Files
wasmtime/cranelift/codegen/src/machinst/vcode.rs
Chris Fallin 833ebeed76 Fix spillslot size bug in SIMD by removing type-dependent spillslot allocation.
This patch makes spillslot allocation, spilling and reloading all based
on register class only. Hence when we have a 32- or 64-bit value in a
128-bit XMM register on x86-64 or vector register on aarch64, this
results in larger spillslots and spills/restores.

Why make this change, if it results in less efficient stack-frame usage?
Simply put, it is safer: there is always a risk when allocating
spillslots or spilling/reloading that we get the wrong type and make the
spillslot or the store/load too small. This was one contributing factor
to CVE-2021-32629, and is now the source of a fuzzbug in SIMD code that
puns an arbitrary user-controlled vector constant over another
stackslot. (If this were a pointer, that could result in RCE. SIMD is
not yet on by default in a release, fortunately.

In particular, we have not been particularly careful about using moves
between values of different types, for example with `raw_bitcast` or
with certain SIMD operations, and such moves indicate to regalloc.rs
that vregs are in equivalence classes and some arbitrary vreg in the
class is provided when allocating the spillslot or spilling/reloading.
Since regalloc.rs does not track actual type, and since we haven't been
careful about moves, we can't really trust this "arbitrary vreg in
equivalence class" to provide accurate type information.

In the fix to CVE-2021-32629 we fixed this for integer registers by
always spilling/reloading 64 bits; this fix can be seen as the analogous
change for FP/vector regs.
2022-01-04 13:24:40 -08:00

