Files
wasmtime/cranelift/peepmatic/crates/test/src/lib.rs
Nick Fitzgerald ee5982fd16 peepmatic: Be generic over the operator type
This lets us avoid the cost of `cranelift_codegen::ir::Opcode` to
`peepmatic_runtime::Operator` conversion overhead, and paves the way for
allowing Peepmatic to support non-clif optimizations (e.g. vcode optimizations).

Rather than defining our own `peepmatic::Operator` type like we used to, now the
whole `peepmatic` crate is effectively generic over a `TOperator` type
parameter. For the Cranelift integration, we use `cranelift_codegen::ir::Opcode`
as the concrete type for our `TOperator` type parameter. For testing, we also
define a `TestOperator` type, so that we can test Peepmatic code without
building all of Cranelift, and we can keep them somewhat isolated from each
other.

The methods that `peepmatic::Operator` had are now translated into trait bounds
on the `TOperator` type. These traits need to be shared between all of
`peepmatic`, `peepmatic-runtime`, and `cranelift-codegen`'s Peepmatic
integration. Therefore, these new traits live in a new crate:
`peepmatic-traits`. This crate acts as a header file of sorts for shared
trait/type/macro definitions.

Additionally, the `peepmatic-runtime` crate no longer depends on the
`peepmatic-macro` procedural macro crate, which should lead to faster build
times for Cranelift when it is using pre-built peephole optimizers.
2020-07-17 16:16:49 -07:00

