Files
wasmtime/lib/cretonne/meta/gen_legalizer.py
Jakob Stoklund Olesen b04a2c30d2 Return a function pointer from TargetIsa::encode().
Replace the isa::Legalize enumeration with a function pointer. This
allows an ISA to define its own specific legalization actions instead of
relying on the default two.

Generate a LEGALIZE_ACTIONS table for each ISA which contains
legalization function pointers indexed by the legalization codes that
are already in the encoding tables. Include this table in
isa/*/enc_tables.rs.

Give the `Encodings` iterator a reference to the action table and change
its `legalize()` method to return a function pointer instead of an
ISA-specific code.

The Result<> returned from TargetIsa::encode() no longer implements
Debug, so eliminate uses of unwrap and expect on that type.
2017-07-27 17:08:00 -07:00

417 lines
16 KiB
Python

"""
Generate legalizer transformations.
The transformations defined in the `cretonne.legalize` module are all of the
macro-expansion form where the input pattern is a single instruction. We
generate a Rust function for each `XFormGroup` which takes a `Cursor` pointing
at the instruction to be legalized. The expanded destination pattern replaces
the input instruction.
"""
from __future__ import absolute_import
from srcgen import Formatter
from base import instructions
from cdsl.ast import Var
from cdsl.ti import ti_rtl, TypeEnv, get_type_env, TypesEqual,\
InTypeset, WiderOrEq
from unique_table import UniqueTable
from gen_instr import gen_typesets_table
from cdsl.typevar import TypeVar
try:
from typing import Sequence, List, Dict, Set # noqa
from cdsl.isa import TargetISA # noqa
from cdsl.ast import Def # noqa
from cdsl.xform import XForm, XFormGroup # noqa
from cdsl.typevar import TypeSet # noqa
from cdsl.ti import TypeConstraint # noqa
except ImportError:
pass
def get_runtime_typechecks(xform):
# type: (XForm) -> List[TypeConstraint]
"""
Given a XForm build a list of runtime type checks neccessary to determine
if it applies. We have 2 types of runtime checks:
1) typevar tv belongs to typeset T - needed for free tvs whose
typeset is constrainted by their use in the dst pattern
2) tv1 == tv2 where tv1 and tv2 are derived TVs - caused by unification
of non-bijective functions
"""
check_l = [] # type: List[TypeConstraint]
# 1) Perform ti only on the source RTL. Accumulate any free tvs that have a
# different inferred type in src, compared to the type inferred for both
# src and dst.
symtab = {} # type: Dict[Var, Var]
src_copy = xform.src.copy(symtab)
src_typenv = get_type_env(ti_rtl(src_copy, TypeEnv()))
for v in xform.ti.vars:
if not v.has_free_typevar():
continue
# In rust the local variable containing a free TV associated with var v
# has name typeof_v. We rely on the python TVs having the same name.
assert "typeof_{}".format(v) == xform.ti[v].name
if v not in symtab:
# We can have singleton vars defined only on dst. Ignore them
assert v.get_typevar().singleton_type() is not None
continue
src_ts = src_typenv[symtab[v]].get_typeset()
xform_ts = xform.ti[v].get_typeset()
assert xform_ts.issubset(src_ts)
if src_ts != xform_ts:
check_l.append(InTypeset(xform.ti[v], xform_ts))
# 2,3) Add any constraints that appear in xform.ti
check_l.extend(xform.ti.constraints)
return check_l
def emit_runtime_typecheck(check, fmt, type_sets):
# type: (TypeConstraint, Formatter, UniqueTable) -> None
"""
Emit rust code for the given check.
"""
def build_derived_expr(tv):
# type: (TypeVar) -> str
"""
Build an expression of type Option<Type> corresponding to a concrete
type transformed by the sequence of derivation functions in tv.
We are using Option<Type>, as some constraints may cause an
over/underflow on patterns that do not match them. We want to capture
this without panicking at runtime.
