Files
wasmtime/cranelift/frontend/src/ssa.rs
Trevor Elliott b58a197d33 cranelift: Add a conditional branch instruction with two targets (#5446)
Add a conditional branch instruction with two targets: brif. This instruction will eventually replace brz and brnz, as it encompasses the behavior of both.

This PR also changes the InstructionData layout for instruction formats that hold BlockCall values, taking the same approach we use for Value arguments. This allows branch_destination to return a slice to the BlockCall values held in the instruction, rather than requiring that we pattern match on InstructionData to fetch the then/else blocks.

Function generation for fuzzing has been updated to generate uses of brif, and I've run the cranelift-fuzzgen target locally for hours without triggering any new failures.
2023-01-24 14:37:16 -08:00

1412 lines
56 KiB
Rust

//! A SSA-building API that handles incomplete CFGs.
//!
//! The algorithm is based upon Braun M., Buchwald S., Hack S., Leißa R., Mallon C.,
//! Zwinkau A. (2013) Simple and Efficient Construction of Static Single Assignment Form.
//! In: Jhala R., De Bosschere K. (eds) Compiler Construction. CC 2013.
//! Lecture Notes in Computer Science, vol 7791. Springer, Berlin, Heidelberg
//!
//! <https://link.springer.com/content/pdf/10.1007/978-3-642-37051-9_6.pdf>
use crate::Variable;
use alloc::vec::Vec;
use core::convert::TryInto;
use core::mem;
use cranelift_codegen::cursor::{Cursor, FuncCursor};
use cranelift_codegen::entity::{EntityList, EntitySet, ListPool, SecondaryMap};
use cranelift_codegen::ir::immediates::{Ieee32, Ieee64};
use cranelift_codegen::ir::instructions::BranchInfo;
use cranelift_codegen::ir::types::{F32, F64, I128, I64};
use cranelift_codegen::ir::{
Block, Function, Inst, InstBuilder, InstructionData, JumpTableData, Type, Value,
};
use cranelift_codegen::packed_option::PackedOption;
/// Structure containing the data relevant the construction of SSA for a given function.
///
/// The parameter struct `Variable` corresponds to the way variables are represented in the
/// non-SSA language you're translating from.
///
/// The SSA building relies on information about the variables used and defined.
///
/// This SSA building module allows you to def and use variables on the fly while you are
/// constructing the CFG, no need for a separate SSA pass after the CFG is completed.
///
/// A basic block is said _filled_ if all the instruction that it contains have been translated,
/// and it is said _sealed_ if all of its predecessors have been declared. Only filled predecessors
/// can be declared.
#[derive(Default)]
pub struct SSABuilder {
// TODO: Consider a sparse representation rather than SecondaryMap-of-SecondaryMap.
/// Records for every variable and for every relevant block, the last definition of
/// the variable in the block.
variables: SecondaryMap<Variable, SecondaryMap<Block, PackedOption<Value>>>,
/// Records the position of the basic blocks and the list of values used but not defined in the
/// block.
ssa_blocks: SecondaryMap<Block, SSABlockData>,
/// Call stack for use in the `use_var`/`predecessors_lookup` state machine.
calls: Vec<Call>,
/// Result stack for use in the `use_var`/`predecessors_lookup` state machine.
results: Vec<Value>,
/// Side effects accumulated in the `use_var`/`predecessors_lookup` state machine.
side_effects: SideEffects,
/// Reused storage for cycle-detection.
visited: EntitySet<Block>,
/// Storage for pending variable definitions.
variable_pool: ListPool<Variable>,
/// Storage for predecessor definitions.
inst_pool: ListPool<Inst>,
}
/// Side effects of a `use_var` or a `seal_block` method call.
#[derive(Default)]
pub struct SideEffects {
/// When we want to append jump arguments to a `br_table` instruction, the critical edge is
/// splitted and the newly created `Block`s are signaled here.
pub split_blocks_created: Vec<Block>,
/// When a variable is used but has never been defined before (this happens in the case of
/// unreachable code), a placeholder `iconst` or `fconst` value is added to the right `Block`.
/// This field signals if it is the case and return the `Block` to which the initialization has
/// been added.
pub instructions_added_to_blocks: Vec<Block>,
}
impl SideEffects {
fn is_empty(&self) -> bool {
self.split_blocks_created.is_empty() && self.instructions_added_to_blocks.is_empty()
}
}
#[derive(Clone)]
enum Sealed {
No {
// List of current Block arguments for which an earlier def has not been found yet.
undef_variables: EntityList<Variable>,
},
Yes,
}
impl Default for Sealed {
fn default() -> Self {
Sealed::No {
undef_variables: EntityList::new(),
}
}
}
#[derive(Clone, Default)]
struct SSABlockData {
// The predecessors of the Block with the block and branch instruction.
predecessors: EntityList<Inst>,
// A block is sealed if all of its predecessors have been declared.
sealed: Sealed,
// If this block is sealed and it has exactly one predecessor, this is that predecessor.
single_predecessor: PackedOption<Block>,
}
impl SSABuilder {
/// Clears a `SSABuilder` from all its data, letting it in a pristine state without
/// deallocating memory.
pub fn clear(&mut self) {
self.variables.clear();
self.ssa_blocks.clear();
self.variable_pool.clear();
self.inst_pool.clear();
debug_assert!(self.calls.is_empty());
debug_assert!(self.results.is_empty());
debug_assert!(self.side_effects.is_empty());
}
/// Tests whether an `SSABuilder` is in a cleared state.
pub fn is_empty(&self) -> bool {
self.variables.is_empty()
&& self.ssa_blocks.is_empty()
&& self.calls.is_empty()
&& self.results.is_empty()
&& self.side_effects.is_empty()
}
}
/// States for the `use_var`/`predecessors_lookup` state machine.
enum Call {
UseVar(Inst),
FinishPredecessorsLookup(Value, Block),
}
/// Emit instructions to produce a zero value in the given type.
