Files
wasmtime/cranelift/src/libreader/parser.rs
Jakob Stoklund Olesen b4525a329b Ignore comments in .cton files.
The lexer still recognizes comments and generates tokens for them. They may be
useful for test annotations at some point.
2016-07-05 12:51:02 -07:00

865 lines
31 KiB
Rust

// ====--------------------------------------------------------------------------------------====//
//
// Parser for .cton files.
//
// ====--------------------------------------------------------------------------------------====//
use std::collections::HashMap;
use std::result;
use std::fmt::{self, Display, Formatter, Write};
use std::u32;
use lexer::{self, Lexer, Token};
use cretonne::types::{Type, VOID, FunctionName, Signature, ArgumentType, ArgumentExtension};
use cretonne::immediates::{Imm64, Ieee32, Ieee64};
use cretonne::entities::*;
use cretonne::instructions::{Opcode, InstructionFormat, InstructionData};
use cretonne::repr::{Function, StackSlotData};
pub use lexer::Location;
/// A parse error is returned when the parse failed.
#[derive(Debug)]
pub struct Error {
pub location: Location,
pub message: String,
}
impl Display for Error {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{}: {}", self.location.line_number, self.message)
}
}
pub type Result<T> = result::Result<T, Error>;
// Create an `Err` variant of `Result<X>` from a location and `format!` args.
macro_rules! err {
( $loc:expr, $msg:expr ) => {
Err(Error {
location: $loc.clone(),
message: String::from($msg),
})
};
( $loc:expr, $fmt:expr, $( $arg:expr ),+ ) => {
Err(Error {
location: $loc.clone(),
message: format!( $fmt, $( $arg ),+ ),
})
};
}
pub struct Parser<'a> {
lex: Lexer<'a>,
lex_error: Option<lexer::Error>,
// Current lookahead token.
lookahead: Option<Token<'a>>,
// Location of lookahead.
loc: Location,
}
// Context for resolving references when parsing a single function.
//
// Many entities like values, stack slots, and function signatures are referenced in the `.cton`
// file by number. We need to map these numbers to real references.
struct Context {
function: Function,
stack_slots: HashMap<u32, StackSlot>, // ssNN
ebbs: HashMap<Ebb, Ebb>, // ebbNN
values: HashMap<Value, Value>, // vNN, vxNN
}
impl Context {
fn new(f: Function) -> Context {
Context {
function: f,
stack_slots: HashMap::new(),
ebbs: HashMap::new(),
values: HashMap::new(),
}
}
// Allocate a new stack slot and add a mapping number -> StackSlot.
fn add_ss(&mut self, number: u32, data: StackSlotData, loc: &Location) -> Result<()> {
if self.stack_slots.insert(number, self.function.make_stack_slot(data)).is_some() {
err!(loc, "duplicate stack slot: ss{}", number)
} else {
Ok(())
}
}
// Allocate a new EBB and add a mapping src_ebb -> Ebb.
fn add_ebb(&mut self, src_ebb: Ebb, loc: &Location) -> Result<Ebb> {
let ebb = self.function.make_ebb();
if self.ebbs.insert(src_ebb, ebb).is_some() {
err!(loc, "duplicate EBB: {}", src_ebb)
} else {
Ok(ebb)
}
}
// Add a value mapping src_val -> data.
fn add_value(&mut self, src_val: Value, data: Value, loc: &Location) -> Result<()> {
if self.values.insert(src_val, data).is_some() {
err!(loc, "duplicate value: {}", src_val)
} else {
Ok(())
}
}
}
impl<'a> Parser<'a> {
/// Create a new `Parser` which reads `text`. The referenced text must outlive the parser.
pub fn new(text: &'a str) -> Parser {
Parser {
lex: Lexer::new(text),
lex_error: None,
lookahead: None,
loc: Location { line_number: 0 },
}
}
/// Parse the entire string into a list of functions.
pub fn parse(text: &'a str) -> Result<Vec<Function>> {
Self::new(text).parse_function_list()
}
// Consume the current lookahead token and return it.
fn consume(&mut self) -> Token<'a> {
self.lookahead.take().expect("No token to consume")
}
// Get the current lookahead token, after making sure there is one.
fn token(&mut self) -> Option<Token<'a>> {
while self.lookahead == None {
match self.lex.next() {
Some(Ok(lexer::LocatedToken { token, location })) => {
match token {
Token::Comment(_) => {
// Ignore comments.