"""
if not tv.is_derived:
assert tv.name.startswith('typeof_')
return "Some({})".format(tv.name)
base_exp = build_derived_expr(tv.base)
if (tv.derived_func == TypeVar.LANEOF):
return "{}.map(|t: Type| -> t.lane_type())".format(base_exp)
elif (tv.derived_func == TypeVar.ASBOOL):
return "{}.map(|t: Type| -> t.as_bool())".format(base_exp)
elif (tv.derived_func == TypeVar.HALFWIDTH):
return "{}.and_then(|t: Type| -> t.half_width())".format(base_exp)
elif (tv.derived_func == TypeVar.DOUBLEWIDTH):
return "{}.and_then(|t: Type| -> t.double_width())"\
.format(base_exp)
elif (tv.derived_func == TypeVar.HALFVECTOR):
return "{}.and_then(|t: Type| -> t.half_vector())".format(base_exp)
elif (tv.derived_func == TypeVar.DOUBLEVECTOR):
return "{}.and_then(|t: Type| -> t.by(2))".format(base_exp)
else:
assert False, "Unknown derived function {}".format(tv.derived_func)
if (isinstance(check, InTypeset)):
assert not check.tv.is_derived
tv = check.tv.name
if check.ts not in type_sets.index:
type_sets.add(check.ts)
ts = type_sets.index[check.ts]
fmt.comment("{} must belong to {}".format(tv, check.ts))
with fmt.indented('if !TYPE_SETS[{}].contains({}) {{'.format(ts, tv),
'};'):
fmt.line('return false;')
elif (isinstance(check, TypesEqual)):
with fmt.indented('{', '};'):
fmt.line('let a = {};'.format(build_derived_expr(check.tv1)))
fmt.line('let b = {};'.format(build_derived_expr(check.tv2)))
fmt.comment('On overflow constraint doesn\'t appply')
with fmt.indented('if a.is_none() || b.is_none() {', '};'):
fmt.line('return false;')
with fmt.indented('if a != b {', '};'):
fmt.line('return false;')
elif (isinstance(check, WiderOrEq)):
with fmt.indented('{', '};'):
fmt.line('let a = {};'.format(build_derived_expr(check.tv1)))
fmt.line('let b = {};'.format(build_derived_expr(check.tv2)))
fmt.comment('On overflow constraint doesn\'t appply')
with fmt.indented('if a.is_none() || b.is_none() {', '};'):
fmt.line('return false;')
with fmt.indented('if !a.wider_or_equal(b) {', '};'):
fmt.line('return false;')
else:
assert False, "Unknown check {}".format(check)
def unwrap_inst(iref, node, fmt):
# type: (str, Def, Formatter) -> bool
"""
Given a `Def` node, emit code that extracts all the instruction fields from
`dfg[iref]`.
Create local variables named after the `Var` instances in `node`.
:param iref: Name of the `Inst` reference to unwrap.
:param node: `Def` node providing variable names.
:returns: True if the instruction arguments were not detached, expecting a
replacement instruction to overwrite the original.
"""
fmt.comment('Unwrap {}'.format(node))
expr = node.expr
iform = expr.inst.format
nvops = iform.num_value_operands
# The tuple of locals we're extracting is `expr.args`.
with fmt.indented(
'let ({}) = if let ir::InstructionData::{} {{'
.format(', '.join(map(str, expr.args)), iform.name), '};'):
# Fields are encoded directly.
for f in iform.imm_fields:
fmt.line('{},'.format(f.member))
if nvops == 1:
fmt.line('arg,')
elif iform.has_value_list or nvops > 1:
fmt.line('ref args,')
fmt.line('..')
