the given label at the current position.
///
/// Multiple labels can be defined at the same position. However, a label
/// can be defined only once.
pub fn define_label(ctx: &mut Context, label: Label) {
ctx.asm.dynamic_label(label.0);
}
/// Offset from starting value of SP counted in words.
#[derive(Default, Debug, Copy, Clone, PartialEq, Eq)]
pub struct StackDepth(u32);
impl StackDepth {
pub fn reserve(&mut self, slots: u32) {
self.0 += slots;
}
pub fn free(&mut self, slots: u32) {
self.0 -= slots;
}
}
pub fn current_block_state(ctx: &Context) -> BlockState {
ctx.block_state.clone()
}
pub fn return_from_block(ctx: &mut Context, new_depth: StackDepth) {
let diff = ((ctx.block_state.depth.0 - new_depth.0) * WORD_SIZE) as i32;
if let Some(loc) = ctx.block_state.stack.last().unwrap().location(&ctx.locals) {
match loc {
ValueLocation::Reg(r) => {
dynasm!(ctx.asm
; push Rq(r)
);
}
ValueLocation::Stack(offset) => {
let offset = adjusted_offset(ctx, offset);
dynasm!(ctx.asm
; push QWORD [rsp + offset]
);
}
ValueLocation::Immediate(imm) => {
dynasm!(ctx.asm
; push imm
);
}
}
}
// If `location` is `None` then we don't need to do anything.
}
pub fn push_block_return_value(ctx: &mut Context) {
ctx.block_state.depth.reserve(1);
ctx.block_state.stack.push(StackValue::Pop);
}
pub fn restore_block_state(ctx: &mut Context, block_state: BlockState) {
ctx.block_state = block_state;
}
pub fn push_return_value(ctx: &mut Context) {
ctx.block_state.stack.push(StackValue::Temp(RAX));
}
fn push_i32(ctx: &mut Context, value: Value) {
let stack_loc = match value {
Value::Local(loc) => StackValue::Local(loc),
Value::Immediate(i) => StackValue::Immediate(i),
Value::Temp(gpr) => {
if ctx.block_state.regs.free_scratch() >= 1 {
StackValue::Temp(gpr)
} else {
ctx.block_state.depth.reserve(1);
dynasm!(ctx.asm
; push Rq(gpr)
);
ctx.block_state.regs.release_scratch_gpr(gpr);
StackValue::Pop
}
}
};
ctx.block_state.stack.push(stack_loc);
}
fn pop_i32(ctx: &mut Context) -> Value {
match ctx.block_state.stack.pop().expect("Stack is empty") {
StackValue::Local(loc) => Value::Local(loc),
StackValue::Immediate(i) => Value::Immediate(i),
StackValue::Temp(reg) => Value::Temp(reg),
StackValue::Pop => {
ctx.block_state.depth.free(1);
let gpr = ctx.block_state.regs.take_scratch_gpr();
dynasm!(ctx.asm
; pop Rq(gpr)
);
Value::Temp(gpr)
}
}
}
fn pop_i32_into(ctx: &mut Context, dst: ValueLocation) {
let val = pop_i32(ctx);
let val_loc = val.location(&ctx.locals);
copy_value(ctx, val_loc, dst);
free_val(ctx, val);
}
fn free_val(ctx: &mut Context, val: Value) {
match val {
Value::Temp(reg) => ctx.block_state.regs.release_scratch_gpr(reg),
Value::Local(_) | Value::Immediate(_) => {}
}
}
/// Puts this value into a register so that it can be efficiently read
fn into_reg(ctx: &mut Context, val: Value) -> GPR {
match val.location(&ctx.locals) {
ValueLocation::Stack(offset) => {
let offset = adjusted_offset(ctx, offset);
let scratch = ctx.block_state.regs.take_scratch_gpr();
dynasm!(ctx.asm
; mov Rq(scratch), [rsp + offset]
);
scratch
}
ValueLocation::Immediate(i) => {
let scratch = ctx.block_state.regs.take_scratch_gpr();
dynasm!(ctx.asm
; mov Rq(scratch), i
);
scratch
}
ValueLocation::Reg(reg) => reg,
}
}
/// Puts this value into a temporary register so that operations
/// on that register don't write to a local.