}
_ => self.lookahead = Some(token),
}
self.loc = location;
}
Some(Err(lexer::LocatedError { error, location })) => {
self.lex_error = Some(error);
self.loc = location;
break;
}
None => break,
}
}
return self.lookahead;
}
// Match and consume a token without payload.
fn match_token(&mut self, want: Token<'a>, err_msg: &str) -> Result<Token<'a>> {
if self.token() == Some(want) {
Ok(self.consume())
} else {
err!(self.loc, err_msg)
}
}
// If the next token is a `want`, consume it, otherwise do nothing.
fn optional(&mut self, want: Token<'a>) -> bool {
if self.token() == Some(want) {
self.consume();
true
} else {
false
}
}
// Match and consume a specific identifier string.
// Used for pseudo-keywords like "stack_slot" that only appear in certain contexts.
fn match_identifier(&mut self, want: &'static str, err_msg: &str) -> Result<Token<'a>> {
if self.token() == Some(Token::Identifier(want)) {
Ok(self.consume())
} else {
err!(self.loc, err_msg)
}
}
// Match and consume a type.
fn match_type(&mut self, err_msg: &str) -> Result<Type> {
if let Some(Token::Type(t)) = self.token() {
self.consume();
Ok(t)
} else {
err!(self.loc, err_msg)
}
}
// Match and consume a stack slot reference.
fn match_ss(&mut self, err_msg: &str) -> Result<u32> {
if let Some(Token::StackSlot(ss)) = self.token() {
self.consume();
Ok(ss)
} else {
err!(self.loc, err_msg)
}
}
// Match and consume an ebb reference.
fn match_ebb(&mut self, err_msg: &str) -> Result<Ebb> {
if let Some(Token::Ebb(ebb)) = self.token() {
self.consume();
Ok(ebb)
} else {
err!(self.loc, err_msg)
}
}
// Match and consume a value reference, direct or vtable.
// This does not convert from the source value numbering to our in-memory value numbering.
fn match_value(&mut self, err_msg: &str) -> Result<Value> {
if let Some(Token::Value(v)) = self.token() {
self.consume();
Ok(v)
} else {
err!(self.loc, err_msg)
}
}
fn error(&self, message: &str) -> Error {
Error {
location: self.loc.clone(),
message: message.to_string(),
}
}
// Match and consume an Imm64 immediate.
fn match_imm64(&mut self, err_msg: &str) -> Result<Imm64> {
if let Some(Token::Integer(text)) = self.token() {
self.consume();
// Lexer just gives us raw text that looks like an integer.
// Parse it as an Imm64 to check for overflow and other issues.
text.parse().map_err(|e| self.error(e))
} else {
err!(self.loc, err_msg)
}
}
// Match and consume an Ieee32 immediate.
fn match_ieee32(&mut self, err_msg: &str) -> Result<Ieee32> {
if let Some(Token::Float(text)) = self.token() {
self.consume();
// Lexer just gives us raw text that looks like a float.
// Parse it as an Ieee32 to check for the right number of digits and other issues.
text.parse().map_err(|e| self.error(e))
} else {
err!(self.loc, err_msg)
}
}
// Match and consume an Ieee64 immediate.
fn match_ieee64(&mut self, err_msg: &str) -> Result<Ieee64> {
if let Some(Token::Float(text)) = self.token() {
self.consume();
// Lexer just gives us raw text that looks like a float.
// Parse it as an Ieee64 to check for the right number of digits and other issues.
text.parse().map_err(|e| self.error(e))
} else {
err!(self.loc, err_msg)
}
}
/// Parse a list of function definitions.