539 lines
16 KiB
Rust

//! Testing utilities and a testing-only instruction set for `peepmatic`.
#![deny(missing_debug_implementations)]
use peepmatic_runtime::{
cc::ConditionCode,
instruction_set::InstructionSet,
part::{Constant, Part},
paths::Path,
r#type::{BitWidth, Kind, Type},
};
use peepmatic_test_operator::TestOperator;
use peepmatic_traits::TypingRules;
use std::cell::RefCell;
use std::collections::BTreeMap;
use std::convert::TryFrom;
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub struct Instruction(pub usize);
#[derive(Debug)]
pub struct InstructionData {
pub operator: TestOperator,
pub r#type: Type,
pub immediates: Vec<Immediate>,
pub arguments: Vec<Instruction>,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Immediate {
Constant(Constant),
ConditionCode(ConditionCode),
}
impl Immediate {
fn unwrap_constant(&self) -> Constant {
match *self {
Immediate::Constant(c) => c,
_ => panic!("not a constant"),
}
}
}
impl From<Constant> for Immediate {
fn from(c: Constant) -> Immediate {
Immediate::Constant(c)
}
}
impl From<ConditionCode> for Immediate {
fn from(cc: ConditionCode) -> Immediate {
Immediate::ConditionCode(cc)
}
}
impl From<Immediate> for Part<Instruction> {
fn from(imm: Immediate) -> Part<Instruction> {
match imm {
Immediate::Constant(c) => Part::Constant(c),
Immediate::ConditionCode(cc) => Part::ConditionCode(cc),
}
}
}
impl TryFrom<Part<Instruction>> for Immediate {
type Error = &'static str;
fn try_from(part: Part<Instruction>) -> Result<Immediate, Self::Error> {
match part {
Part::Constant(c) => Ok(Immediate::Constant(c)),
Part::ConditionCode(c) => Ok(Immediate::ConditionCode(c)),
Part::Instruction(_) => Err("instruction parts cannot be converted into immediates"),
}
}
}
#[derive(Debug, Default)]
pub struct Program {
instr_counter: usize,
instruction_data: BTreeMap<Instruction, InstructionData>,
replacements: RefCell<BTreeMap<Instruction, Instruction>>,
}
impl Program {
/// Are `a` and `b` structurally equivalent, even if they use different
/// `Instruction`s for various arguments?
pub fn structurally_eq(&mut self, a: Instruction, b: Instruction) -> bool {
macro_rules! ensure_eq {
($a:expr, $b:expr) => {{
let a = &$a;
let b = &$b;
if a != b {
log::debug!(
"{} != {} ({:?} != {:?})",
stringify!($a),
stringify!($b),
a,
b
);
return false;
}
}};
}
let a = self.resolve(a);
let b = self.resolve(b);
if a == b {
return true;
}
let a = self.data(a);
let b = self.data(b);
log::debug!("structurally_eq({:?}, {:?})", a, b);
ensure_eq!(a.operator, b.operator);
ensure_eq!(a.r#type, b.r#type);
ensure_eq!(a.immediates, b.immediates);
ensure_eq!(a.arguments.len(), b.arguments.len());
a.arguments
.clone()
.into_iter()
.zip(b.arguments.clone().into_iter())
.all(|(a, b)| self.structurally_eq(a, b))
}
pub fn instructions(&self) -> impl Iterator<Item = (Instruction, &InstructionData)> {
self.instruction_data.iter().map(|(k, v)| (*k, v))
}
pub fn replace_instruction(&mut self, old: Instruction, new: Instruction) {
log::debug!("replacing {:?} with {:?}", old, new);
let old = self.resolve(old);
let new = self.resolve(new);
if old == new {
return;
}
let mut replacements = self.replacements.borrow_mut();
let existing_replacement = replacements.insert(old, new);
assert!(existing_replacement.is_none());
let old_data = self.instruction_data.remove(&old);
assert!(old_data.is_some());
}
pub fn resolve(&self, inst: Instruction) -> Instruction {
let mut replacements = self.replacements.borrow_mut();
let mut replacements_followed = 0;
let mut resolved = inst;
while let Some(i) = replacements.get(&resolved).cloned() {
log::trace!("resolving replaced instruction: {:?} -> {:?}", resolved, i);
replacements_followed += 1;
assert!(
replacements_followed <= replacements.len(),
"cyclic replacements"
);
resolved = i;
continue;
}
if inst != resolved {
let old_replacement = replacements.insert(inst, resolved);
assert!(old_replacement.is_some());
}
resolved
}
pub fn data(&self, inst: Instruction) -> &InstructionData {
let inst = self.resolve(inst);
&self.instruction_data[&inst]
}
pub fn new_instruction(
&mut self,
operator: TestOperator,
r#type: Type,
immediates: Vec<Immediate>,
arguments: Vec<Instruction>,
) -> Instruction {
assert_eq!(
operator.immediates_arity() as usize,
immediates.len(),
"wrong number of immediates for {:?}: expected {}, found {}",
operator,
operator.immediates_arity(),
immediates.len(),
);
assert_eq!(
operator.parameters_arity() as usize,
arguments.len(),
"wrong number of arguments for {:?}: expected {}, found {}",
operator,
operator.parameters_arity(),
arguments.len(),
);
assert!(!r#type.bit_width.is_polymorphic());
assert!(immediates.iter().all(|imm| match imm {
Immediate::Constant(Constant::Bool(_, w))
| Immediate::Constant(Constant::Int(_, w)) => !w.is_polymorphic(),
Immediate::ConditionCode(_) => true,
}));
let inst = Instruction(self.instr_counter);
self.instr_counter += 1;
let data = InstructionData {
operator,
r#type,
immediates,
arguments,
};
log::trace!("new instruction: {:?} = {:?}", inst, data);
self.instruction_data.insert(inst, data);
inst
}
pub fn r#const(&mut self, c: Constant, root_bit_width: BitWidth) -> Instruction {
assert!(!root_bit_width.is_polymorphic());
match c {
Constant::Bool(_, bit_width) => self.new_instruction(
TestOperator::Bconst,
if bit_width.is_polymorphic() {
Type {
kind: Kind::Bool,
bit_width: root_bit_width,
}
} else {
Type {
kind: Kind::Bool,
bit_width,
}
},
vec![c.into()],
vec![],
),
Constant::Int(_, bit_width) => self.new_instruction(
TestOperator::Iconst,
if bit_width.is_polymorphic() {
Type {
kind: Kind::Int,
bit_width: root_bit_width,
}
} else {
Type {
kind: Kind::Int,
bit_width,
}
},
vec![c.into()],
vec![],
),
}
}
fn instruction_to_constant(&mut self, inst: Instruction) -> Option<Constant> {