fn into_temp_reg(ctx: &mut Context, val: Value) -> GPR {
match val {
Value::Local(loc) => {
let scratch = ctx.block_state.regs.take_scratch_gpr();
match local_location(&ctx.locals, loc) {
ValueLocation::Stack(offset) => {
let offset = adjusted_offset(ctx, offset);
dynasm!(ctx.asm
; mov Rq(scratch), [rsp + offset]
);
}
ValueLocation::Reg(reg) => {
dynasm!(ctx.asm
; mov Rq(scratch), Rq(reg)
);
}
ValueLocation::Immediate(_) => {
panic!("We shouldn't be storing immediates in locals for now")
}
}
scratch
}
Value::Immediate(i) => {
let scratch = ctx.block_state.regs.take_scratch_gpr();
dynasm!(ctx.asm
; mov Rq(scratch), i
);
scratch
}
Value::Temp(reg) => reg,
}
}
macro_rules! commutative_binop {
($name:ident, $instr:ident, $const_fallback:expr) => {
pub fn $name(ctx: &mut Context) {
let op0 = pop_i32(ctx);
let op1 = pop_i32(ctx);
if let Some(i1) = op1.immediate() {
if let Some(i0) = op0.immediate() {
ctx.block_state.stack.push(StackValue::Immediate($const_fallback(i1, i0)));
return;
}
}
let (op1, op0) = match op1 {
Value::Temp(reg) => (reg, op0),
_ => (into_temp_reg(ctx, op0), op1),
};
match op0.location(&ctx.locals) {
ValueLocation::Reg(reg) => {
dynasm!(ctx.asm
; $instr Rd(op1), Rd(reg)
);
}
ValueLocation::Stack(offset) => {
let offset = adjusted_offset(ctx, offset);
dynasm!(ctx.asm
; $instr Rd(op1), [rsp + offset]
);
}
ValueLocation::Immediate(offset) => {
let offset = adjusted_offset(ctx, offset);
dynasm!(ctx.asm
; $instr Rd(op1), [rsp + offset]
);
}
}
ctx.block_state.stack.push(StackValue::Temp(op1));
free_val(ctx, op0);
}
}
}
commutative_binop!(i32_add, add, |a, b| a + b);
commutative_binop!(i32_and, and, |a, b| a & b);
commutative_binop!(i32_or, or, |a, b| a | b);
commutative_binop!(i32_xor, xor, |a, b| a ^ b);
commutative_binop!(i32_mul, imul, |a, b| a * b);
pub fn i32_sub(ctx: &mut Context) {
let op0 = pop_i32(ctx);
let op1 = pop_i32(ctx);
if let Some(i1) = op1.immediate() {
if let Some(i0) = op0.immediate() {
ctx.block_state.stack.push(StackValue::Immediate(i1 - i0));
return;
}
}
let op1 = into_temp_reg(ctx, op1);
match op0.location(&ctx.locals) {
ValueLocation::Reg(reg) => {
dynasm!(ctx.asm
; sub Rd(op1), Rd(reg)
);
}
ValueLocation::Stack(offset) => {
let offset = adjusted_offset(ctx, offset);
dynasm!(ctx.asm
; sub Rd(op1), [rsp + offset]
);
}
ValueLocation::Immediate(offset) => {
let offset = adjusted_offset(ctx, offset);
dynasm!(ctx.asm
; sub Rd(op1), [rsp + offset]
);
}
}
ctx.block_state.stack.push(StackValue::Temp(op1));
free_val(ctx, op0);
}
pub fn get_local_i32(ctx: &mut Context, local_idx: u32) {
push_i32(ctx, Value::Local(local_idx));
}
// TODO: We can put locals that were spilled to the stack
// back into registers here.