///
/// This is the top-level parse function matching the whole contents of a file.
pub fn parse_function_list(&mut self) -> Result<Vec<Function>> {
let mut list = Vec::new();
while self.token().is_some() {
list.push(try!(self.parse_function()));
}
Ok(list)
}
// Parse a whole function definition.
//
// function ::= * function-spec "{" preamble function-body "}"
//
fn parse_function(&mut self) -> Result<Function> {
let (name, sig) = try!(self.parse_function_spec());
let mut ctx = Context::new(Function::with_name_signature(name, sig));
// function ::= function-spec * "{" preamble function-body "}"
try!(self.match_token(Token::LBrace, "expected '{' before function body"));
// function ::= function-spec "{" * preamble function-body "}"
try!(self.parse_preamble(&mut ctx));
// function ::= function-spec "{" preamble * function-body "}"
try!(self.parse_function_body(&mut ctx));
// function ::= function-spec "{" preamble function-body * "}"
try!(self.match_token(Token::RBrace, "expected '}' after function body"));
Ok(ctx.function)
}
// Parse a function spec.
//
// function-spec ::= * "function" name signature
//
fn parse_function_spec(&mut self) -> Result<(FunctionName, Signature)> {
try!(self.match_token(Token::Function, "expected 'function' keyword"));
// function-spec ::= "function" * name signature
let name = try!(self.parse_function_name());
// function-spec ::= "function" name * signature
let sig = try!(self.parse_signature());
Ok((name, sig))
}
// Parse a function name.
//
// function ::= "function" * name signature { ... }
//
fn parse_function_name(&mut self) -> Result<String> {
match self.token() {
Some(Token::Identifier(s)) => {
self.consume();
Ok(s.to_string())
}
_ => err!(self.loc, "expected function name"),
}
}
// Parse a function signature.
//
// signature ::= * "(" [arglist] ")" ["->" retlist] [call_conv]
//
fn parse_signature(&mut self) -> Result<Signature> {
let mut sig = Signature::new();
try!(self.match_token(Token::LPar, "expected function signature: ( args... )"));
// signature ::= "(" * [arglist] ")" ["->" retlist] [call_conv]
if self.token() != Some(Token::RPar) {
sig.argument_types = try!(self.parse_argument_list());
}
try!(self.match_token(Token::RPar, "expected ')' after function arguments"));
if self.optional(Token::Arrow) {
sig.return_types = try!(self.parse_argument_list());
}
// TBD: calling convention.
Ok(sig)
}
// Parse list of function argument / return value types.
//
// arglist ::= * arg { "," arg }
//
fn parse_argument_list(&mut self) -> Result<Vec<ArgumentType>> {
let mut list = Vec::new();
// arglist ::= * arg { "," arg }
list.push(try!(self.parse_argument_type()));
// arglist ::= arg * { "," arg }
while self.optional(Token::Comma) {
// arglist ::= arg { "," * arg }
list.push(try!(self.parse_argument_type()));
}
Ok(list)
}
// Parse a single argument type with flags.
fn parse_argument_type(&mut self) -> Result<ArgumentType> {
// arg ::= * type { flag }
let mut arg = ArgumentType::new(try!(self.match_type("expected argument type")));
// arg ::= type * { flag }
while let Some(Token::Identifier(s)) = self.token() {
match s {
"uext" => arg.extension = ArgumentExtension::Uext,
"sext" => arg.extension = ArgumentExtension::Sext,
"inreg" => arg.inreg = true,
_ => break,
}
self.consume();
}
Ok(arg)
}
// Parse the function preamble.
//
// preamble ::= * { preamble-decl }
// preamble-decl ::= * stack-slot-decl
// * function-decl
// * signature-decl
//
// The parsed decls are added to `ctx` rather than returned.
fn parse_preamble(&mut self, ctx: &mut Context) -> Result<()> {
loop {
try!(match self.token() {
Some(Token::StackSlot(..)) => {
self.parse_stack_slot_decl()
.and_then(|(num, dat)| ctx.add_ss(num, dat, &self.loc))
}
// More to come..
