Previously it used `arg - imm` but the functionality should be a wrapping `imm - arg` (see `cranelift/codegen/meta/src/shared/instructions.rs`).
371 lines
14 KiB
Rust
371 lines
14 KiB
Rust
//! Cranelift IR interpreter.
|
|
//!
|
|
//! This module contains the logic for interpreting Cranelift instructions.
|
|
|
|
use crate::environment::Environment;
|
|
use crate::frame::Frame;
|
|
use crate::interpreter::Trap::InvalidType;
|
|
use cranelift_codegen::ir::condcodes::IntCC;
|
|
use cranelift_codegen::ir::{
|
|
Block, FuncRef, Function, Inst, InstructionData, InstructionData::*, Opcode, Opcode::*, Type,
|
|
Value as ValueRef, ValueList,
|
|
};
|
|
use cranelift_reader::{DataValue, DataValueCastFailure};
|
|
use log::trace;
|
|
use std::ops::{Add, Sub};
|
|
use thiserror::Error;
|
|
|
|
/// The valid control flow states.
|
|
pub enum ControlFlow {
|
|
Continue,
|
|
ContinueAt(Block, Vec<ValueRef>),
|
|
Return(Vec<DataValue>),
|
|
}
|
|
|
|
impl ControlFlow {
|
|
/// For convenience, we can unwrap the [ControlFlow] state assuming that it is a
|
|
/// [ControlFlow::Return], panicking otherwise.
|
|
pub fn unwrap_return(self) -> Vec<DataValue> {
|
|
if let ControlFlow::Return(values) = self {
|
|
values
|
|
} else {
|
|
panic!("expected the control flow to be in the return state")
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The ways interpretation can fail.
|
|
#[derive(Error, Debug)]
|
|
pub enum Trap {
|
|
#[error("unknown trap")]
|
|
Unknown,
|
|
#[error("invalid type for {1}: expected {0}")]
|
|
InvalidType(String, ValueRef),
|
|
#[error("invalid cast")]
|
|
InvalidCast(#[from] DataValueCastFailure),
|
|
#[error("the instruction is not implemented (perhaps for the given types): {0}")]
|
|
Unsupported(Inst),
|
|
#[error("reached an unreachable statement")]
|
|
Unreachable,
|
|
#[error("invalid control flow: {0}")]
|
|
InvalidControlFlow(String),
|
|
#[error("invalid function reference: {0}")]
|
|
InvalidFunctionReference(FuncRef),
|
|
#[error("invalid function name: {0}")]
|
|
InvalidFunctionName(String),
|
|
}
|
|
|
|
/// The Cranelift interpreter; it contains immutable elements such as the function environment and
|
|
/// implements the Cranelift IR semantics.
|
|
#[derive(Default)]
|
|
pub struct Interpreter {
|
|
pub env: Environment,
|
|
}
|
|
|
|
/// Helper for more concise matching.
|
|
macro_rules! binary_op {
|
|
( $op:path[$arg1:ident, $arg2:ident]; [ $( $data_value_ty:ident ),* ]; $inst:ident ) => {
|
|
match ($arg1, $arg2) {
|
|
$( (DataValue::$data_value_ty(a), DataValue::$data_value_ty(b)) => { Ok(DataValue::$data_value_ty($op(a, b))) } )*
|
|
_ => Err(Trap::Unsupported($inst)),
|
|
}
|
|
};
|
|
}
|
|
|
|
impl Interpreter {
|
|
/// Construct a new [Interpreter] using the given [Environment].
|
|
pub fn new(env: Environment) -> Self {
|
|
Self { env }
|
|
}
|
|
|
|
/// Call a function by name; this is a helpful proxy for [Interpreter::call_by_index].
|
|
pub fn call_by_name(
|
|
&self,
|
|
func_name: &str,
|
|
arguments: &[DataValue],
|
|
) -> Result<ControlFlow, Trap> {
|
|
let func_ref = self
|
|
.env
|
|
.index_of(func_name)
|
|
.ok_or_else(|| Trap::InvalidFunctionName(func_name.to_string()))?;
|
|
self.call_by_index(func_ref, arguments)
|
|
}
|
|
|
|
/// Call a function by its index in the [Environment]; this is a proxy for [Interpreter::call].