932 lines
34 KiB
Rust

//! This implements the VCode container: a CFG of Insts that have been lowered.
//!
//! VCode is virtual-register code. An instruction in VCode is almost a machine
//! instruction; however, its register slots can refer to virtual registers in
//! addition to real machine registers.
//!
//! VCode is structured with traditional basic blocks, and
//! each block must be terminated by an unconditional branch (one target), a
//! conditional branch (two targets), or a return (no targets). Note that this
//! slightly differs from the machine code of most ISAs: in most ISAs, a
//! conditional branch has one target (and the not-taken case falls through).
//! However, we expect that machine backends will elide branches to the following
//! block (i.e., zero-offset jumps), and will be able to codegen a branch-cond /
//! branch-uncond pair if *both* targets are not fallthrough. This allows us to
//! play with layout prior to final binary emission, as well, if we want.
//!
//! See the main module comment in `mod.rs` for more details on the VCode-based
//! backend pipeline.
use crate::ir::{self, types, Constant, ConstantData, SourceLoc};
use crate::machinst::*;
use crate::settings;
use crate::timing;
use regalloc::Function as RegallocFunction;
use regalloc::Set as RegallocSet;
use regalloc::{
BlockIx, InstIx, PrettyPrint, Range, RegAllocResult, RegClass, RegUsageCollector,
RegUsageMapper, SpillSlot, StackmapRequestInfo,
};
use alloc::boxed::Box;
use alloc::{borrow::Cow, vec::Vec};
use cranelift_entity::{entity_impl, Keys, PrimaryMap};
use std::cell::RefCell;
use std::collections::HashMap;
use std::fmt;
use std::iter;
use std::string::String;
/// Index referring to an instruction in VCode.
pub type InsnIndex = u32;
/// Index referring to a basic block in VCode.
pub type BlockIndex = u32;
/// VCodeInst wraps all requirements for a MachInst to be in VCode: it must be
/// a `MachInst` and it must be able to emit itself at least to a `SizeCodeSink`.
pub trait VCodeInst: MachInst + MachInstEmit {}
impl<I: MachInst + MachInstEmit> VCodeInst for I {}
/// A function in "VCode" (virtualized-register code) form, after lowering.
/// This is essentially a standard CFG of basic blocks, where each basic block
/// consists of lowered instructions produced by the machine-specific backend.
pub struct VCode<I: VCodeInst> {
/// Function liveins.
liveins: RegallocSet<RealReg>,
/// Function liveouts.
liveouts: RegallocSet<RealReg>,
/// VReg IR-level types.
vreg_types: Vec<Type>,
/// Do we have any ref values among our vregs?
have_ref_values: bool,
/// Lowered machine instructions in order corresponding to the original IR.
insts: Vec<I>,
/// Source locations for each instruction. (`SourceLoc` is a `u32`, so it is
/// reasonable to keep one of these per instruction.)
srclocs: Vec<SourceLoc>,
/// Entry block.
entry: BlockIndex,
/// Block instruction indices.
block_ranges: Vec<(InsnIndex, InsnIndex)>,
/// Block successors: index range in the successor-list below.
block_succ_range: Vec<(usize, usize)>,
/// Block successor lists, concatenated into one Vec. The `block_succ_range`
/// list of tuples above gives (start, end) ranges within this list that
/// correspond to each basic block's successors.
block_succs: Vec<BlockIx>,
/// Block-order information.
block_order: BlockLoweringOrder,
/// ABI object.
abi: Box<dyn ABICallee<I = I>>,
/// Constant information used during code emission. This should be
/// immutable across function compilations within the same module.
emit_info: I::Info,
/// Safepoint instruction indices. Filled in post-regalloc. (Prior to
/// regalloc, the safepoint instructions are listed in the separate
/// `StackmapRequestInfo` held separate from the `VCode`.)
safepoint_insns: Vec<InsnIndex>,
/// For each safepoint entry in `safepoint_insns`, a list of `SpillSlot`s.
/// These are used to generate actual stack maps at emission. Filled in
/// post-regalloc.
safepoint_slots: Vec<Vec<SpillSlot>>,
/// Do we generate debug info?
generate_debug_info: bool,
/// Instruction end offsets, instruction indices at each label, and total
/// buffer size. Only present if `generate_debug_info` is set.
insts_layout: RefCell<(Vec<u32>, Vec<u32>, u32)>,
/// Constants.
constants: VCodeConstants,
/// Are any debug value-labels present? If not, we can skip the
/// post-emission analysis.
has_value_labels: bool,
}
/// A builder for a VCode function body. This builder is designed for the
/// lowering approach that we take: we traverse basic blocks in forward
/// (original IR) order, but within each basic block, we generate code from
/// bottom to top; and within each IR instruction that we visit in this reverse
/// order, we emit machine instructions in *forward* order again.
///
/// Hence, to produce the final instructions in proper order, we perform two
/// swaps. First, the machine instructions (`I` instances) are produced in
/// forward order for an individual IR instruction. Then these are *reversed*
/// and concatenated to `bb_insns` at the end of the IR instruction lowering.
/// The `bb_insns` vec will thus contain all machine instructions for a basic
/// block, in reverse order. Finally, when we're done with a basic block, we
/// reverse the whole block's vec of instructions again, and concatenate onto
/// the VCode's insts.
pub struct VCodeBuilder<I: VCodeInst> {
/// In-progress VCode.
vcode: VCode<I>,
/// In-progress stack map-request info.
stack_map_info: StackmapRequestInfo,
/// Index of the last block-start in the vcode.
block_start: InsnIndex,
/// Start of succs for the current block in the concatenated succs list.
succ_start: usize,
/// Current source location.