_ => return Ok(()),
});
}
}
// Parse a stack slot decl, add to `func`.
//
// stack-slot-decl ::= * StackSlot(ss) "=" "stack_slot" Bytes {"," stack-slot-flag}
fn parse_stack_slot_decl(&mut self) -> Result<(u32, StackSlotData)> {
let number = try!(self.match_ss("expected stack slot number: ss«n»"));
try!(self.match_token(Token::Equal, "expected '=' in stack_slot decl"));
try!(self.match_identifier("stack_slot", "expected 'stack_slot'"));
// stack-slot-decl ::= StackSlot(ss) "=" "stack_slot" * Bytes {"," stack-slot-flag}
let bytes = try!(self.match_imm64("expected byte-size in stack_slot decl")).to_bits();
if bytes > u32::MAX as u64 {
return err!(self.loc, "stack slot too large");
}
let data = StackSlotData::new(bytes as u32);
// TBD: stack-slot-decl ::= StackSlot(ss) "=" "stack_slot" Bytes * {"," stack-slot-flag}
Ok((number, data))
}
// Parse a function body, add contents to `ctx`.
//
// function-body ::= * { extended-basic-block }
//
fn parse_function_body(&mut self, ctx: &mut Context) -> Result<()> {
while self.token() != Some(Token::RBrace) {
try!(self.parse_extended_basic_block(ctx));
}
Ok(())
}
// Parse an extended basic block, add contents to `ctx`.
//
// extended-basic-block ::= * ebb-header { instruction }
// ebb-header ::= ["entry"] Ebb(ebb) [ebb-args] ":"
//
fn parse_extended_basic_block(&mut self, ctx: &mut Context) -> Result<()> {
let is_entry = self.optional(Token::Entry);
let ebb_num = try!(self.match_ebb("expected EBB header"));
let ebb = try!(ctx.add_ebb(ebb_num, &self.loc));
if is_entry {
if ctx.function.entry_block != NO_EBB {
return err!(self.loc, "multiple entry blocks in function");
}
ctx.function.entry_block = ebb;
}
if !self.optional(Token::Colon) {
// ebb-header ::= ["entry"] Ebb(ebb) [ * ebb-args ] ":"
try!(self.parse_ebb_args(ctx, ebb));
try!(self.match_token(Token::Colon, "expected ':' after EBB arguments"));
}
// extended-basic-block ::= ebb-header * { instruction }
while match self.token() {
Some(Token::Value(_)) => true,
Some(Token::Identifier(_)) => true,
_ => false,
} {
try!(self.parse_instruction(ctx, ebb));
}
Ok(())
}
// Parse parenthesized list of EBB arguments. Returns a vector of (u32, Type) pairs with the
// source vx numbers of the defined values and the defined types.
//
// ebb-args ::= * "(" ebb-arg { "," ebb-arg } ")"
fn parse_ebb_args(&mut self, ctx: &mut Context, ebb: Ebb) -> Result<()> {
// ebb-args ::= * "(" ebb-arg { "," ebb-arg } ")"
try!(self.match_token(Token::LPar, "expected '(' before EBB arguments"));
// ebb-args ::= "(" * ebb-arg { "," ebb-arg } ")"
try!(self.parse_ebb_arg(ctx, ebb));
// ebb-args ::= "(" ebb-arg * { "," ebb-arg } ")"
while self.optional(Token::Comma) {
// ebb-args ::= "(" ebb-arg { "," * ebb-arg } ")"
try!(self.parse_ebb_arg(ctx, ebb));
}
// ebb-args ::= "(" ebb-arg { "," ebb-arg } * ")"
try!(self.match_token(Token::RPar, "expected ')' after EBB arguments"));
Ok(())
}
// Parse a single EBB argument declaration, and append it to `ebb`.