fn emit_zero(ty: Type, mut cur: FuncCursor) -> Value {
if ty == I128 {
let zero = cur.ins().iconst(I64, 0);
cur.ins().uextend(I128, zero)
} else if ty.is_int() {
cur.ins().iconst(ty, 0)
} else if ty == F32 {
cur.ins().f32const(Ieee32::with_bits(0))
} else if ty == F64 {
cur.ins().f64const(Ieee64::with_bits(0))
} else if ty.is_ref() {
cur.ins().null(ty)
} else if ty.is_vector() {
let scalar_ty = ty.lane_type();
if scalar_ty.is_int() {
let zero = cur.func.dfg.constants.insert(
core::iter::repeat(0)
.take(ty.bytes().try_into().unwrap())
.collect(),
);
cur.ins().vconst(ty, zero)
} else if scalar_ty == F32 {
let scalar = cur.ins().f32const(Ieee32::with_bits(0));
cur.ins().splat(ty, scalar)
} else if scalar_ty == F64 {
let scalar = cur.ins().f64const(Ieee64::with_bits(0));
cur.ins().splat(ty, scalar)
} else {
panic!("unimplemented scalar type: {:?}", ty)
}
} else {
panic!("unimplemented type: {:?}", ty)
}
}
/// The following methods are the API of the SSA builder. Here is how it should be used when
/// translating to Cranelift IR:
///
/// - for each basic block, create a corresponding data for SSA construction with `declare_block`;
///
/// - while traversing a basic block and translating instruction, use `def_var` and `use_var`
/// to record definitions and uses of variables, these methods will give you the corresponding
/// SSA values;
///
/// - when all the instructions in a basic block have translated, the block is said _filled_ and
/// only then you can add it as a predecessor to other blocks with `declare_block_predecessor`;
///
/// - when you have constructed all the predecessor to a basic block,
/// call `seal_block` on it with the `Function` that you are building.
///
/// This API will give you the correct SSA values to use as arguments of your instructions,
/// as well as modify the jump instruction and `Block` parameters to account for the SSA
/// Phi functions.
///
impl SSABuilder {
/// Declares a new definition of a variable in a given basic block.
/// The SSA value is passed as an argument because it should be created with
/// `ir::DataFlowGraph::append_result`.
pub fn def_var(&mut self, var: Variable, val: Value, block: Block) {
self.variables[var][block] = PackedOption::from(val);
}
/// Declares a use of a variable in a given basic block. Returns the SSA value corresponding
/// to the current SSA definition of this variable and a list of newly created Blocks that
/// are the results of critical edge splitting for `br_table` with arguments.
///
/// If the variable has never been defined in this blocks or recursively in its predecessors,
/// this method will silently create an initializer with `iconst` or `fconst`. You are
/// responsible for making sure that you initialize your variables.
pub fn use_var(
&mut self,
func: &mut Function,
var: Variable,
ty: Type,
block: Block,
) -> (Value, SideEffects) {
debug_assert!(self.calls.is_empty());
debug_assert!(self.results.is_empty());
debug_assert!(self.side_effects.is_empty());
// Prepare the 'calls' and 'results' stacks for the state machine.
self.use_var_nonlocal(func, var, ty, block);
let value = self.run_state_machine(func, var, ty);
let side_effects = mem::take(&mut self.side_effects);
(value, side_effects)
}
/// Resolve the minimal SSA Value of `var` in `block` by traversing predecessors.
///
/// This function sets up state for `run_state_machine()` but does not execute it.
fn use_var_nonlocal(&mut self, func: &mut Function, var: Variable, ty: Type, mut block: Block) {
// First, try Local Value Numbering (Algorithm 1 in the paper).
// If the variable already has a known Value in this block, use that.
if let Some(val) = self.variables[var][block].expand() {
self.results.push(val);
return;
}
// Otherwise, use Global Value Numbering (Algorithm 2 in the paper).
// This resolves the Value with respect to its predecessors.
// Find the most recent definition of `var`, and the block the definition comes from.
let (val, from) = self.find_var(func, var, ty, block);
// The `from` block returned from `find_var` is guaranteed to be on the path we follow by
// traversing only single-predecessor edges. It might be equal to `block` if there is no
// such path, but in that case `find_var` ensures that the variable is defined in this block
// by a new block parameter. It also might be somewhere in a cycle, but even then this loop
// will terminate the first time it encounters that block, rather than continuing around the
// cycle forever.
//
// Why is it okay to copy the definition to all intervening blocks? For the initial block,
// this may not be the final definition of this variable within this block, but if we've
// gotten here then we know there is no earlier definition in the block already.
//
// For the remaining blocks: Recall that a block is only allowed to be set as a predecessor
// after all its instructions have already been filled in, so when we follow a predecessor
// edge to a block, we know there will never be any more local variable definitions added to
// that block. We also know that `find_var` didn't find a definition for this variable in
// any of the blocks before `from`.
//
// So in either case there is no definition in these blocks yet and we can blindly set one.
let var_defs = &mut self.variables[var];
while block != from {
debug_assert!(var_defs[block].is_none());
var_defs[block] = PackedOption::from(val);
block = self.ssa_blocks[block].single_predecessor.unwrap();
}
}
/// Find the most recent definition of this variable, returning both the definition and the
/// block in which it was found. If we can't find a definition that's provably the right one for
/// all paths to the current block, then append a block parameter to some block and use that as
/// the definition. Either way, also arrange that the definition will be on the `results` stack
/// when `run_state_machine` is done processing the current step.
///
/// If a block has exactly one predecessor, and the block is sealed so we know its predecessors
/// will never change, then its definition for this variable is the same as the definition from
/// that one predecessor. In this case it's easy to see that no block parameter is necessary,
/// but we need to look at the predecessor to see if a block parameter might be needed there.
/// That holds transitively across any chain of sealed blocks with exactly one predecessor each.
///
/// This runs into a problem, though, if such a chain has a cycle: Blindly following a cyclic
/// chain that never defines this variable would lead to an infinite loop in the compiler. It
/// doesn't really matter what code we generate in that case. Since each block in the cycle has
/// exactly one predecessor, there's no way to enter the cycle from the function's entry block;
/// and since all blocks in the cycle are sealed, the entire cycle is permanently dead code. But
/// we still have to prevent the possibility of an infinite loop.
