Files
wasmtime/lib/bforest/src/path.rs
Dan Gohman aeb9161e2c Update no_std support for Rust 2018 Edition.
With Rust 2018 Edition, the `mod std` trick to alias `core` names to
`std` no longer works, so switch to just having the code use `core`
explicitly.

So instead, switch to just using `core::*` for things that in core.
This is more consistent with other Rust no_std code. And it allows
us to enable `no_std` mode unconditionally in the crates that support
it, which makes testing a little easier.

There actually three cases:

 - For things in std and also in core, like `cmp`: Just use them via
   `core::*`.

 - For things in std and also in alloc, like `Vec`: Import alloc as std, as
   use them from std. This allows them to work on both stable (which
   doesn't provide alloc, but we don't support no_std mode anyway) and
   nightly.

 - For HashMap and similar which are not in core or alloc, import them in
   the top-level lib.rs files from either std or the third-party hashmap_core
   crate, and then have the code use super::hashmap_core.

Also, no_std support continues to be "best effort" at this time and not
something most people need to be testing.
2019-01-14 21:48:15 -08:00

837 lines
31 KiB
Rust

//! A path from the root of a B+-tree to a leaf node.
use super::node::Removed;
use super::{slice_insert, slice_shift, Comparator, Forest, Node, NodeData, NodePool, MAX_PATH};
use core::borrow::Borrow;
use core::marker::PhantomData;
#[cfg(test)]
use core::fmt;
pub(super) struct Path<F: Forest> {
/// Number of path entries including the root and leaf nodes.
size: usize,
/// Path of node references from the root to a leaf node.
node: [Node; MAX_PATH],
/// Entry number in each node.
entry: [u8; MAX_PATH],
unused: PhantomData<F>,
}
impl<F: Forest> Default for Path<F> {
fn default() -> Self {
Self {
size: 0,
node: [Node(0); MAX_PATH],
entry: [0; MAX_PATH],
unused: PhantomData,
}
}
}
impl<F: Forest> Path<F> {
/// Reset path by searching for `key` starting from `root`.
///
/// If `key` is in the tree, returns the corresponding value and leaved the path pointing at
/// the entry. Otherwise returns `None` and:
///
/// - A key smaller than all stored keys returns a path to the first entry of the first leaf.
/// - A key larger than all stored keys returns a path to one beyond the last element of the
/// last leaf.
/// - A key between the stored keys of adjacent leaf nodes returns a path to one beyond the
/// last entry of the first of the leaf nodes.
///
pub fn find(
&mut self,
key: F::Key,
root: Node,
pool: &NodePool<F>,
comp: &Comparator<F::Key>,
) -> Option<F::Value> {
let mut node = root;
for level in 0.. {
self.size = level + 1;
self.node[level] = node;
match pool[node] {
NodeData::Inner { size, keys, tree } => {
// Invariant: `tree[i]` contains keys smaller than
// `keys[i]`, greater or equal to `keys[i-1]`.
let i = match comp.search(key, &keys[0..size.into()]) {
// We hit an existing key, so follow the >= branch.
Ok(i) => i + 1,
// Key is less than `keys[i]`, so follow the < branch.
Err(i) => i,
};
self.entry[level] = i as u8;
node = tree[i];
}
NodeData::Leaf { size, keys, vals } => {
// For a leaf we want either the found key or an insert position.
return match comp.search(key, &keys.borrow()[0..size.into()]) {
Ok(i) => {
self.entry[level] = i as u8;
Some(vals.borrow()[i])
}
Err(i) => {
self.entry[level] = i as u8;
None
}
};
}
NodeData::Free { .. } => panic!("Free {} reached from {}", node, root),
}
}
unreachable!();
}
/// Move path to the first entry of the tree starting at `root` and return it.