//
// ebb-arg ::= * Value(vx) ":" Type(t)
//
fn parse_ebb_arg(&mut self, ctx: &mut Context, ebb: Ebb) -> Result<()> {
// ebb-arg ::= * Value(vx) ":" Type(t)
let vx = try!(self.match_value("EBB argument must be a value"));
let vx_location = self.loc;
// ebb-arg ::= Value(vx) * ":" Type(t)
try!(self.match_token(Token::Colon, "expected ':' after EBB argument"));
// ebb-arg ::= Value(vx) ":" * Type(t)
let t = try!(self.match_type("expected EBB argument type"));
// Allocate the EBB argument and add the mapping.
let value = ctx.function.append_ebb_arg(ebb, t);
ctx.add_value(vx, value, &vx_location)
}
// Parse an instruction, append it to `ebb`.
//
// instruction ::= [inst-results "="] Opcode(opc) ["." Type] ...
// inst-results ::= Value(v) { "," Value(vx) }
//
fn parse_instruction(&mut self, ctx: &mut Context, ebb: Ebb) -> Result<()> {
// Result value numbers.
let mut results = Vec::new();
// instruction ::= * [inst-results "="] Opcode(opc) ["." Type] ...
// inst-results ::= * Value(v) { "," Value(vx) }
if let Some(Token::Value(v)) = self.token() {
self.consume();
results.push(v);
// inst-results ::= Value(v) * { "," Value(vx) }
while self.optional(Token::Comma) {
// inst-results ::= Value(v) { "," * Value(vx) }
results.push(try!(self.match_value("expected result value")));
}
try!(self.match_token(Token::Equal, "expected '=' before opcode"));
}
// instruction ::= [inst-results "="] * Opcode(opc) ["." Type] ...
let opcode = if let Some(Token::Identifier(text)) = self.token() {
match text.parse() {
Ok(opc) => opc,
Err(msg) => return err!(self.loc, "{}: '{}'", msg, text),
}
} else {
return err!(self.loc, "expected instruction opcode");
};
self.consume();
// Look for a controlling type variable annotation.
// instruction ::= [inst-results "="] Opcode(opc) * ["." Type] ...
let explicit_ctrl_type = if self.optional(Token::Dot) {
Some(try!(self.match_type("expected type after 'opcode.'")))
} else {
None
};
// instruction ::= [inst-results "="] Opcode(opc) ["." Type] * ...
let inst_data = try!(self.parse_inst_operands(opcode));
// We're done parsing the instruction now.
//
// We still need to check that the number of result values in the source matches the opcode
// or function call signature. We also need to create values with the right type for all
// the instruction results.
let ctrl_typevar = try!(self.infer_typevar(ctx, opcode, explicit_ctrl_type, &inst_data));
let inst = ctx.function.make_inst(inst_data);
let num_results = ctx.function.make_inst_results(inst, ctrl_typevar);
ctx.function.append_inst(ebb, inst);
if results.len() != num_results {
return err!(self.loc,
"instruction produces {} result values, {} given",
num_results,
results.len());
}
// Now map the source result values to the just created instruction results.
// Pass a reference to `ctx.values` instead of `ctx` itself since the `Values` iterator
// holds a reference to `ctx.function`.
self.add_values(&mut ctx.values,
results.into_iter(),
ctx.function.inst_results(inst))
}
// Type inference for polymorphic instructions.
//
// The controlling type variable can be specified explicitly as 'splat.i32x4 v5', or it can be
// inferred from `inst_data.typevar_operand` for some opcodes.
//
// The value operands in `inst_data` are expected to use source numbering.
//
// Returns the controlling typevar for a polymorphic opcode, or `VOID` for a non-polymorphic
// opcode.
fn infer_typevar(&self,
ctx: &Context,
opcode: Opcode,
explicit_ctrl_type: Option<Type>,
inst_data: &InstructionData)
-> Result<Type> {
let constraints = opcode.constraints();
let ctrl_type = match explicit_ctrl_type {
Some(t) => t,
None => {
if constraints.use_typevar_operand() {
// This is an opcode that supports type inference, AND there was no explicit
// type specified. Look up `ctrl_value` to see if it was defined already.