|
|
pub fn call_by_index(
|
|
&self,
|
|
func_ref: FuncRef,
|
|
arguments: &[DataValue],
|
|
) -> Result<ControlFlow, Trap> {
|
|
match self.env.get_by_func_ref(func_ref) {
|
|
None => Err(Trap::InvalidFunctionReference(func_ref)),
|
|
Some(func) => self.call(func, arguments),
|
|
}
|
|
}
|
|
|
|
/// Interpret a call to a [Function] given its [DataValue] arguments.
|
|
fn call(&self, function: &Function, arguments: &[DataValue]) -> Result<ControlFlow, Trap> {
|
|
trace!("Call: {}({:?})", function.name, arguments);
|
|
let first_block = function
|
|
.layout
|
|
.blocks()
|
|
.next()
|
|
.expect("to have a first block");
|
|
let parameters = function.dfg.block_params(first_block);
|
|
let mut frame = Frame::new(function);
|
|
frame.set_all(parameters, arguments.to_vec());
|
|
self.block(&mut frame, first_block)
|
|
}
|
|
|
|
/// Interpret a [Block] in a [Function]. This drives the interpretation over sequences of
|
|
/// instructions, which may continue in other blocks, until the function returns.
|
|
fn block(&self, frame: &mut Frame, block: Block) -> Result<ControlFlow, Trap> {
|
|
trace!("Block: {}", block);
|
|
let layout = &frame.function.layout;
|
|
let mut maybe_inst = layout.first_inst(block);
|
|
while let Some(inst) = maybe_inst {
|
|
match self.inst(frame, inst)? {
|
|
ControlFlow::Continue => maybe_inst = layout.next_inst(inst),
|
|
ControlFlow::ContinueAt(block, old_names) => {
|
|
trace!("Block: {}", block);
|
|
let new_names = frame.function.dfg.block_params(block);
|
|
frame.rename(&old_names, new_names);
|
|
maybe_inst = layout.first_inst(block)
|
|
}
|
|
ControlFlow::Return(rs) => return Ok(ControlFlow::Return(rs)),
|
|
}
|
|
}
|
|
Err(Trap::Unreachable)
|
|
}
|
|
|
|
/// Interpret a single [instruction](Inst). This contains a `match`-based dispatch to the
|
|
/// implementations.
|
|
fn inst(&self, frame: &mut Frame, inst: Inst) -> Result<ControlFlow, Trap> {
|
|
use ControlFlow::{Continue, ContinueAt};
|
|
trace!("Inst: {}", &frame.function.dfg.display_inst(inst, None));
|
|
|
|
let data = &frame.function.dfg[inst];
|
|
match data {
|
|
Binary { opcode, args } => {
|
|
let arg1 = frame.get(&args[0]);
|
|
let arg2 = frame.get(&args[1]);
|
|
let result = match opcode {
|
|
Iadd => binary_op!(Add::add[arg1, arg2]; [I8, I16, I32, I64, F32, F64]; inst),
|
|
Isub => binary_op!(Sub::sub[arg1, arg2]; [I8, I16, I32, I64, F32, F64]; inst),
|
|
_ => unimplemented!("interpreter does not support opcode yet: {}", opcode),
|
|
}?;
|
|
frame.set(first_result(frame.function, inst), result);
|
|
Ok(Continue)
|
|
}
|
|
|
|
BinaryImm { opcode, arg, imm } => {
|
|
let imm = DataValue::from_integer(*imm, type_of(*arg, frame.function))?;
|
|
let arg = frame.get(&arg);
|
|
let result = match opcode {
|
|
IaddImm => binary_op!(Add::add[arg, imm]; [I8, I16, I32, I64, F32, F64]; inst),
|
|
IrsubImm => binary_op!(Sub::sub[imm, arg]; [I8, I16, I32, I64, F32, F64]; inst),
|
|
_ => unimplemented!("interpreter does not support opcode yet: {}", opcode),
|
|
}?;
|
|
frame.set(first_result(frame.function, inst), result);
|
|