pub fn first(&mut self, root: Node, pool: &NodePool<F>) -> (F::Key, F::Value) {
let mut node = root;
for level in 0.. {
self.size = level + 1;
self.node[level] = node;
self.entry[level] = 0;
match pool[node] {
NodeData::Inner { tree, .. } => node = tree[0],
NodeData::Leaf { keys, vals, .. } => return (keys.borrow()[0], vals.borrow()[0]),
NodeData::Free { .. } => panic!("Free {} reached from {}", node, root),
}
}
unreachable!();
}
/// Move this path to the next key-value pair and return it.
pub fn next(&mut self, pool: &NodePool<F>) -> Option<(F::Key, F::Value)> {
match self.leaf_pos() {
None => return None,
Some((node, entry)) => {
let (keys, vals) = pool[node].unwrap_leaf();
if entry + 1 < keys.len() {
self.entry[self.size - 1] += 1;
return Some((keys[entry + 1], vals[entry + 1]));
}
}
}
// The current leaf node is exhausted. Move to the next one.
let leaf_level = self.size - 1;
self.next_node(leaf_level, pool).map(|node| {
let (keys, vals) = pool[node].unwrap_leaf();
(keys[0], vals[0])
})
}
/// Move this path to the previous key-value pair and return it.
///
/// If the path is at the off-the-end position, go to the last key-value pair.
///
/// If the path is already at the first key-value pair, leave it there and return `None`.
pub fn prev(&mut self, root: Node, pool: &NodePool<F>) -> Option<(F::Key, F::Value)> {
// We use `size == 0` as a generic off-the-end position.
if self.size == 0 {
self.goto_subtree_last(0, root, pool);
let (node, entry) = self.leaf_pos().unwrap();
let (keys, vals) = pool[node].unwrap_leaf();
return Some((keys[entry], vals[entry]));
}
match self.leaf_pos() {
None => return None,
Some((node, entry)) => {
if entry > 0 {
self.entry[self.size - 1] -= 1;
let (keys, vals) = pool[node].unwrap_leaf();
return Some((keys[entry - 1], vals[entry - 1]));
}
}
}
// The current leaf node is exhausted. Move to the previous one.
self.prev_leaf(pool).map(|node| {
let (keys, vals) = pool[node].unwrap_leaf();
let e = self.leaf_entry();
(keys[e], vals[e])
})
}
/// Move path to the first entry of the next node at level, if one exists.
///
/// Returns the new node if it exists.
///
/// Reset the path to `size = 0` and return `None` if there is no next node.
fn next_node(&mut self, level: usize, pool: &NodePool<F>) -> Option<Node> {
match self.right_sibling_branch_level(level, pool) {
None => {
self.size = 0;
None
}
Some(bl) => {
let (_, bnodes) = pool[self.node[bl]].unwrap_inner();
self.entry[bl] += 1;
let mut node = bnodes[usize::from(self.entry[bl])];
for l in bl + 1..level {
self.node[l] = node;
self.entry[l] = 0;
node = pool[node].unwrap_inner().1[0];
}
self.node[level] = node;
self.entry[level] = 0;
Some(node)
}
}
}
/// Move the path to the last entry of the previous leaf node, if one exists.
///
/// Returns the new leaf node if it exists.
///
/// Leave the path unchanged and returns `None` if we are already at the first leaf node.
fn prev_leaf(&mut self, pool: &NodePool<F>) -> Option<Node> {
self.left_sibling_branch_level(self.size - 1).map(|bl| {
let entry = self.entry[bl] - 1;
self.entry[bl] = entry;
let (_, bnodes) = pool[self.node[bl]].unwrap_inner();
self.goto_subtree_last(bl + 1, bnodes[usize::from(entry)], pool)
})
}
/// Move this path to the last position for the sub-tree at `level, root`.
fn goto_subtree_last(&mut self, level: usize, root: Node, pool: &NodePool<F>) -> Node {
let mut node = root;
for l in level.. {
self.node[l] = node;
match pool[node] {
NodeData::Inner { size, ref tree, .. } => {
self.entry[l] = size;
node = tree[usize::from(size)];
}
NodeData::Leaf { size, .. } => {
self.entry[l] = size - 1;
self.size = l + 1;
break;
}
NodeData::Free { .. } => panic!("Free {} reached from {}", node, root),
}
}
node
}
/// Set the root node and point the path at the first entry of the node.