match self.data(inst) {
InstructionData {
operator: TestOperator::Iconst,
immediates,
..
} => Some(immediates[0].unwrap_constant()),
InstructionData {
operator: TestOperator::Bconst,
immediates,
..
} => Some(immediates[0].unwrap_constant()),
_ => None,
}
}
fn part_to_immediate(&mut self, part: Part<Instruction>) -> Result<Immediate, &'static str> {
match part {
Part::Instruction(i) => self
.instruction_to_constant(i)
.map(|c| c.into())
.ok_or("non-constant instructions cannot be converted into immediates"),
Part::Constant(c) => Ok(c.into()),
Part::ConditionCode(cc) => Ok(Immediate::ConditionCode(cc)),
}
}
fn part_to_instruction(
&mut self,
root: Instruction,
part: Part<Instruction>,
) -> Result<Instruction, &'static str> {
match part {
Part::Instruction(inst) => {
let inst = self.resolve(inst);
Ok(inst)
}
Part::Constant(c) => {
let root_width = self.data(root).r#type.bit_width;
Ok(self.r#const(c, root_width))
}
Part::ConditionCode(_) => Err("condition codes cannot be converted into instructions"),
}
}
}
#[derive(Debug)]
pub struct TestIsa {
pub native_word_size_in_bits: u8,
}
// Unsafe because we must ensure that `instruction_result_bit_width` never
// returns zero.
unsafe impl<'a> InstructionSet<'a> for TestIsa {
type Operator = TestOperator;
type Context = Program;
type Instruction = Instruction;
fn replace_instruction(
&self,
program: &mut Program,
old: Instruction,
new: Part<Instruction>,
) -> Instruction {
log::debug!("replace_instruction({:?}, {:?})", old, new);
let new = program.part_to_instruction(old, new).unwrap();
program.replace_instruction(old, new);
new
}
fn get_part_at_path(
&self,
program: &mut Program,
root: Instruction,
path: Path,
) -> Option<Part<Instruction>> {
log::debug!("get_part_at_path({:?})", path);
assert!(!path.0.is_empty());
assert_eq!(path.0[0], 0);
let mut part = Part::Instruction(root);
for p in &path.0[1..] {
if let Part::Instruction(inst) = part {
let data = program.data(inst);
let p = *p as usize;
if p < data.immediates.len() {
part = data.immediates[p].into();
continue;
}
if let Some(inst) = data.arguments.get(p - data.immediates.len()).copied() {
part = Part::Instruction(inst);
continue;
}
}
return None;
}
Some(part)
}
fn operator(&self, program: &mut Program, instr: Instruction) -> Option<TestOperator> {
log::debug!("operator({:?})", instr);
let data = program.data(instr);
Some(data.operator)
}
fn make_inst_1(
&self,
program: &mut Program,
root: Instruction,
operator: TestOperator,
r#type: Type,
a: Part<Instruction>,
) -> Instruction {
log::debug!(
"make_inst_1(\n\toperator = {:?},\n\ttype = {},\n\ta = {:?},\n)",
operator,
r#type,
a,
);
let (imms, args) = match operator.immediates_arity() {
0 => {
assert_eq!(operator.parameters_arity(), 1);
(vec![], vec![program.part_to_instruction(root, a).unwrap()])
}
1 => {
assert_eq!(operator.parameters_arity(), 0);
(vec![program.part_to_immediate(a).unwrap()], vec![])
}
_ => unreachable!(),
};
program.new_instruction(operator, r#type, imms, args)
}
fn make_inst_2(
&self,
program: &mut Program,
root: Instruction,
operator: TestOperator,
r#type: Type,
a: Part<Instruction>,
b: Part<Instruction>,
) -> Instruction {
log::debug!(
"make_inst_2(\n\toperator = {:?},\n\ttype = {},\n\ta = {:?},\n\tb = {:?},\n)",
operator,
r#type,
a,
b,
);
let (imms, args) = match operator.immediates_arity() {
0 => {
assert_eq!(operator.parameters_arity(), 2);
(
vec![],
vec![
program.part_to_instruction(root, a).unwrap(),
program.part_to_instruction(root, b).unwrap(),
],
)
}
1 => {
assert_eq!(operator.parameters_arity(), 1);
(
vec![program.part_to_immediate(a).unwrap()],
vec![program.part_to_instruction(root, b).unwrap()],
)
}
2 => {
assert_eq!(operator.parameters_arity(), 0);
(
vec![
program.part_to_immediate(a).unwrap(),
program.part_to_immediate(b).unwrap(),
],
vec![],
)
}
_ => unreachable!(),
};
program.new_instruction(operator, r#type, imms, args)
}
fn make_inst_3(
&self,
program: &mut Program,
root: Instruction,
operator: TestOperator,
r#type: Type,
a: Part<Instruction>,
b: Part<Instruction>,
c: Part<Instruction>,
) -> Instruction {
log::debug!(
"make_inst_3(\n\toperator = {:?},\n\ttype = {},\n\ta = {:?},\n\tb = {:?},\n\tc = {:?},\n)",
operator,
r#type,
a,
b,
c,
);
let (imms, args) = match operator.immediates_arity() {
0 => {
assert_eq!(operator.parameters_arity(), 3);
(
vec![],
vec![
program.part_to_instruction(root, a).unwrap(),
program.part_to_instruction(root, b).unwrap(),
program.part_to_instruction(root, c).unwrap(),
],
)
}
1 => {
assert_eq!(operator.parameters_arity(), 2);
(
vec![program.part_to_immediate(a).unwrap()],
vec![
program.part_to_instruction(root, b).unwrap(),
program.part_to_instruction(root, c).unwrap(),
],
)
}
2 => {
assert_eq!(operator.parameters_arity(), 1);
(
vec![
program.part_to_immediate(a).unwrap(),
program.part_to_immediate(b).unwrap(),
],
vec![program.part_to_instruction(root, c).unwrap()],
)
}
3 => {
assert_eq!(operator.parameters_arity(), 0);
(
vec![
program.part_to_immediate(a).unwrap(),
program.part_to_immediate(b).unwrap(),
program.part_to_immediate(c).unwrap(),
],
vec![],
)
}
_ => unreachable!(),
};
program.new_instruction(operator, r#type, imms, args)
}
fn instruction_to_constant(
&self,
program: &mut Program,
inst: Instruction,
) -> Option<Constant> {
log::debug!("instruction_to_constant({:?})", inst);
program.instruction_to_constant(inst)
}
fn instruction_result_bit_width(&self, program: &mut Program, inst: Instruction) -> u8 {
log::debug!("instruction_result_bit_width({:?})", inst);
let ty = program.data(inst).r#type;
let width = ty.bit_width.fixed_width().unwrap();
assert!(width != 0);
width
}
fn native_word_size_in_bits(&self, _program: &mut Program) -> u8 {
log::debug!("native_word_size_in_bits");
self.native_word_size_in_bits
}
}