Ok(Continue)
|
|
}
|
|
|
|
Branch {
|
|
opcode,
|
|
args,
|
|
destination,
|
|
} => match opcode {
|
|
Brnz => {
|
|
let mut args = value_refs(frame.function, args);
|
|
let first = args.remove(0);
|
|
match frame.get(&first) {
|
|
DataValue::B(false)
|
|
| DataValue::I8(0)
|
|
| DataValue::I16(0)
|
|
| DataValue::I32(0)
|
|
| DataValue::I64(0) => Ok(Continue),
|
|
DataValue::B(true)
|
|
| DataValue::I8(_)
|
|
| DataValue::I16(_)
|
|
| DataValue::I32(_)
|
|
| DataValue::I64(_) => Ok(ContinueAt(*destination, args)),
|
|
_ => Err(Trap::InvalidType("boolean or integer".to_string(), args[0])),
|
|
}
|
|
}
|
|
_ => unimplemented!("interpreter does not support opcode yet: {}", opcode),
|
|
},
|
|
InstructionData::Call { args, func_ref, .. } => {
|
|
// Find the function to call.
|
|
let func_name = function_name_of_func_ref(*func_ref, frame.function);
|
|
|
|
// Call function.
|
|
let args = frame.get_all(args.as_slice(&frame.function.dfg.value_lists));
|
|
let result = self.call_by_name(&func_name, &args)?;
|
|
|
|
// Save results.
|
|
if let ControlFlow::Return(returned_values) = result {
|
|
let ssa_values = frame.function.dfg.inst_results(inst);
|
|
assert_eq!(
|
|
ssa_values.len(),
|
|
returned_values.len(),
|
|
"expected result length ({}) to match SSA values length ({}): {}",
|
|
returned_values.len(),
|
|
ssa_values.len(),
|
|
frame.function.dfg.display_inst(inst, None)
|
|
);
|
|
frame.set_all(ssa_values, returned_values);
|
|
Ok(Continue)
|
|
} else {
|
|
Err(Trap::InvalidControlFlow(format!(
|
|
"did not return from: {}",
|
|
frame.function.dfg.display_inst(inst, None)
|
|
)))
|
|
}
|
|
}
|
|
InstructionData::Jump {
|
|
opcode,
|
|
destination,
|
|
args,
|
|
} => match opcode {
|
|
Opcode::Fallthrough => {
|
|
Ok(ContinueAt(*destination, value_refs(frame.function, args)))
|
|
}
|
|
Opcode::Jump => Ok(ContinueAt(*destination, value_refs(frame.function, args))),
|
|
_ => unimplemented!("interpreter does not support opcode yet: {}", opcode),
|
|
},
|
|
IntCompareImm {
|
|
opcode,
|
|
arg,
|
|
cond,
|
|
imm,
|
|
} => match opcode {
|
|
IcmpImm => {
|
|
let arg_value = match *frame.get(arg) {
|
|
DataValue::I8(i) => Ok(i as i64),
|
|
DataValue::I16(i) => Ok(i as i64),
|
|
DataValue::I32(i) => Ok(i as i64),
|
|
DataValue::I64(i) => Ok(i),
|
|
_ => Err(InvalidType("integer".to_string(), *arg)),
|
|
}?;
|
|
let imm_value = (*imm).into();
|
|
let result = match cond {
|
|
IntCC::UnsignedLessThanOrEqual => arg_value <= imm_value,
|
|
IntCC::Equal => arg_value == imm_value,
|
|
_ => unimplemented!(
|
|
"interpreter does not support condition code yet: {}",
|
|
cond
|
|
),
|
|
};
|
|
let res = first_result(frame.function, inst);
|
|
frame.set(res, DataValue::B(result));
|
|
Ok(Continue)
|
|
}
|
|
_ => unimplemented!("interpreter does not support opcode yet: {}", opcode),
|
|
},
|
|
MultiAry { opcode, args } => match opcode {
|
|
Return => {
|
|
let rs: Vec<DataValue> = args
|
|
.as_slice(&frame.function.dfg.value_lists)
|
|
.iter()
|
|
.map(|r| frame.get(r).clone())
|
|
.collect();
|
|
Ok(ControlFlow::Return(rs))
|
|
}
|
|