pub fn set_local_i32(ctx: &mut Context, local_idx: u32) {
let val = pop_i32(ctx);
let val_loc = val.location(&ctx.locals);
let dst_loc = local_location(&ctx.locals, local_idx);
copy_value(ctx, val_loc, dst_loc);
free_val(ctx, val);
}
pub fn literal_i32(ctx: &mut Context, imm: i32) {
push_i32(ctx, Value::Immediate(imm));
}
pub fn relop_eq_i32(ctx: &mut Context) {
let right = pop_i32(ctx);
let left = pop_i32(ctx);
let result = ctx.block_state.regs.take_scratch_gpr();
if let Some(i) = left.immediate() {
match right.location(&ctx.locals) {
ValueLocation::Stack(offset) => {
let offset = adjusted_offset(ctx, offset);
dynasm!(ctx.asm
; xor Rq(result), Rq(result)
; cmp DWORD [rsp + offset], i
; sete Rb(result)
);
}
ValueLocation::Reg(rreg) => {
dynasm!(ctx.asm
; xor Rq(result), Rq(result)
; cmp Rd(rreg), i
; sete Rb(result)
);
}
ValueLocation::Immediate(right) => {
let is_equal = if i == right { 1i8 } else { 0 };
dynasm!(ctx.asm
; mov Rb(result), is_equal
);
}
}
} else {
let lreg = into_reg(ctx, left);
match right.location(&ctx.locals) {
ValueLocation::Stack(offset) => {
let offset = adjusted_offset(ctx, offset);
dynasm!(ctx.asm
; xor Rq(result), Rq(result)
; cmp Rd(lreg), [rsp + offset]
; sete Rb(result)
);
}
ValueLocation::Reg(rreg) => {
dynasm!(ctx.asm
; xor Rq(result), Rq(result)
; cmp Rd(lreg), Rd(rreg)
; sete Rb(result)
);
}
ValueLocation::Immediate(i) => {
dynasm!(ctx.asm
; xor Rq(result), Rq(result)
; cmp Rd(lreg), i
; sete Rb(result)
);
}
}
}
push_i32(ctx, Value::Temp(result));
free_val(ctx, left);
free_val(ctx, right);
}
/// Pops i32 predicate and branches to the specified label
/// if the predicate is equal to zero.
pub fn pop_and_breq(ctx: &mut Context, label: Label) {
let val = pop_i32(ctx);
let predicate = into_temp_reg(ctx, val);
dynasm!(ctx.asm
; test Rd(predicate), Rd(predicate)
; je =>label.0
);
ctx.block_state.regs.release_scratch_gpr(predicate);
}
/// Branch unconditionally to the specified label.