fmt.outdented_line('} = dfg[inst] {')
if iform.has_value_list:
fmt.line('let args = args.as_slice(&dfg.value_lists);')
# Generate the values for the tuple.
outs = list()
for opnum, op in enumerate(expr.inst.ins):
if op.is_immediate():
n = expr.inst.imm_opnums.index(opnum)
outs.append(iform.imm_fields[n].member)
elif op.is_value():
if nvops == 1:
arg = 'arg'
else:
n = expr.inst.value_opnums.index(opnum)
arg = 'args[{}]'.format(n)
outs.append('dfg.resolve_aliases({})'.format(arg))
fmt.line('({})'.format(', '.join(outs)))
fmt.outdented_line('} else {')
fmt.line('unreachable!("bad instruction format")')
# Get the types of any variables where it is needed.
for opnum in expr.inst.value_opnums:
v = expr.args[opnum]
if isinstance(v, Var) and v.has_free_typevar():
fmt.line('let typeof_{0} = dfg.value_type({0});'.format(v))
# If the node has results, detach the values.
# Place the values in locals.
replace_inst = False
if len(node.defs) > 0:
if node.defs == node.defs[0].dst_def.defs:
# Special case: The instruction replacing node defines the exact
# same values.
fmt.comment(
'Results handled by {}.'
.format(node.defs[0].dst_def))
replace_inst = True
else:
# Boring case: Detach the result values, capture them in locals.
fmt.comment('Detaching results.')
for d in node.defs:
fmt.line('let {};'.format(d))
with fmt.indented('{', '}'):
fmt.line('let r = dfg.inst_results(inst);')
for i in range(len(node.defs)):
fmt.line('{} = r[{}];'.format(node.defs[i], i))
fmt.line('dfg.clear_results(inst);')
for d in node.defs:
if d.has_free_typevar():
fmt.line(
'let typeof_{0} = dfg.value_type({0});'
.format(d))
return replace_inst
def wrap_tup(seq):
# type: (Sequence[object]) -> str
tup = tuple(map(str, seq))
if len(tup) == 1:
return tup[0]
else:
return '({})'.format(', '.join(tup))
def is_value_split(node):
# type: (Def) -> bool
"""
Determine if `node` represents one of the value splitting instructions:
`isplit` or `vsplit. These instructions are lowered specially by the
`legalize::split` module.
"""
if len(node.defs) != 2:
return False
return node.expr.inst in (instructions.isplit, instructions.vsplit)
def emit_dst_inst(node, fmt):
# type: (Def, Formatter) -> None
replaced_inst = None # type: str
if is_value_split(node):
# Split instructions are not emitted with the builder, but by calling
# special functions in the `legalizer::split` module. These functions
# will eliminate concat-split patterns.
fmt.line(
'let {} = split::{}(dfg, cfg, pos, {});'
.format(
wrap_tup(node.defs),
node.expr.inst.snake_name(),
node.expr.args[0]))
else:
if len(node.defs) == 0:
# This node doesn't define any values, so just insert the new
# instruction.
builder = 'dfg.ins(pos)'
else:
src_def0 = node.defs[0].src_def
if src_def0 and node.defs == src_def0.defs:
# The replacement instruction defines the exact same values as
# the source pattern. Unwrapping would have left the results
# intact.
# Replace the whole instruction.
builder = 'let {} = dfg.replace(inst)'.format(
wrap_tup(node.defs))
replaced_inst = 'inst'
else:
# Insert a new instruction.
builder = 'let {} = dfg.ins(pos)'.format(wrap_tup(node.defs))
# We may want to reuse some of the detached output values.
if len(node.defs) == 1 and node.defs[0].is_output():
# Reuse the single source result value.
builder += '.with_result({})'.format(node.defs[0])
elif any(d.is_output() for d in node.defs):
# We have some output values to be reused.
array = ', '.join(
('Some({})'.format(d) if d.is_output()
else 'None')
for d in node.defs)
builder += '.with_results([{}])'.format(array)
fmt.line('{}.{};'.format(builder, node.expr.rust_builder(node.defs)))
# If we just replaced an instruction, we need to bump the cursor so
# following instructions are inserted *after* the replaced instruction.
if replaced_inst:
with fmt.indented(
'if pos.current_inst() == Some({}) {{'
.format(replaced_inst), '}'):
fmt.line('pos.next_inst();')
def gen_xform(xform, fmt, type_sets):
# type: (XForm, Formatter, UniqueTable) -> None
"""
Emit code for `xform`, assuming the the opcode of xform's root instruction
has already been matched.