_ => unimplemented!("interpreter does not support opcode yet: {}", opcode),
|
|
},
|
|
NullAry { opcode } => match opcode {
|
|
Nop => Ok(Continue),
|
|
_ => unimplemented!("interpreter does not support opcode yet: {}", opcode),
|
|
},
|
|
UnaryImm { opcode, imm } => match opcode {
|
|
Iconst => {
|
|
let res = first_result(frame.function, inst);
|
|
let imm_value = DataValue::from_integer(*imm, type_of(res, frame.function))?;
|
|
frame.set(res, imm_value);
|
|
Ok(Continue)
|
|
}
|
|
_ => unimplemented!("interpreter does not support opcode yet: {}", opcode),
|
|
},
|
|
UnaryBool { opcode, imm } => match opcode {
|
|
Bconst => {
|
|
let res = first_result(frame.function, inst);
|
|
frame.set(res, DataValue::B(*imm));
|
|
Ok(Continue)
|
|
}
|
|
_ => unimplemented!("interpreter does not support opcode yet: {}", opcode),
|
|
},
|
|
|
|
_ => unimplemented!("interpreter does not support instruction yet: {:?}", data),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return the first result of an instruction.
|
|
///
|
|
/// This helper cushions the interpreter from changes to the [Function] API.
|
|
#[inline]
|
|
fn first_result(function: &Function, inst: Inst) -> ValueRef {
|
|
function.dfg.first_result(inst)
|
|
}
|
|
|
|
/// Return a list of IR values as a vector.
|
|
///
|
|
/// This helper cushions the interpreter from changes to the [Function] API.
|
|
#[inline]
|
|
fn value_refs(function: &Function, args: &ValueList) -> Vec<ValueRef> {
|
|
args.as_slice(&function.dfg.value_lists).to_vec()
|
|
}
|
|
|
|
/// Return the (external) function name of `func_ref` in a local `function`. Note that this may
|
|
/// be truncated.
|
|
///
|
|
/// This helper cushions the interpreter from changes to the [Function] API.
|
|
#[inline]
|
|
fn function_name_of_func_ref(func_ref: FuncRef, function: &Function) -> String {
|
|
function
|
|
.dfg
|
|
.ext_funcs
|
|
.get(func_ref)
|
|
.expect("function to exist")
|
|
.name
|
|
.to_string()
|
|
}
|
|
|
|
/// Helper for calculating the type of an IR value. TODO move to Frame?
|
|
#[inline]
|
|
fn type_of(value: ValueRef, function: &Function) -> Type {
|
|
function.dfg.value_type(value)
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use cranelift_reader::parse_functions;
|
|
|
|
// Most interpreter tests should use the more ergonomic `test interpret` filetest but this
|
|
// unit test serves as a sanity check that the interpreter still works without all of the
|
|
// filetest infrastructure.
|
|
#[test]
|
|
fn sanity() {
|
|
let code = "function %test() -> b1 {
|
|
block0:
|
|
v0 = iconst.i32 1
|
|
v1 = iadd_imm v0, 1
|
|
v2 = irsub_imm v1, 44 ; 44 - 2 == 42 (see irsub_imm's semantics)
|
|
v3 = icmp_imm eq v2, 42
|
|
return v3
|
|
}";
|
|
|
|
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
|
|
let mut env = Environment::default();
|
|
env.add(func.name.to_string(), func);
|
|
let interpreter = Interpreter::new(env);
|
|
let result = interpreter
|
|
.call_by_name("%test", &[])
|
|
.unwrap()
|
|
.unwrap_return();
|
|
|
|
assert_eq!(result, vec![DataValue::B(true)])
|
|
}
|
|
}
|