pub fn br(ctx: &mut Context, label: Label) {
dynasm!(ctx.asm
; jmp =>label.0
);
}
pub fn prepare_return_value(ctx: &mut Context) {
pop_i32_into(ctx, ValueLocation::Reg(RAX));
}
fn copy_value(ctx: &mut Context, src: ValueLocation, dst: ValueLocation) {
match (src, dst) {
(ValueLocation::Stack(in_offset), ValueLocation::Stack(out_offset)) => {
let in_offset = adjusted_offset(ctx, in_offset);
let out_offset = adjusted_offset(ctx, out_offset);
if in_offset != out_offset {
let gpr = ctx.block_state.regs.take_scratch_gpr();
dynasm!(ctx.asm
; mov Rq(gpr), [rsp + in_offset]
; mov [rsp + out_offset], Rq(gpr)
);
ctx.block_state.regs.release_scratch_gpr(gpr);
}
}
(ValueLocation::Reg(in_reg), ValueLocation::Stack(out_offset)) => {
let out_offset = adjusted_offset(ctx, out_offset);
dynasm!(ctx.asm
; mov [rsp + out_offset], Rq(in_reg)
);
}
(ValueLocation::Immediate(i), ValueLocation::Stack(out_offset)) => {
let out_offset = adjusted_offset(ctx, out_offset);
dynasm!(ctx.asm
; mov DWORD [rsp + out_offset], i
);
}
(ValueLocation::Stack(in_offset), ValueLocation::Reg(out_reg)) => {
let in_offset = adjusted_offset(ctx, in_offset);
dynasm!(ctx.asm
; mov Rq(out_reg), [rsp + in_offset]
);
}
(ValueLocation::Reg(in_reg), ValueLocation::Reg(out_reg)) => {
if in_reg != out_reg {
dynasm!(ctx.asm
; mov Rq(out_reg), Rq(in_reg)
);
}
}
(ValueLocation::Immediate(i), ValueLocation::Reg(out_reg)) => {
dynasm!(ctx.asm
; mov Rq(out_reg), i
);
}
(_, ValueLocation::Immediate(_)) => panic!("Tried to copy to an immediate value!"),
}
}
#[must_use]
pub struct CallCleanup {
restore_registers: Vec<GPR>,
stack_depth: i32,
}
/// Make sure that any argument registers that will be used by the call are free
/// by storing them to the stack.
///
/// Unfortunately, we can't elide this store if we're just passing arguments on
/// because these registers are caller-saved and so the callee can use them as
/// scratch space.
fn free_arg_registers(ctx: &mut Context, count: u32) {
if count == 0 {
return;
}
for i in 0..ctx.locals.locs.len() {
match ctx.locals.locs[i] {
ValueLocation::Reg(reg) => {
if ARGS_IN_GPRS.contains(&reg) {
let offset = adjusted_offset(ctx, (i as u32 * WORD_SIZE) as _);
dynasm!(ctx.asm
; mov [rsp + offset], Rq(reg)
);
ctx.locals.locs[i] = ValueLocation::Stack(offset);
}
}
_ => {}
}
}
}
fn free_return_register(ctx: &mut Context, count: u32) {
if count == 0 {
return;
}
for stack_val in &mut ctx.block_state.stack {
match stack_val.location(&ctx.locals) {
// For now it's impossible for a local to be in RAX but that might be
// possible in the future, so we check both cases.
Some(ValueLocation::Reg(RAX)) => {
let scratch = ctx.block_state.regs.take_scratch_gpr();
dynasm!(ctx.asm
; mov Rq(scratch), rax
);
*stack_val = StackValue::Temp(scratch);
}
_ => {}
}
}
}
// TODO: Use `ArrayVec`?
/// Saves volatile (i.e. caller-saved) registers before a function call, if they are used.
fn save_volatile(ctx: &mut Context) -> Vec<GPR> {
let mut out = vec![];
// TODO: If there are no `StackValue::Pop`s that need to be popped
// before we reach our `Temp` value, we can set the `StackValue`
// for the register to be restored to `StackValue::Pop` (and
// release the register!) instead of restoring it.
for &reg in SCRATCH_REGS.iter() {
if !ctx.block_state.regs.is_free(reg) {
dynasm!(ctx.asm
; push Rq(reg)
);
out.push(reg);
}
}
out
}
/// Write the arguments to the callee to the registers and the stack using the SystemV
/// calling convention.
fn pass_outgoing_args(ctx: &mut Context, arity: u32) -> CallCleanup {
let num_stack_args = (arity as usize).saturating_sub(ARGS_IN_GPRS.len()) as i32;
let out = CallCleanup {
stack_depth: num_stack_args,
restore_registers: save_volatile(ctx),
};
// We pop stack arguments first - arguments are RTL
if num_stack_args > 0 {
let size = num_stack_args * WORD_SIZE as i32;
// Reserve space for the outgoing stack arguments (so we don't
// stomp on any locals or the value stack).
dynasm!(ctx.asm
; sub rsp, size
);
ctx.block_state.depth.reserve(num_stack_args as u32);
for stack_slot in (0..num_stack_args).rev() {
// Since the stack offset is from the bottom of the locals
// and we want to start from the actual RSP (so `offset = 0`
// writes to `[rsp]`), we subtract our current depth.