///
/// To break cycles, we can pick any block within the cycle as the one where we'll add a block
/// parameter. It's convenient to pick the block at which we entered the cycle, because that's
/// the first place where we can detect that we just followed a cycle. Adding a block parameter
/// gives us a definition we can reuse throughout the rest of the cycle.
fn find_var(
&mut self,
func: &mut Function,
var: Variable,
ty: Type,
mut block: Block,
) -> (Value, Block) {
// Try to find an existing definition along single-predecessor edges first.
self.visited.clear();
let var_defs = &mut self.variables[var];
while let Some(pred) = self.ssa_blocks[block].single_predecessor.expand() {
if !self.visited.insert(block) {
break;
}
block = pred;
if let Some(val) = var_defs[block].expand() {
self.results.push(val);
return (val, block);
}
}
// We've promised to return the most recent block where `var` was defined, but we didn't
// find a usable definition. So create one.
let val = func.dfg.append_block_param(block, ty);
var_defs[block] = PackedOption::from(val);
// Now every predecessor needs to pass its definition of this variable to the newly added
// block parameter. To do that we have to "recursively" call `use_var`, but there are two
// problems with doing that. First, we need to keep a fixed bound on stack depth, so we
// can't actually recurse; instead we defer to `run_state_machine`. Second, if we don't
// know all our predecessors yet, we have to defer this work until the block gets sealed.
match &mut self.ssa_blocks[block].sealed {
// Once all the `calls` added here complete, this leaves either `val` or an equivalent
// definition on the `results` stack.
Sealed::Yes => self.begin_predecessors_lookup(val, block),
Sealed::No { undef_variables } => {
undef_variables.push(var, &mut self.variable_pool);
self.results.push(val);
}
}
(val, block)
}
/// Declares a new basic block to construct corresponding data for SSA construction.
/// No predecessors are declared here and the block is not sealed.
/// Predecessors have to be added with `declare_block_predecessor`.
pub fn declare_block(&mut self, block: Block) {
// Ensure the block exists so seal_all_blocks will see it even if no predecessors or
// variables get declared for this block. But don't assign anything to it:
// SecondaryMap automatically sets all blocks to `default()`.
let _ = &mut self.ssa_blocks[block];
}
/// Declares a new predecessor for a `Block` and record the branch instruction
/// of the predecessor that leads to it.
///
/// The precedent `Block` must be filled before added as predecessor.
/// Note that you must provide no jump arguments to the branch
/// instruction when you create it since `SSABuilder` will fill them for you.
///
/// Callers are expected to avoid adding the same predecessor more than once in the case
/// of a jump table.
pub fn declare_block_predecessor(&mut self, block: Block, inst: Inst) {
debug_assert!(!self.is_sealed(block));
self.ssa_blocks[block]
.predecessors
.push(inst, &mut self.inst_pool);
}
/// Remove a previously declared Block predecessor by giving a reference to the jump
/// instruction. Returns the basic block containing the instruction.
///
/// Note: use only when you know what you are doing, this might break the SSA building problem
pub fn remove_block_predecessor(&mut self, block: Block, inst: Inst) {
debug_assert!(!self.is_sealed(block));
let data = &mut self.ssa_blocks[block];
let pred = data
.predecessors
.as_slice(&self.inst_pool)
.iter()
.position(|&branch| branch == inst)
.expect("the predecessor you are trying to remove is not declared");
data.predecessors.swap_remove(pred, &mut self.inst_pool);
}
/// Completes the global value numbering for a `Block`, all of its predecessors having been
/// already sealed.
///
/// This method modifies the function's `Layout` by adding arguments to the `Block`s to
/// take into account the Phi function placed by the SSA algorithm.
///
/// Returns the list of newly created blocks for critical edge splitting.
pub fn seal_block(&mut self, block: Block, func: &mut Function) -> SideEffects {
debug_assert!(
!self.is_sealed(block),
"Attempting to seal {} which is already sealed.",
block
);
self.seal_one_block(block, func);
mem::take(&mut self.side_effects)
}
/// Completes the global value numbering for all unsealed `Block`s in `func`.
///
/// It's more efficient to seal `Block`s as soon as possible, during
/// translation, but for frontends where this is impractical to do, this
/// function can be used at the end of translating all blocks to ensure
/// that everything is sealed.
pub fn seal_all_blocks(&mut self, func: &mut Function) -> SideEffects {
// Seal all `Block`s currently in the function. This can entail splitting
// and creation of new blocks, however such new blocks are sealed on
// the fly, so we don't need to account for them here.
for block in self.ssa_blocks.keys() {
self.seal_one_block(block, func);
}
mem::take(&mut self.side_effects)
}
/// Helper function for `seal_block` and `seal_all_blocks`.
fn seal_one_block(&mut self, block: Block, func: &mut Function) {
// For each undef var we look up values in the predecessors and create a block parameter
// only if necessary.
let mut undef_variables =
match mem::replace(&mut self.ssa_blocks[block].sealed, Sealed::Yes) {
Sealed::No { undef_variables } => undef_variables,
Sealed::Yes => return,
};
let ssa_params = undef_variables.len(&self.variable_pool);
let predecessors = self.predecessors(block);
if predecessors.len() == 1 {
let pred = func.layout.inst_block(predecessors[0]).unwrap();
self.ssa_blocks[block].single_predecessor = PackedOption::from(pred);
}
// Note that begin_predecessors_lookup requires visiting these variables in the same order
// that they were defined by find_var, because it appends arguments to the jump instructions
// in all the predecessor blocks one variable at a time.
for idx in 0..ssa_params {
let var = undef_variables.get(idx, &self.variable_pool).unwrap();
// We need the temporary Value that was assigned to this Variable. If that Value shows
// up as a result from any of our predecessors, then it never got assigned on the loop
// through that block. We get the value from the next block param, where it was first
// allocated in find_var.
let block_params = func.dfg.block_params(block);
// On each iteration through this loop, there are (ssa_params - idx) undefined variables
// left to process. Previous iterations through the loop may have removed earlier block
// parameters, but the last (ssa_params - idx) block parameters always correspond to the
// remaining undefined variables. So index from the end of the current block params.
let val = block_params[block_params.len() - (ssa_params - idx)];
debug_assert!(self.calls.is_empty());
debug_assert!(self.results.is_empty());
// self.side_effects may be non-empty here so that callers can
// accumulate side effects over multiple calls.
self.begin_predecessors_lookup(val, block);
self.run_state_machine(func, var, func.dfg.value_type(val));
}
undef_variables.clear(&mut self.variable_pool);
}
/// Given the local SSA Value of a Variable in a Block, perform a recursive lookup on
/// predecessors to determine if it is redundant with another Value earlier in the CFG.