pub fn set_root_node(&mut self, root: Node) {
self.size = 1;
self.node[0] = root;
self.entry[0] = 0;
}
/// Get the current leaf node and entry, if any.
pub fn leaf_pos(&self) -> Option<(Node, usize)> {
let i = self.size.wrapping_sub(1);
self.node.get(i).map(|&n| (n, self.entry[i].into()))
}
/// Get the current leaf node.
fn leaf_node(&self) -> Node {
self.node[self.size - 1]
}
/// Get the current entry in the leaf node.
fn leaf_entry(&self) -> usize {
self.entry[self.size - 1].into()
}
/// Is this path pointing to the first entry in the tree?
/// This corresponds to the smallest key.
fn at_first_entry(&self) -> bool {
self.entry[0..self.size].iter().all(|&i| i == 0)
}
/// Get a mutable reference to the current value.
/// This assumes that there is a current value.
pub fn value_mut<'a>(&self, pool: &'a mut NodePool<F>) -> &'a mut F::Value {
&mut pool[self.leaf_node()].unwrap_leaf_mut().1[self.leaf_entry()]
}
/// Insert the key-value pair at the current position.
/// The current position must be the correct insertion location for the key.
/// This function does not check for duplicate keys. Use `find` or similar for that.
/// Returns the new root node.
pub fn insert(&mut self, key: F::Key, value: F::Value, pool: &mut NodePool<F>) -> Node {
if !self.try_leaf_insert(key, value, pool) {
self.split_and_insert(key, value, pool);
}
self.node[0]
}
/// Try to insert `key, value` at the current position, but fail and return false if the leaf
/// node is full.
fn try_leaf_insert(&self, key: F::Key, value: F::Value, pool: &mut NodePool<F>) -> bool {
let index = self.leaf_entry();
// The case `index == 0` should only ever happen when there are no earlier leaf nodes,
// otherwise we should have appended to the previous leaf node instead. This invariant
// means that we don't need to update keys stored in inner nodes here.
debug_assert!(index > 0 || self.at_first_entry());
pool[self.leaf_node()].try_leaf_insert(index, key, value)
}
/// Split the current leaf node and then insert `key, value`.
/// This should only be used if `try_leaf_insert()` fails.
fn split_and_insert(&mut self, mut key: F::Key, value: F::Value, pool: &mut NodePool<F>) {
let orig_root = self.node[0];
// Loop invariant: We need to split the node at `level` and then retry a failed insertion.
// The items to insert are either `(key, ins_node)` or `(key, value)`.
let mut ins_node = None;
let mut split;
for level in (0..self.size).rev() {
// Split the current node.
let mut node = self.node[level];
let mut entry = self.entry[level].into();
split = pool[node].split(entry);
let rhs_node = pool.alloc_node(split.rhs_data);
// Should the path be moved to the new RHS node?
// Prefer the smaller node if we're right in the middle.
// Prefer to append to LHS all other things being equal.
//
// When inserting into an inner node (`ins_node.is_some()`), we must point to a valid
// entry in the current node since the new entry is inserted *after* the insert
// location.
if entry > split.lhs_entries
|| (entry == split.lhs_entries
&& (split.lhs_entries > split.rhs_entries || ins_node.is_some()))
{
node = rhs_node;
entry -= split.lhs_entries;
self.node[level] = node;
self.entry[level] = entry as u8;
}
// Now that we have a not-full node, it must be possible to insert.
match ins_node {
None => {
let inserted = pool[node].try_leaf_insert(entry, key, value);
debug_assert!(inserted);
// If we inserted at the front of the new rhs_node leaf, we need to propagate
// the inserted key as the critical key instead of the previous front key.
if entry == 0 && node == rhs_node {
split.crit_key = key;
}
}
Some(n) => {
let inserted = pool[node].try_inner_insert(entry, key, n);
debug_assert!(inserted);
// The lower level was moved to the new RHS node, so make sure that is
// reflected here.