//
// We might want to do this in the future by having a separate
// `AbsoluteValueLocation` and `RelativeValueLocation`.
let offset =
stack_slot * WORD_SIZE as i32 - ctx.block_state.depth.0 as i32 * WORD_SIZE as i32;
pop_i32_into(ctx, ValueLocation::Stack(offset));
}
}
for reg in ARGS_IN_GPRS[..(arity as usize).min(ARGS_IN_GPRS.len())]
.iter()
.rev()
{
pop_i32_into(ctx, ValueLocation::Reg(*reg));
}
out
}
/// Frees up the stack space used for stack-passed arguments and restores the value
/// of volatile (i.e. caller-saved) registers to the state that they were in before
/// the call.
fn post_call_cleanup(ctx: &mut Context, mut cleanup: CallCleanup) {
if cleanup.stack_depth > 0 {
let size = cleanup.stack_depth * WORD_SIZE as i32;
dynasm!(ctx.asm
; add rsp, size
);
}
for reg in cleanup.restore_registers.drain(..).rev() {
dynasm!(ctx.asm
; pop Rq(reg)
);
}
}
/// Call a function with the given index
pub fn call_direct(ctx: &mut Context, index: u32, arg_arity: u32, return_arity: u32) {
assert!(
return_arity == 0 || return_arity == 1,
"We don't support multiple return yet"
);
free_arg_registers(ctx, arg_arity);
free_return_register(ctx, return_arity);
let cleanup = pass_outgoing_args(ctx, arg_arity);
let label = &ctx.func_starts[index as usize].1;
dynasm!(ctx.asm
; call =>*label
);
post_call_cleanup(ctx, cleanup);
}
// TODO: Reserve space to store RBX, RBP, and R12..R15 so we can use them
// as scratch registers
// TODO: Allow use of unused argument registers as scratch registers.
/// Writes the function prologue and stores the arguments as locals
pub fn start_function(ctx: &mut Context, arguments: u32, locals: u32) {
let reg_args = &ARGS_IN_GPRS[..(arguments as usize).min(ARGS_IN_GPRS.len())];
// We need space to store the register arguments if we need to call a function
// and overwrite these registers so we add `reg_args.len()`
let locals = locals + reg_args.len() as u32;
// Align stack slots to the nearest even number. This is required
// by x86-64 ABI.
let aligned_stack_slots = (locals + 1) & !1;
let framesize: i32 = aligned_stack_slots as i32 * WORD_SIZE as i32;
ctx.locals.locs = reg_args
.iter()
.cloned()
.map(ValueLocation::Reg)
.chain(
(0..arguments.saturating_sub(ARGS_IN_GPRS.len() as _))
// We add 2 here because 1 stack slot is used for the stack pointer and another is
// used for the return address. It's a magic number but there's not really a way
// around this.
.map(|arg_i| ValueLocation::Stack(((arg_i + 2) * WORD_SIZE) as i32 + framesize)),
)
.collect();
dynasm!(ctx.asm
; push rbp
; mov rbp, rsp
);
if framesize > 0 {
dynasm!(ctx.asm
; sub rsp, framesize
);
}
}
/// Writes the function epilogue, restoring the stack pointer and returning to the
/// caller.
pub fn epilogue(ctx: &mut Context) {
// We don't need to clean up the stack - RSP is restored and
// the calling function has its own register stack and will
// stomp on the registers from our stack if necessary.
dynasm!(ctx.asm
; mov rsp, rbp
; pop rbp
; ret
);
}
pub fn trap(ctx: &mut Context) {
dynasm!(ctx.asm
; ud2
);
}