///
/// If such a Value exists and is redundant, the local Value is replaced by the
/// corresponding non-local Value. If the original Value was a Block parameter,
/// the parameter may be removed if redundant. Parameters are placed eagerly by callers
/// to avoid infinite loops when looking up a Value for a Block that is in a CFG loop.
///
/// Doing this lookup for each Value in each Block preserves SSA form during construction.
///
/// ## Arguments
///
/// `sentinel` is a dummy Block parameter inserted by `use_var_nonlocal()`.
/// Its purpose is to allow detection of CFG cycles while traversing predecessors.
fn begin_predecessors_lookup(&mut self, sentinel: Value, dest_block: Block) {
self.calls
.push(Call::FinishPredecessorsLookup(sentinel, dest_block));
// Iterate over the predecessors.
self.calls.extend(
self.ssa_blocks[dest_block]
.predecessors
.as_slice(&self.inst_pool)
.iter()
.rev()
.copied()
.map(Call::UseVar),
);
}
/// Examine the values from the predecessors and compute a result value, creating
/// block parameters as needed.
fn finish_predecessors_lookup(
&mut self,
func: &mut Function,
sentinel: Value,
var: Variable,
dest_block: Block,
) -> Value {
// Determine how many predecessors are yielding unique, non-temporary Values. If a variable
// is live and unmodified across several control-flow join points, earlier blocks will
// introduce aliases for that variable's definition, so we resolve aliases eagerly here to
// ensure that we can tell when the same definition has reached this block via multiple
// paths. Doing so also detects cyclic references to the sentinel, which can occur in
// unreachable code.
let num_predecessors = self.predecessors(dest_block).len();
// When this `Drain` is dropped, these elements will get truncated.
let results = self.results.drain(self.results.len() - num_predecessors..);
let pred_val = {
let mut iter = results
.as_slice()
.iter()
.map(|&val| func.dfg.resolve_aliases(val))
.filter(|&val| val != sentinel);
if let Some(val) = iter.next() {
// This variable has at least one non-temporary definition. If they're all the same
// value, we can remove the block parameter and reference that value instead.
if iter.all(|other| other == val) {
Some(val)
} else {
None
}
} else {
// The variable is used but never defined before. This is an irregularity in the
// code, but rather than throwing an error we silently initialize the variable to
// 0. This will have no effect since this situation happens in unreachable code.
if !func.layout.is_block_inserted(dest_block) {
func.layout.append_block(dest_block);
}
self.side_effects
.instructions_added_to_blocks
.push(dest_block);
let zero = emit_zero(
func.dfg.value_type(sentinel),
FuncCursor::new(func).at_first_insertion_point(dest_block),
);
Some(zero)
}
};
if let Some(pred_val) = pred_val {
// Here all the predecessors use a single value to represent our variable
// so we don't need to have it as a block argument.
// We need to replace all the occurrences of val with pred_val but since
// we can't afford a re-writing pass right now we just declare an alias.
func.dfg.remove_block_param(sentinel);
func.dfg.change_to_alias(sentinel, pred_val);
pred_val
} else {
// There is disagreement in the predecessors on which value to use so we have
// to keep the block argument.
let mut preds = self.ssa_blocks[dest_block].predecessors;
let var_defs = &mut self.variables[var];
for (idx, &val) in results.as_slice().iter().enumerate() {
let pred = preds.get_mut(idx, &mut self.inst_pool).unwrap();
let branch = *pred;
if let Some((new_block, new_branch)) =
Self::append_jump_argument(func, branch, dest_block, val)
{
*pred = new_branch;
let old_block = func.layout.inst_block(branch).unwrap();
self.ssa_blocks[new_block] = SSABlockData {
predecessors: EntityList::from_slice(&[branch], &mut self.inst_pool),
sealed: Sealed::Yes,
single_predecessor: PackedOption::from(old_block),
};
var_defs[new_block] = PackedOption::from(val);
self.side_effects.split_blocks_created.push(new_block);
}
}
sentinel
}
}
/// Appends a jump argument to a jump instruction, returns block created in case of
/// critical edge splitting.
fn append_jump_argument(
func: &mut Function,
branch: Inst,
dest_block: Block,
val: Value,
) -> Option<(Block, Inst)> {
match func.dfg.analyze_branch(branch) {
BranchInfo::NotABranch => {
panic!("you have declared a non-branch instruction as a predecessor to a block");
}
// For a single destination appending a jump argument to the instruction
// is sufficient.
BranchInfo::SingleDest(_) => {
let dfg = &mut func.dfg;
for dest in dfg.insts[branch].branch_destination_mut() {
dest.append_argument(val, &mut dfg.value_lists);
}
None
}
BranchInfo::Conditional(_, _) => {
let dfg = &mut func.dfg;
for block in dfg.insts[branch].branch_destination_mut() {
if block.block(&dfg.value_lists) == dest_block {
block.append_argument(val, &mut dfg.value_lists);
}
}
None
}
BranchInfo::Table(mut jt, _default_block) => {
// In the case of a jump table, the situation is tricky because br_table doesn't
// support arguments. We have to split the critical edge.
let middle_block = func.dfg.make_block();
func.layout.append_block(middle_block);
let table = &func.jump_tables[jt];
let mut copied = JumpTableData::with_capacity(table.len());
let mut changed = false;
for &destination in table.iter() {
if destination == dest_block {
copied.push_entry(middle_block);
changed = true;
} else {
copied.push_entry(destination);
}
}
if changed {
jt = func.create_jump_table(copied);
}
// Redo the match from `analyze_branch` but this time capture mutable references
match &mut func.dfg.insts[branch] {
InstructionData::BranchTable {
destination, table, ..