if n == self.node[level + 1] {
self.entry[level] += 1;
}
}
}
// We are now done with the current level, but `rhs_node` must be inserted in the inner
// node above us. If we're already at level 0, the root node needs to be split.
key = split.crit_key;
ins_node = Some(rhs_node);
if level > 0 {
let pnode = &mut pool[self.node[level - 1]];
let pentry = self.entry[level - 1].into();
if pnode.try_inner_insert(pentry, key, rhs_node) {
// If this level level was moved to the new RHS node, update parent entry.
if node == rhs_node {
self.entry[level - 1] += 1;
}
return;
}
}
}
// If we get here we have split the original root node and need to add an extra level.
let rhs_node = ins_node.expect("empty path");
let root = pool.alloc_node(NodeData::inner(orig_root, key, rhs_node));
let entry = if self.node[0] == rhs_node { 1 } else { 0 };
self.size += 1;
slice_insert(&mut self.node[0..self.size], 0, root);
slice_insert(&mut self.entry[0..self.size], 0, entry);
}
/// Remove the key-value pair at the current position and advance the path to the next
/// key-value pair, leaving the path in a normalized state.
///
/// Return the new root node.
pub fn remove(&mut self, pool: &mut NodePool<F>) -> Option<Node> {
let e = self.leaf_entry();
match pool[self.leaf_node()].leaf_remove(e) {
Removed::Healthy => {
if e == 0 {
self.update_crit_key(pool)
}
Some(self.node[0])
}
status => self.balance_nodes(status, pool),
}
}
/// Get the critical key for the current node at `level`.
///
/// The critical key is less than or equal to all keys in the sub-tree at `level` and greater
/// than all keys to the left of the current node at `level`.
///
/// The left-most node at any level does not have a critical key.
fn current_crit_key(&self, level: usize, pool: &NodePool<F>) -> Option<F::Key> {
// Find the level containing the critical key for the current node.
self.left_sibling_branch_level(level).map(|bl| {
let (keys, _) = pool[self.node[bl]].unwrap_inner();
keys[usize::from(self.entry[bl]) - 1]
})
}
/// Update the critical key after removing the front entry of the leaf node.
fn update_crit_key(&mut self, pool: &mut NodePool<F>) {
// Find the inner level containing the critical key for the current leaf node.
let crit_level = match self.left_sibling_branch_level(self.size - 1) {
None => return,
Some(l) => l,
};
let crit_kidx = self.entry[crit_level] - 1;
// Extract the new critical key from the leaf node.
let crit_key = pool[self.leaf_node()].leaf_crit_key();
let crit_node = self.node[crit_level];
match pool[crit_node] {
NodeData::Inner {
size, ref mut keys, ..
} => {
debug_assert!(crit_kidx < size);
keys[usize::from(crit_kidx)] = crit_key;
}
_ => panic!("Expected inner node"),
}
}
/// Given that the current leaf node is in an unhealthy (underflowed or even empty) status,
/// balance it with sibling nodes.
///
/// Return the new root node.
fn balance_nodes(&mut self, status: Removed, pool: &mut NodePool<F>) -> Option<Node> {
// The current leaf node is not in a healthy state, and its critical key may have changed
// too.
//
// Start by dealing with a changed critical key for the leaf level.
if status != Removed::Empty && self.leaf_entry() == 0 {
self.update_crit_key(pool);
}
let leaf_level = self.size - 1;
if self.heal_level(status, leaf_level, pool) {
// Tree has become empty.
self.size = 0;
return None;
}
// Discard the root node if it has shrunk to a single sub-tree.
let mut ns = 0;
while let NodeData::Inner {
size: 0, ref tree, ..
} = pool[self.node[ns]]
{
ns += 1;
self.node[ns] = tree[0];
}
if ns > 0 {
for l in 0..ns {
pool.free_node(self.node[l]);
}
// Shift the whole array instead of just 0..size because `self.size` may be cleared
// here if the path is pointing off-the-end.
slice_shift(&mut self.node, ns);
slice_shift(&mut self.entry, ns);
if self.size > 0 {
self.size -= ns;
}
}
// Return the root node, even when `size=0` indicating that we're at the off-the-end
// position.