// TBD: If it is defined in another block, the type should have been specified
// explicitly. It is unfortunate that the correctness of IL depends on the
// layout of the blocks.
let ctrl_src_value = inst_data.typevar_operand()
.expect("Constraints <-> Format inconsistency");
ctx.function.value_type(match ctx.values.get(&ctrl_src_value) {
Some(&v) => v,
None => {
return err!(self.loc,
"cannot determine type of operand {}",
ctrl_src_value);
}
})
} else if constraints.is_polymorphic() {
// This opcode does not support type inference, so the explicit type variable
// is required.
return err!(self.loc, "type variable required for polymorphic opcode");
} else {
// This is a non-polymorphic opcode. No typevar needed.
VOID
}
}
};
// Verify that `ctrl_type` is valid for the controlling type variable. We don't want to
// attempt deriving types from an incorrect basis.
// This is not a complete type check. The verifier does that.
if let Some(typeset) = constraints.ctrl_typeset() {
// This is a polymorphic opcode.
if !typeset.contains(ctrl_type) {
return err!(self.loc,
"{} is not a valid typevar for {}",
ctrl_type,
opcode);
}
} else {
// Treat it as a syntax error to speficy a typevar on a non-polymorphic opcode.
if ctrl_type != VOID {
return err!(self.loc, "{} does not take a typevar", opcode);
}
}
Ok(ctrl_type)
}
// Add mappings for a list of source values to their corresponding new values.
fn add_values<S, V>(&self,
values: &mut HashMap<Value, Value>,
results: S,
new_results: V)
-> Result<()>
where S: Iterator<Item = Value>,
V: Iterator<Item = Value>
{
for (src, val) in results.zip(new_results) {
if values.insert(src, val).is_some() {
return err!(self.loc, "duplicate result value: {}", src);
}
}
Ok(())
}
// Parse the operands following the instruction opcode.
// This depends on the format of the opcode.
fn parse_inst_operands(&mut self, opcode: Opcode) -> Result<InstructionData> {
Ok(match opcode.format().unwrap() {
InstructionFormat::Nullary => {
InstructionData::Nullary {
opcode: opcode,
ty: VOID,
}
}
InstructionFormat::Unary => {
InstructionData::Unary {
opcode: opcode,
ty: VOID,
arg: try!(self.match_value("expected SSA value operand")),
}
}
InstructionFormat::UnaryImm => {
InstructionData::UnaryImm {
opcode: opcode,
ty: VOID,
imm: try!(self.match_imm64("expected immediate integer operand")),
}
}
InstructionFormat::UnaryIeee32 => {
InstructionData::UnaryIeee32 {
opcode: opcode,
ty: VOID,
imm: try!(self.match_ieee32("expected immediate 32-bit float operand")),
}
}
InstructionFormat::UnaryIeee64 => {
InstructionData::UnaryIeee64 {
opcode: opcode,
ty: VOID,
imm: try!(self.match_ieee64("expected immediate 64-bit float operand")),
}
}
InstructionFormat::UnaryImmVector => {
unimplemented!();
}
InstructionFormat::Binary => {
let lhs = try!(self.match_value("expected SSA value first operand"));
try!(self.match_token(Token::Comma, "expected ',' between operands"));
let rhs = try!(self.match_value("expected SSA value second operand"));
InstructionData::Binary {
opcode: opcode,
ty: VOID,
args: [lhs, rhs],
}
}
InstructionFormat::BinaryImm => {
let lhs = try!(self.match_value("expected SSA value first operand"));
try!(self.match_token(Token::Comma, "expected ',' between operands"));
let rhs = try!(self.match_imm64("expected immediate integer second operand"));
InstructionData::BinaryImm {
opcode: opcode,