} => {
if *destination == dest_block {
*destination = middle_block;
}
*table = jt;
}
_ => unreachable!(),
}
let mut cur = FuncCursor::new(func).at_bottom(middle_block);
let middle_jump_inst = cur.ins().jump(dest_block, &[val]);
Some((middle_block, middle_jump_inst))
}
}
}
/// Returns the list of `Block`s that have been declared as predecessors of the argument.
fn predecessors(&self, block: Block) -> &[Inst] {
self.ssa_blocks[block]
.predecessors
.as_slice(&self.inst_pool)
}
/// Returns whether the given Block has any predecessor or not.
pub fn has_any_predecessors(&self, block: Block) -> bool {
!self.predecessors(block).is_empty()
}
/// Returns `true` if and only if `seal_block` has been called on the argument.
pub fn is_sealed(&self, block: Block) -> bool {
matches!(self.ssa_blocks[block].sealed, Sealed::Yes)
}
/// The main algorithm is naturally recursive: when there's a `use_var` in a
/// block with no corresponding local defs, it recurses and performs a
/// `use_var` in each predecessor. To avoid risking running out of callstack
/// space, we keep an explicit stack and use a small state machine rather
/// than literal recursion.
fn run_state_machine(&mut self, func: &mut Function, var: Variable, ty: Type) -> Value {
// Process the calls scheduled in `self.calls` until it is empty.
while let Some(call) = self.calls.pop() {
match call {
Call::UseVar(branch) => {
let block = func.layout.inst_block(branch).unwrap();
self.use_var_nonlocal(func, var, ty, block);
}
Call::FinishPredecessorsLookup(sentinel, dest_block) => {
let val = self.finish_predecessors_lookup(func, sentinel, var, dest_block);
self.results.push(val);
}
}
}
debug_assert_eq!(self.results.len(), 1);
self.results.pop().unwrap()
}
}
#[cfg(test)]
mod tests {
use crate::ssa::SSABuilder;
use crate::Variable;
use cranelift_codegen::cursor::{Cursor, FuncCursor};
use cranelift_codegen::entity::EntityRef;
use cranelift_codegen::ir::instructions::BranchInfo;
use cranelift_codegen::ir::types::*;
use cranelift_codegen::ir::{Function, Inst, InstBuilder, JumpTableData, Opcode};
use cranelift_codegen::settings;
use cranelift_codegen::verify_function;
#[test]
fn simple_block() {
let mut func = Function::new();
let mut ssa = SSABuilder::default();
let block0 = func.dfg.make_block();
// Here is the pseudo-program we want to translate:
// block0:
// x = 1;
// y = 2;
// z = x + y;
// z = x + z;
ssa.declare_block(block0);
let x_var = Variable::new(0);
let x_ssa = {
let mut cur = FuncCursor::new(&mut func);
cur.insert_block(block0);
cur.ins().iconst(I32, 1)
};
ssa.def_var(x_var, x_ssa, block0);
let y_var = Variable::new(1);
let y_ssa = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iconst(I32, 2)
};
ssa.def_var(y_var, y_ssa, block0);
assert_eq!(ssa.use_var(&mut func, x_var, I32, block0).0, x_ssa);
assert_eq!(ssa.use_var(&mut func, y_var, I32, block0).0, y_ssa);
let z_var = Variable::new(2);
let x_use1 = ssa.use_var(&mut func, x_var, I32, block0).0;
let y_use1 = ssa.use_var(&mut func, y_var, I32, block0).0;
let z1_ssa = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iadd(x_use1, y_use1)
};
ssa.def_var(z_var, z1_ssa, block0);
assert_eq!(ssa.use_var(&mut func, z_var, I32, block0).0, z1_ssa);
let x_use2 = ssa.use_var(&mut func, x_var, I32, block0).0;
let z_use1 = ssa.use_var(&mut func, z_var, I32, block0).0;
let z2_ssa = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iadd(x_use2, z_use1)
};
ssa.def_var(z_var, z2_ssa, block0);
assert_eq!(ssa.use_var(&mut func, z_var, I32, block0).0, z2_ssa);
}
#[test]
fn sequence_of_blocks() {
let mut func = Function::new();
let mut ssa = SSABuilder::default();
let block0 = func.dfg.make_block();
let block1 = func.dfg.make_block();
let block2 = func.dfg.make_block();
// Here is the pseudo-program we want to translate:
// block0:
// x = 1;
// y = 2;
// z = x + y;
// brnz y, block1;
// jump block1;
// block1:
// z = x + z;
// jump block2;
// block2:
// y = x + y;
{
let mut cur = FuncCursor::new(&mut func);
cur.insert_block(block0);
cur.insert_block(block1);
cur.insert_block(block2);
}
// block0
ssa.declare_block(block0);
ssa.seal_block(block0, &mut func);
let x_var = Variable::new(0);
let x_ssa = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iconst(I32, 1)
};
ssa.def_var(x_var, x_ssa, block0);
let y_var = Variable::new(1);
let y_ssa = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iconst(I32, 2)
};
ssa.def_var(y_var, y_ssa, block0);
let z_var = Variable::new(2);
let x_use1 = ssa.use_var(&mut func, x_var, I32, block0).0;
let y_use1 = ssa.use_var(&mut func, y_var, I32, block0).0;
let z1_ssa = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iadd(x_use1, y_use1)
};
ssa.def_var(z_var, z1_ssa, block0);
let y_use2 = ssa.use_var(&mut func, y_var, I32, block0).0;
let brnz_block0_block2: Inst = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().brnz(y_use2, block2, &[])
};
let jump_block0_block1: Inst = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().jump(block1, &[])
};
assert_eq!(ssa.use_var(&mut func, x_var, I32, block0).0, x_ssa);
assert_eq!(ssa.use_var(&mut func, y_var, I32, block0).0, y_ssa);