Some(self.node[0])
}
/// After removing an entry from the node at `level`, check its health and rebalance as needed.
///
/// Leave the path up to and including `level` in a normalized state where all entries are in
/// bounds.
///
/// Returns true if the tree becomes empty.
fn heal_level(&mut self, status: Removed, level: usize, pool: &mut NodePool<F>) -> bool {
match status {
Removed::Healthy => {}
Removed::Rightmost => {
// The rightmost entry was removed from the current node, so move the path so it
// points at the first entry of the next node at this level.
debug_assert_eq!(
usize::from(self.entry[level]),
pool[self.node[level]].entries()
);
self.next_node(level, pool);
}
Removed::Underflow => self.underflowed_node(level, pool),
Removed::Empty => return self.empty_node(level, pool),
}
false
}
/// The current node at `level` has underflowed, meaning that it is below half capacity but
/// not completely empty.
///
/// Handle this by balancing entries with the right sibling node.
///
/// Leave the path up to and including `level` in a valid state that points to the same entry.
fn underflowed_node(&mut self, level: usize, pool: &mut NodePool<F>) {
// Look for a right sibling node at this level. If none exists, we allow the underflowed
// node to persist as the right-most node at its level.
if let Some((crit_key, rhs_node)) = self.right_sibling(level, pool) {
// New critical key for the updated right sibling node.
let new_ck: Option<F::Key>;
let empty;
// Make a COPY of the sibling node to avoid fighting the borrow checker.
let mut rhs = pool[rhs_node];
match pool[self.node[level]].balance(crit_key, &mut rhs) {
None => {
// Everything got moved to the RHS node.
new_ck = self.current_crit_key(level, pool);
empty = true;
}
Some(key) => {
// Entries moved from RHS node.
new_ck = Some(key);
empty = false;
}
}
// Put back the updated RHS node data.
pool[rhs_node] = rhs;
// Update the critical key for the RHS node unless it has become a left-most
// node.
if let Some(ck) = new_ck {
self.update_right_crit_key(level, ck, pool);
}
if empty {
let empty_tree = self.empty_node(level, pool);
debug_assert!(!empty_tree);
}
// Any Removed::Rightmost state must have been cleared above by merging nodes. If the
// current entry[level] was one off the end of the node, it will now point at a proper
// entry.
debug_assert!(usize::from(self.entry[level]) < pool[self.node[level]].entries());
} else if usize::from(self.entry[level]) >= pool[self.node[level]].entries() {
// There's no right sibling at this level, so the node can't be rebalanced.
// Check if we are in an off-the-end position.
self.size = 0;
}
}
/// The current node at `level` has become empty.
///
/// Remove the node from its parent node and leave the path in a normalized state. This means
/// that the path at this level will go through the right sibling of this node.
///
/// If the current node has no right sibling, set `self.size = 0`.
///
/// Returns true if the tree becomes empty.
fn empty_node(&mut self, level: usize, pool: &mut NodePool<F>) -> bool {
pool.free_node(self.node[level]);
if level == 0 {
// We just deleted the root node, so the tree is now empty.
return true;
}
// Get the right sibling node before recursively removing nodes.
let rhs_node = self.right_sibling(level, pool).map(|(_, n)| n);
// Remove the current sub-tree from the parent node.
let pl = level - 1;
let pe = self.entry[pl].into();
let status = pool[self.node[pl]].inner_remove(pe);
self.heal_level(status, pl, pool);
// Finally update the path at this level.
match rhs_node {
// We'll leave `self.entry[level]` unchanged. It can be non-zero after moving node
// entries to the right sibling node.
Some(rhs) => self.node[level] = rhs,
// We have no right sibling, so we must have deleted the right-most
// entry. The path should be moved to the "off-the-end" position.