`inst: Inst` is the variable to be replaced. It is pointed to by `pos:
Cursor`.
`dfg: DataFlowGraph` is available and mutable.
"""
# Unwrap the source instruction, create local variables for the input
# variables.
replace_inst = unwrap_inst('inst', xform.src.rtl[0], fmt)
# We could support instruction predicates, but not yet. Should we just
# return false if it fails? What about multiple patterns with different
# predicates for the same opcode?
instp = xform.src.rtl[0].expr.inst_predicate()
assert instp is None, "Instruction predicates not supported in legalizer"
# Emit any runtime checks.
for check in get_runtime_typechecks(xform):
emit_runtime_typecheck(check, fmt, type_sets)
# Emit the destination pattern.
for dst in xform.dst.rtl:
emit_dst_inst(dst, fmt)
# Delete the original instruction if we didn't have an opportunity to
# replace it.
if not replace_inst:
fmt.line('assert_eq!(pos.remove_inst(), inst);')
def gen_xform_group(xgrp, fmt, type_sets):
# type: (XFormGroup, Formatter, UniqueTable) -> None
fmt.doc_comment("Legalize the instruction pointed to by `pos`.")
fmt.line('#[allow(unused_variables,unused_assignments)]')
with fmt.indented(
'pub fn {}(dfg: &mut ir::DataFlowGraph, '
'cfg: &mut ::flowgraph::ControlFlowGraph, '
'pos: &mut ir::Cursor) -> '
'bool {{'.format(xgrp.name), '}'):
fmt.line('use ir::InstBuilder;')
# Gen the instruction to be legalized. The cursor we're passed must be
# pointing at an instruction.
fmt.line('let inst = pos.current_inst().expect("need instruction");')
with fmt.indented('match dfg[inst].opcode() {', '}'):
for xform in xgrp.xforms:
inst = xform.src.rtl[0].expr.inst
with fmt.indented(
'ir::Opcode::{} => {{'.format(inst.camel_name), '}'):
gen_xform(xform, fmt, type_sets)
# We'll assume there are uncovered opcodes.
if xgrp.chain:
fmt.format('_ => return {}(dfg, cfg, pos),',
xgrp.chain.rust_name())
else:
fmt.line('_ => return false,')
fmt.line('true')
def gen_isa(isa, fmt, shared_groups):
# type: (TargetISA, Formatter, Set[XFormGroup]) -> None
"""
Generate legalization functions for `isa` and add any shared `XFormGroup`s
encountered to `shared_groups`.
Generate `TYPE_SETS` and `LEGALIZE_ACTION` tables.
"""
type_sets = UniqueTable()
for xgrp in isa.legalize_codes.keys():
if xgrp.isa is None:
shared_groups.add(xgrp)
else:
assert xgrp.isa == isa
gen_xform_group(xgrp, fmt, type_sets)
gen_typesets_table(fmt, type_sets)
with fmt.indented(
'pub static LEGALIZE_ACTIONS: [isa::Legalize; {}] = ['
.format(len(isa.legalize_codes)), '];'):
for xgrp in isa.legalize_codes.keys():
fmt.format('{},', xgrp.rust_name())
def generate(isas, out_dir):
# type: (Sequence[TargetISA], str) -> None
shared_groups = set() # type: Set[XFormGroup]
for isa in isas:
fmt = Formatter()
gen_isa(isa, fmt, shared_groups)
fmt.update_file('legalize-{}.rs'.format(isa.name), out_dir)
# Shared xform groups.
fmt = Formatter()
type_sets = UniqueTable()
for xgrp in sorted(shared_groups, key=lambda g: g.name):
gen_xform_group(xgrp, fmt, type_sets)
gen_typesets_table(fmt, type_sets)
fmt.update_file('legalizer.rs', out_dir)