assert_eq!(ssa.use_var(&mut func, z_var, I32, block0).0, z1_ssa);
// block1
ssa.declare_block(block1);
ssa.declare_block_predecessor(block1, jump_block0_block1);
ssa.seal_block(block1, &mut func);
let x_use2 = ssa.use_var(&mut func, x_var, I32, block1).0;
let z_use1 = ssa.use_var(&mut func, z_var, I32, block1).0;
let z2_ssa = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
cur.ins().iadd(x_use2, z_use1)
};
ssa.def_var(z_var, z2_ssa, block1);
let jump_block1_block2: Inst = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
cur.ins().jump(block2, &[])
};
assert_eq!(x_use2, x_ssa);
assert_eq!(z_use1, z1_ssa);
assert_eq!(ssa.use_var(&mut func, z_var, I32, block1).0, z2_ssa);
// block2
ssa.declare_block(block2);
ssa.declare_block_predecessor(block2, brnz_block0_block2);
ssa.declare_block_predecessor(block2, jump_block1_block2);
ssa.seal_block(block2, &mut func);
let x_use3 = ssa.use_var(&mut func, x_var, I32, block2).0;
let y_use3 = ssa.use_var(&mut func, y_var, I32, block2).0;
let y2_ssa = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
cur.ins().iadd(x_use3, y_use3)
};
ssa.def_var(y_var, y2_ssa, block2);
assert_eq!(x_ssa, x_use3);
assert_eq!(y_ssa, y_use3);
match func.dfg.analyze_branch(brnz_block0_block2) {
BranchInfo::SingleDest(dest) => {
assert_eq!(dest.block(&func.dfg.value_lists), block2);
assert_eq!(dest.args_slice(&func.dfg.value_lists).len(), 0);
}
_ => assert!(false),
};
match func.dfg.analyze_branch(jump_block0_block1) {
BranchInfo::SingleDest(dest) => {
assert_eq!(dest.block(&func.dfg.value_lists), block1);
assert_eq!(dest.args_slice(&func.dfg.value_lists).len(), 0);
}
_ => assert!(false),
};
match func.dfg.analyze_branch(jump_block1_block2) {
BranchInfo::SingleDest(dest) => {
assert_eq!(dest.block(&func.dfg.value_lists), block2);
assert_eq!(dest.args_slice(&func.dfg.value_lists).len(), 0);
}
_ => assert!(false),
};
}
#[test]
fn program_with_loop() {
let mut func = Function::new();
let mut ssa = SSABuilder::default();
let block0 = func.dfg.make_block();
let block1 = func.dfg.make_block();
let block2 = func.dfg.make_block();
let block3 = func.dfg.make_block();
{
let mut cur = FuncCursor::new(&mut func);
cur.insert_block(block0);
cur.insert_block(block1);
cur.insert_block(block2);
cur.insert_block(block3);
}
// Here is the pseudo-program we want to translate:
// block0:
// x = 1;
// y = 2;
// z = x + y;
// jump block1
// block1:
// z = z + y;
// brnz y, block3;
// jump block2;
// block2:
// z = z - x;
// return y
// block3:
// y = y - x
// jump block1
// block0
ssa.declare_block(block0);
ssa.seal_block(block0, &mut func);
let x_var = Variable::new(0);
let x1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iconst(I32, 1)
};
ssa.def_var(x_var, x1, block0);
let y_var = Variable::new(1);
let y1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iconst(I32, 2)
};
ssa.def_var(y_var, y1, block0);
let z_var = Variable::new(2);
let x2 = ssa.use_var(&mut func, x_var, I32, block0).0;
let y2 = ssa.use_var(&mut func, y_var, I32, block0).0;
let z1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iadd(x2, y2)
};
ssa.def_var(z_var, z1, block0);
let jump_block0_block1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().jump(block1, &[])
};
assert_eq!(ssa.use_var(&mut func, x_var, I32, block0).0, x1);
assert_eq!(ssa.use_var(&mut func, y_var, I32, block0).0, y1);
assert_eq!(x2, x1);
assert_eq!(y2, y1);
// block1
ssa.declare_block(block1);
ssa.declare_block_predecessor(block1, jump_block0_block1);
let z2 = ssa.use_var(&mut func, z_var, I32, block1).0;
let y3 = ssa.use_var(&mut func, y_var, I32, block1).0;
let z3 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
cur.ins().iadd(z2, y3)
};
ssa.def_var(z_var, z3, block1);
let y4 = ssa.use_var(&mut func, y_var, I32, block1).0;
assert_eq!(y4, y3);
let brnz_block1_block3 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
cur.ins().brnz(y4, block3, &[])
};
let jump_block1_block2 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
cur.ins().jump(block2, &[])
};
// block2
ssa.declare_block(block2);
ssa.declare_block_predecessor(block2, jump_block1_block2);
ssa.seal_block(block2, &mut func);
let z4 = ssa.use_var(&mut func, z_var, I32, block2).0;
assert_eq!(z4, z3);
let x3 = ssa.use_var(&mut func, x_var, I32, block2).0;
let z5 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
cur.ins().isub(z4, x3)
};
ssa.def_var(z_var, z5, block2);
let y5 = ssa.use_var(&mut func, y_var, I32, block2).0;
assert_eq!(y5, y3);
{
let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
cur.ins().return_(&[y5])
};
// block3
ssa.declare_block(block3);
ssa.declare_block_predecessor(block3, brnz_block1_block3);
ssa.seal_block(block3, &mut func);
let y6 = ssa.use_var(&mut func, y_var, I32, block3).0;
assert_eq!(y6, y3);
let x4 = ssa.use_var(&mut func, x_var, I32, block3).0;
assert_eq!(x4, x3);
let y7 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block3);
cur.ins().isub(y6, x4)
};
ssa.def_var(y_var, y7, block3);
let jump_block3_block1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block3);
cur.ins().jump(block1, &[])
};
// block1 after all predecessors have been visited.