None => self.size = 0,
}
false
}
/// Find the level where the right sibling to the current node at `level` branches off.
///
/// This will be an inner node with two adjacent sub-trees: In one the current node at level is
/// a right-most node, in the other, the right sibling is a left-most node.
///
/// Returns `None` if the current node is a right-most node so no right sibling exists.
fn right_sibling_branch_level(&self, level: usize, pool: &NodePool<F>) -> Option<usize> {
(0..level).rposition(|l| match pool[self.node[l]] {
NodeData::Inner { size, .. } => self.entry[l] < size,
_ => panic!("Expected inner node"),
})
}
/// Find the level where the left sibling to the current node at `level` branches off.
fn left_sibling_branch_level(&self, level: usize) -> Option<usize> {
self.entry[0..level].iter().rposition(|&e| e != 0)
}
/// Get the right sibling node to the current node at `level`.
/// Also return the critical key between the current node and the right sibling.
fn right_sibling(&self, level: usize, pool: &NodePool<F>) -> Option<(F::Key, Node)> {
// Find the critical level: The deepest level where two sibling subtrees contain the
// current node and its right sibling.
self.right_sibling_branch_level(level, pool).map(|bl| {
// Extract the critical key and the `bl+1` node.
let be = usize::from(self.entry[bl]);
let crit_key;
let mut node;
{
let (keys, tree) = pool[self.node[bl]].unwrap_inner();
crit_key = keys[be];
node = tree[be + 1];
}
// Follow left-most links back down to `level`.
for _ in bl + 1..level {
node = pool[node].unwrap_inner().1[0];
}
(crit_key, node)
})
}
/// Update the critical key for the right sibling node at `level`.
fn update_right_crit_key(&self, level: usize, crit_key: F::Key, pool: &mut NodePool<F>) {
let bl = self
.right_sibling_branch_level(level, pool)
.expect("No right sibling exists");
match pool[self.node[bl]] {
NodeData::Inner { ref mut keys, .. } => {
keys[usize::from(self.entry[bl])] = crit_key;
}
_ => panic!("Expected inner node"),
}
}
/// Normalize the path position such that it is either pointing at a real entry or `size=0`
/// indicating "off-the-end".
pub fn normalize(&mut self, pool: &mut NodePool<F>) {
if let Some((leaf, entry)) = self.leaf_pos() {
if entry >= pool[leaf].entries() {
let leaf_level = self.size - 1;
self.next_node(leaf_level, pool);
}
}
}
}
#[cfg(test)]
impl<F: Forest> Path<F> {
/// Check the internal consistency of this path.
pub fn verify(&self, pool: &NodePool<F>) {
for level in 0..self.size {
match pool[self.node[level]] {
NodeData::Inner { size, tree, .. } => {
assert!(
level < self.size - 1,
"Expected leaf node at level {}",
level
);
assert!(
self.entry[level] <= size,
"OOB inner entry {}/{} at level {}",
self.entry[level],
size,
level
);
assert_eq!(
self.node[level + 1],
tree[usize::from(self.entry[level])],
"Node mismatch at level {}",
level
);
}
NodeData::Leaf { size, .. } => {
assert_eq!(level, self.size - 1, "Expected inner node");
assert!(
self.entry[level] <= size,
"OOB leaf entry {}/{}",
self.entry[level],
size,
);
}
NodeData::Free { .. } => {
panic!("Free {} in path", self.node[level]);
}
}
}
}
}
#[cfg(test)]
impl<F: Forest> fmt::Display for Path<F> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.size == 0 {
write!(f, "<empty path>")
} else {
write!(f, "{}[{}]", self.node[0], self.entry[0])?;
for i in 1..self.size {
write!(f, "--{}[{}]", self.node[i], self.entry[i])?;
}
Ok(())
}
}
}
#[cfg(test)]
mod tests {
use super::super::{Forest, NodeData, NodePool};
use super::*;
use core::cmp::Ordering;
struct TC();
impl Comparator<i32> for TC {
fn cmp(&self, a: i32, b: i32) -> Ordering {
a.cmp(&b)
}
}
struct TF();
impl Forest for TF {
type Key = i32;
type Value = char;
type LeafKeys = [i32; 7];
type LeafValues = [char; 7];
fn splat_key(key: Self::Key) -> Self::LeafKeys {
[key; 7]
}
fn splat_value(value: Self::Value) -> Self::LeafValues {
[value; 7]
}
}
#[test]
fn search_single_leaf() {
// Testing Path::new() for trees with a single leaf node.