ty: VOID,
arg: lhs,
imm: rhs,
}
}
InstructionFormat::BinaryImmRev => {
let lhs = try!(self.match_imm64("expected immediate integer first operand"));
try!(self.match_token(Token::Comma, "expected ',' between operands"));
let rhs = try!(self.match_value("expected SSA value second operand"));
InstructionData::BinaryImmRev {
opcode: opcode,
ty: VOID,
imm: lhs,
arg: rhs,
}
}
InstructionFormat::BinaryOverflow => {
let lhs = try!(self.match_value("expected SSA value first operand"));
try!(self.match_token(Token::Comma, "expected ',' between operands"));
let rhs = try!(self.match_value("expected SSA value second operand"));
InstructionData::BinaryOverflow {
opcode: opcode,
ty: VOID,
second_result: NO_VALUE,
args: [lhs, rhs],
}
}
InstructionFormat::Select |
InstructionFormat::InsertLane |
InstructionFormat::ExtractLane |
InstructionFormat::Jump |
InstructionFormat::Branch |
InstructionFormat::BranchTable |
InstructionFormat::Call => {
unimplemented!();
}
})
}
}
#[cfg(test)]
mod tests {
use super::*;
use cretonne::types::{self, ArgumentType, ArgumentExtension};
#[test]
fn argument_type() {
let mut p = Parser::new("i32 sext");
let arg = p.parse_argument_type().unwrap();
assert_eq!(arg,
ArgumentType {
value_type: types::I32,
extension: ArgumentExtension::Sext,
inreg: false,
});
let Error { location, message } = p.parse_argument_type().unwrap_err();
assert_eq!(location.line_number, 1);
assert_eq!(message, "expected argument type");
}
#[test]
fn signature() {
let sig = Parser::new("()").parse_signature().unwrap();
assert_eq!(sig.argument_types.len(), 0);
assert_eq!(sig.return_types.len(), 0);
let sig2 = Parser::new("(i8 inreg uext, f32, f64) -> i32 sext, f64")
.parse_signature()
.unwrap();
assert_eq!(sig2.to_string(),
"(i8 uext inreg, f32, f64) -> i32 sext, f64");
// `void` is not recognized as a type by the lexer. It should not appear in files.
assert_eq!(Parser::new("() -> void").parse_signature().unwrap_err().to_string(),
"1: expected argument type");
assert_eq!(Parser::new("i8 -> i8").parse_signature().unwrap_err().to_string(),
"1: expected function signature: ( args... )");
assert_eq!(Parser::new("(i8 -> i8").parse_signature().unwrap_err().to_string(),
"1: expected ')' after function arguments");
}
#[test]
fn stack_slot_decl() {
let func = Parser::new("function foo() {
ss3 = stack_slot 13
ss1 = stack_slot 1
}")
.parse_function()
.unwrap();
assert_eq!(func.name, "foo");
let mut iter = func.stack_slot_iter();
let ss0 = iter.next().unwrap();
assert_eq!(ss0.to_string(), "ss0");
assert_eq!(func[ss0].size, 13);
let ss1 = iter.next().unwrap();
assert_eq!(ss1.to_string(), "ss1");
assert_eq!(func[ss1].size, 1);
assert_eq!(iter.next(), None);
// Catch duplicate definitions.
assert_eq!(Parser::new("function bar() {
ss1 = stack_slot 13
ss1 = stack_slot 1
}")
.parse_function()
.unwrap_err()
.to_string(),
"3: duplicate stack slot: ss1");
}
#[test]
fn ebb_header() {
let func = Parser::new("function ebbs() {
ebb0:
ebb4(vx3: i32):
}")
.parse_function()
.unwrap();
assert_eq!(func.name, "ebbs");
let mut ebbs = func.ebbs_numerically();
let ebb0 = ebbs.next().unwrap();
assert_eq!(func.ebb_args(ebb0).next(), None);
let ebb4 = ebbs.next().unwrap();
let mut ebb4_args = func.ebb_args(ebb4);
let arg0 = ebb4_args.next().unwrap();
assert_eq!(func.value_type(arg0), types::I32);
assert_eq!(ebb4_args.next(), None);
}
}