ssa.declare_block_predecessor(block1, jump_block3_block1);
ssa.seal_block(block1, &mut func);
assert_eq!(func.dfg.block_params(block1)[0], z2);
assert_eq!(func.dfg.block_params(block1)[1], y3);
assert_eq!(func.dfg.resolve_aliases(x3), x1);
}
#[test]
fn br_table_with_args() {
// This tests the on-demand splitting of critical edges for br_table with jump arguments
//
// Here is the pseudo-program we want to translate:
//
// function %f {
// jt = jump_table [block2, block1]
// block0:
// x = 1;
// br_table x, block2, jt
// block1:
// x = 2
// jump block2
// block2:
// x = x + 1
// return
// }
let mut func = Function::new();
let mut ssa = SSABuilder::default();
let block0 = func.dfg.make_block();
let block1 = func.dfg.make_block();
let block2 = func.dfg.make_block();
let mut jump_table = JumpTableData::new();
jump_table.push_entry(block2);
jump_table.push_entry(block1);
{
let mut cur = FuncCursor::new(&mut func);
cur.insert_block(block0);
cur.insert_block(block1);
cur.insert_block(block2);
}
// block0
let x1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iconst(I32, 1)
};
ssa.declare_block(block0);
ssa.seal_block(block0, &mut func);
let x_var = Variable::new(0);
ssa.def_var(x_var, x1, block0);
ssa.use_var(&mut func, x_var, I32, block0).0;
let br_table = {
let jt = func.create_jump_table(jump_table);
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().br_table(x1, block2, jt)
};
// block1
ssa.declare_block(block1);
ssa.declare_block_predecessor(block1, br_table);
ssa.seal_block(block1, &mut func);
let x2 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
cur.ins().iconst(I32, 2)
};
ssa.def_var(x_var, x2, block1);
let jump_block1_block2 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
cur.ins().jump(block2, &[])
};
// block2
ssa.declare_block(block2);
ssa.declare_block_predecessor(block2, jump_block1_block2);
ssa.declare_block_predecessor(block2, br_table);
ssa.seal_block(block2, &mut func);
let x3 = ssa.use_var(&mut func, x_var, I32, block2).0;
let x4 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
cur.ins().iadd_imm(x3, 1)
};
ssa.def_var(x_var, x4, block2);
{
let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
cur.ins().return_(&[])
};
let flags = settings::Flags::new(settings::builder());
match verify_function(&func, &flags) {
Ok(()) => {}
Err(_errors) => {
#[cfg(feature = "std")]
panic!("{}", _errors);
#[cfg(not(feature = "std"))]
panic!("function failed to verify");
}
}
}
#[test]
fn undef_values_reordering() {
// Here is the pseudo-program we want to translate:
// block0:
// x = 0;
// y = 1;
// z = 2;
// jump block1;
// block1:
// x = z + x;
// y = y - x;
// jump block1;
//
let mut func = Function::new();
let mut ssa = SSABuilder::default();
let block0 = func.dfg.make_block();
let block1 = func.dfg.make_block();
{
let mut cur = FuncCursor::new(&mut func);
cur.insert_block(block0);
cur.insert_block(block1);
}
// block0
ssa.declare_block(block0);
let x_var = Variable::new(0);
ssa.seal_block(block0, &mut func);
let x1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iconst(I32, 0)
};
ssa.def_var(x_var, x1, block0);
let y_var = Variable::new(1);
let y1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iconst(I32, 1)
};
ssa.def_var(y_var, y1, block0);
let z_var = Variable::new(2);
let z1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().iconst(I32, 2)
};
ssa.def_var(z_var, z1, block0);
let jump_block0_block1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().jump(block1, &[])
};
// block1
ssa.declare_block(block1);
ssa.declare_block_predecessor(block1, jump_block0_block1);
let z2 = ssa.use_var(&mut func, z_var, I32, block1).0;
assert_eq!(func.dfg.block_params(block1)[0], z2);
let x2 = ssa.use_var(&mut func, x_var, I32, block1).0;
assert_eq!(func.dfg.block_params(block1)[1], x2);
let x3 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
cur.ins().iadd(x2, z2)
};
ssa.def_var(x_var, x3, block1);
let x4 = ssa.use_var(&mut func, x_var, I32, block1).0;
let y3 = ssa.use_var(&mut func, y_var, I32, block1).0;
assert_eq!(func.dfg.block_params(block1)[2], y3);
let y4 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
cur.ins().isub(y3, x4)
};
ssa.def_var(y_var, y4, block1);
let jump_block1_block1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
cur.ins().jump(block1, &[])
};
ssa.declare_block_predecessor(block1, jump_block1_block1);
ssa.seal_block(block1, &mut func);
// At sealing the "z" argument disappear but the remaining "x" and "y" args have to be
// in the right order.
assert_eq!(func.dfg.block_params(block1)[1], y3);
assert_eq!(func.dfg.block_params(block1)[0], x2);
}
#[test]
fn undef() {
// Use vars of various types which have not been defined.
let mut func = Function::new();
let mut ssa = SSABuilder::default();
let block0 = func.dfg.make_block();
ssa.declare_block(block0);
ssa.seal_block(block0, &mut func);
let i32_var = Variable::new(0);
let f32_var = Variable::new(1);
let f64_var = Variable::new(2);
let i8_var = Variable::new(3);
let f32x4_var = Variable::new(4);
ssa.use_var(&mut func, i32_var, I32, block0);
ssa.use_var(&mut func, f32_var, F32, block0);
ssa.use_var(&mut func, f64_var, F64, block0);
ssa.use_var(&mut func, i8_var, I8, block0);
ssa.use_var(&mut func, f32x4_var, F32X4, block0);
assert_eq!(func.dfg.num_block_params(block0), 0);
}
#[test]
fn undef_in_entry() {
// Use a var which has not been defined. The search should hit the
// top of the entry block, and then fall back to inserting an iconst.