let mut pool = NodePool::<TF>::new();
let root = pool.alloc_node(NodeData::leaf(10, 'a'));
let mut p = Path::default();
let comp = TC();
// Search for key less than stored key.
assert_eq!(p.find(5, root, &pool, &comp), None);
assert_eq!(p.size, 1);
assert_eq!(p.node[0], root);
assert_eq!(p.entry[0], 0);
// Search for stored key.
assert_eq!(p.find(10, root, &pool, &comp), Some('a'));
assert_eq!(p.size, 1);
assert_eq!(p.node[0], root);
assert_eq!(p.entry[0], 0);
// Search for key greater than stored key.
assert_eq!(p.find(15, root, &pool, &comp), None);
assert_eq!(p.size, 1);
assert_eq!(p.node[0], root);
assert_eq!(p.entry[0], 1);
// Modify leaf node to contain two values.
match pool[root] {
NodeData::Leaf {
ref mut size,
ref mut keys,
ref mut vals,
} => {
*size = 2;
keys[1] = 20;
vals[1] = 'b';
}
_ => unreachable!(),
}
// Search for key between stored keys.
assert_eq!(p.find(15, root, &pool, &comp), None);
assert_eq!(p.size, 1);
assert_eq!(p.node[0], root);
assert_eq!(p.entry[0], 1);
// Search for key greater than stored keys.
assert_eq!(p.find(25, root, &pool, &comp), None);
assert_eq!(p.size, 1);
assert_eq!(p.node[0], root);
assert_eq!(p.entry[0], 2);
}
#[test]
fn search_single_inner() {
// Testing Path::new() for trees with a single inner node and two leaves.
let mut pool = NodePool::<TF>::new();
let leaf1 = pool.alloc_node(NodeData::leaf(10, 'a'));
let leaf2 = pool.alloc_node(NodeData::leaf(20, 'b'));
let root = pool.alloc_node(NodeData::inner(leaf1, 20, leaf2));
let mut p = Path::default();
let comp = TC();
// Search for key less than stored keys.
assert_eq!(p.find(5, root, &pool, &comp), None);
assert_eq!(p.size, 2);
assert_eq!(p.node[0], root);
assert_eq!(p.entry[0], 0);
assert_eq!(p.node[1], leaf1);
assert_eq!(p.entry[1], 0);
assert_eq!(p.find(10, root, &pool, &comp), Some('a'));
assert_eq!(p.size, 2);
assert_eq!(p.node[0], root);
assert_eq!(p.entry[0], 0);
assert_eq!(p.node[1], leaf1);
assert_eq!(p.entry[1], 0);
// Midway between the two leaf nodes.
assert_eq!(p.find(15, root, &pool, &comp), None);
assert_eq!(p.size, 2);
assert_eq!(p.node[0], root);
assert_eq!(p.entry[0], 0);
assert_eq!(p.node[1], leaf1);
assert_eq!(p.entry[1], 1);
assert_eq!(p.find(20, root, &pool, &comp), Some('b'));
assert_eq!(p.size, 2);
assert_eq!(p.node[0], root);
assert_eq!(p.entry[0], 1);
assert_eq!(p.node[1], leaf2);
assert_eq!(p.entry[1], 0);
assert_eq!(p.find(25, root, &pool, &comp), None);
assert_eq!(p.size, 2);
assert_eq!(p.node[0], root);
assert_eq!(p.entry[0], 1);
assert_eq!(p.node[1], leaf2);
assert_eq!(p.entry[1], 1);
}
}