let mut func = Function::new();
let mut ssa = SSABuilder::default();
let block0 = func.dfg.make_block();
ssa.declare_block(block0);
ssa.seal_block(block0, &mut func);
let x_var = Variable::new(0);
assert_eq!(func.dfg.num_block_params(block0), 0);
ssa.use_var(&mut func, x_var, I32, block0);
assert_eq!(func.dfg.num_block_params(block0), 0);
assert_eq!(
func.dfg.insts[func.layout.first_inst(block0).unwrap()].opcode(),
Opcode::Iconst
);
}
#[test]
fn undef_in_entry_sealed_after() {
// Use a var which has not been defined, but the block is not sealed
// until afterward. Before sealing, the SSA builder should insert an
// block param; after sealing, it should be removed.
let mut func = Function::new();
let mut ssa = SSABuilder::default();
let block0 = func.dfg.make_block();
ssa.declare_block(block0);
let x_var = Variable::new(0);
assert_eq!(func.dfg.num_block_params(block0), 0);
ssa.use_var(&mut func, x_var, I32, block0);
assert_eq!(func.dfg.num_block_params(block0), 1);
ssa.seal_block(block0, &mut func);
assert_eq!(func.dfg.num_block_params(block0), 0);
assert_eq!(
func.dfg.insts[func.layout.first_inst(block0).unwrap()].opcode(),
Opcode::Iconst
);
}
#[test]
fn unreachable_use() {
// Here is the pseudo-program we want to translate:
// block0:
// return;
// block1:
// brz x, block1;
// jump block1;
let mut func = Function::new();
let mut ssa = SSABuilder::default();
let block0 = func.dfg.make_block();
let block1 = func.dfg.make_block();
{
let mut cur = FuncCursor::new(&mut func);
cur.insert_block(block0);
cur.insert_block(block1);
}
// block0
ssa.declare_block(block0);
ssa.seal_block(block0, &mut func);
{
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().return_(&[]);
}
// block1
ssa.declare_block(block1);
{
let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
let x_var = Variable::new(0);
let x_val = ssa.use_var(&mut cur.func, x_var, I32, block1).0;
let brz = cur.ins().brz(x_val, block1, &[]);
let jump_block1_block1 = cur.ins().jump(block1, &[]);
ssa.declare_block_predecessor(block1, brz);
ssa.declare_block_predecessor(block1, jump_block1_block1);
}
ssa.seal_block(block1, &mut func);
let flags = settings::Flags::new(settings::builder());
match verify_function(&func, &flags) {
Ok(()) => {}
Err(_errors) => {
#[cfg(feature = "std")]
panic!("{}", _errors);
#[cfg(not(feature = "std"))]
panic!("function failed to verify");
}
}
}
#[test]
fn unreachable_use_with_multiple_preds() {
// Here is the pseudo-program we want to translate:
// block0:
// return;
// block1:
// brz x, block2;
// jump block1;
// block2:
// jump block1;
let mut func = Function::new();
let mut ssa = SSABuilder::default();
let block0 = func.dfg.make_block();
let block1 = func.dfg.make_block();
let block2 = func.dfg.make_block();
{
let mut cur = FuncCursor::new(&mut func);
cur.insert_block(block0);
cur.insert_block(block1);
cur.insert_block(block2);
}
// block0
ssa.declare_block(block0);
ssa.seal_block(block0, &mut func);
{
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
cur.ins().return_(&[]);
}
// block1
ssa.declare_block(block1);
let brz = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
let x_var = Variable::new(0);
let x_val = ssa.use_var(&mut cur.func, x_var, I32, block1).0;
let brz = cur.ins().brz(x_val, block2, &[]);
let jump_block1_block1 = cur.ins().jump(block1, &[]);
ssa.declare_block_predecessor(block1, jump_block1_block1);
brz
};
// block2
ssa.declare_block(block2);
ssa.declare_block_predecessor(block2, brz);
ssa.seal_block(block2, &mut func);
let jump_block2_block1 = {
let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
cur.ins().jump(block1, &[])
};
// seal block1
ssa.declare_block_predecessor(block1, jump_block2_block1);
ssa.seal_block(block1, &mut func);
let flags = settings::Flags::new(settings::builder());
match verify_function(&func, &flags) {
Ok(()) => {}
Err(_errors) => {
#[cfg(feature = "std")]
panic!("{}", _errors);
#[cfg(not(feature = "std"))]
panic!("function failed to verify");
}
}
}
#[test]
fn reassign_with_predecessor_loop_hangs() {
// Here is the pseudo-program we want to translate:
// block0:
// var0 = iconst 0
// return;
// block1:
// jump block2;
// block2:
// ; phantom use of var0
// var0 = iconst 1
// jump block1;
let mut func = Function::new();
let mut ssa = SSABuilder::default();
let block0 = func.dfg.make_block();
let block1 = func.dfg.make_block();
let block2 = func.dfg.make_block();
let var0 = Variable::new(0);
{
let mut cur = FuncCursor::new(&mut func);
for block in [block0, block1, block2] {
cur.insert_block(block);
ssa.declare_block(block);
}
}
// block0
{
let mut cur = FuncCursor::new(&mut func).at_bottom(block0);
let var0_iconst = cur.ins().iconst(I32, 0);
ssa.def_var(var0, var0_iconst, block0);
cur.ins().return_(&[]);
}
// block1
{
let mut cur = FuncCursor::new(&mut func).at_bottom(block1);
let jump = cur.ins().jump(block2, &[]);
ssa.declare_block_predecessor(block2, jump);
}
// block2
{
let mut cur = FuncCursor::new(&mut func).at_bottom(block2);
let _ = ssa.use_var(&mut cur.func, var0, I32, block2).0;
let var0_iconst = cur.ins().iconst(I32, 1);
ssa.def_var(var0, var0_iconst, block2);
let jump = cur.ins().jump(block1, &[]);
ssa.declare_block_predecessor(block1, jump);
}
// The sealing algorithm would enter a infinite loop here
ssa.seal_all_blocks(&mut func);
}
}