cur_srcloc: SourceLoc,
}
impl<I: VCodeInst> VCodeBuilder<I> {
/// Create a new VCodeBuilder.
pub fn new(
abi: Box<dyn ABICallee<I = I>>,
emit_info: I::Info,
block_order: BlockLoweringOrder,
constants: VCodeConstants,
) -> VCodeBuilder<I> {
let reftype_class = I::ref_type_regclass(abi.flags());
let vcode = VCode::new(
abi,
emit_info,
block_order,
constants,
/* generate_debug_info = */ true,
);
let stack_map_info = StackmapRequestInfo {
reftype_class,
reftyped_vregs: vec![],
safepoint_insns: vec![],
};
VCodeBuilder {
vcode,
stack_map_info,
block_start: 0,
succ_start: 0,
cur_srcloc: SourceLoc::default(),
}
}
/// Access the ABI object.
pub fn abi(&mut self) -> &mut dyn ABICallee<I = I> {
&mut *self.vcode.abi
}
/// Access to the BlockLoweringOrder object.
pub fn block_order(&self) -> &BlockLoweringOrder {
&self.vcode.block_order
}
/// Set the type of a VReg.
pub fn set_vreg_type(&mut self, vreg: VirtualReg, ty: Type) {
if self.vcode.vreg_types.len() <= vreg.get_index() {
self.vcode
.vreg_types
.resize(vreg.get_index() + 1, ir::types::I8);
}
self.vcode.vreg_types[vreg.get_index()] = ty;
if is_reftype(ty) {
self.stack_map_info.reftyped_vregs.push(vreg);
self.vcode.have_ref_values = true;
}
}
/// Set the current block as the entry block.
pub fn set_entry(&mut self, block: BlockIndex) {
self.vcode.entry = block;
}
/// End the current basic block. Must be called after emitting vcode insts
/// for IR insts and prior to ending the function (building the VCode).
pub fn end_bb(&mut self) {
let start_idx = self.block_start;
let end_idx = self.vcode.insts.len() as InsnIndex;
self.block_start = end_idx;
// Add the instruction index range to the list of blocks.
self.vcode.block_ranges.push((start_idx, end_idx));
// End the successors list.
let succ_end = self.vcode.block_succs.len();
self.vcode
.block_succ_range
.push((self.succ_start, succ_end));
self.succ_start = succ_end;
}
/// Push an instruction for the current BB and current IR inst within the BB.
pub fn push(&mut self, insn: I, is_safepoint: bool) {
match insn.is_term() {
MachTerminator::None | MachTerminator::Ret => {}
MachTerminator::Uncond(target) => {
self.vcode.block_succs.push(BlockIx::new(target.get()));
}
MachTerminator::Cond(true_branch, false_branch) => {
self.vcode.block_succs.push(BlockIx::new(true_branch.get()));
self.vcode
.block_succs
.push(BlockIx::new(false_branch.get()));
}
MachTerminator::Indirect(targets) => {
for target in targets {
self.vcode.block_succs.push(BlockIx::new(target.get()));
}
}
}
if insn.defines_value_label().is_some() {
self.vcode.has_value_labels = true;
}
self.vcode.insts.push(insn);
self.vcode.srclocs.push(self.cur_srcloc);
if is_safepoint {
self.stack_map_info
.safepoint_insns
.push(InstIx::new((self.vcode.insts.len() - 1) as u32));
}
}
/// Set the current source location.
pub fn set_srcloc(&mut self, srcloc: SourceLoc) {
self.cur_srcloc = srcloc;
}
/// Access the constants.
pub fn constants(&mut self) -> &mut VCodeConstants {
&mut self.vcode.constants
}
/// Build the final VCode, returning the vcode itself as well as auxiliary
/// information, such as the stack map request information.
pub fn build(self) -> (VCode<I>, StackmapRequestInfo) {
// TODO: come up with an abstraction for "vcode and auxiliary data". The
// auxiliary data needs to be separate from the vcode so that it can be
// referenced as the vcode is mutated (e.g. by the register allocator).
(self.vcode, self.stack_map_info)
}
}
fn is_redundant_move<I: VCodeInst>(insn: &I) -> bool {
if let Some((to, from)) = insn.is_move() {
to.to_reg() == from
} else {
false
}
}
/// Is this type a reference type?
fn is_reftype(ty: Type) -> bool {
ty == types::R64 || ty == types::R32
}
impl<I: VCodeInst> VCode<I> {
/// New empty VCode.
fn new(
abi: Box<dyn ABICallee<I = I>>,
emit_info: I::Info,
block_order: BlockLoweringOrder,
constants: VCodeConstants,
generate_debug_info: bool,
) -> VCode<I> {
VCode {
liveins: abi.liveins(),
liveouts: abi.liveouts(),
vreg_types: vec![],
have_ref_values: false,
insts: vec![],
srclocs: vec![],
entry: 0,
block_ranges: vec![],
block_succ_range: vec![],
block_succs: vec![],
block_order,
abi,
emit_info,
safepoint_insns: vec![],
safepoint_slots: vec![],
generate_debug_info,
insts_layout: RefCell::new((vec![], vec![], 0)),
constants,
has_value_labels: false,
}
}
/// Returns the flags controlling this function's compilation.
pub fn flags(&self) -> &settings::Flags {
self.abi.flags()
}
/// Get the IR-level type of a VReg.
pub fn vreg_type(&self, vreg: VirtualReg) -> Type {
self.vreg_types[vreg.get_index()]
}
/// Get the number of blocks. Block indices will be in the range `0 ..
/// (self.num_blocks() - 1)`.
pub fn num_blocks(&self) -> usize {
self.block_ranges.len()
}
/// Stack frame size for the full function's body.
pub fn frame_size(&self) -> u32 {
self.abi.frame_size()
}
/// Get the successors for a block.
pub fn succs(&self, block: BlockIndex) -> &[BlockIx] {
let (start, end) = self.block_succ_range[block as usize];
&self.block_succs[start..end]
}
/// Take the results of register allocation, with a sequence of
/// instructions including spliced fill/reload/move instructions, and replace
/// the VCode with them.
pub fn replace_insns_from_regalloc(&mut self, result: RegAllocResult<Self>) {
// Record the spillslot count and clobbered registers for the ABI/stack
// setup code.
self.abi.set_num_spillslots(result.num_spill_slots as usize);
self.abi
.set_clobbered(result.clobbered_registers.map(|r| Writable::from_reg(*r)));
let mut final_insns = vec![];
let mut final_block_ranges = vec![(0, 0); self.num_blocks()];
let mut final_srclocs = vec![];
let mut final_safepoint_insns = vec![];
let mut safept_idx = 0;
assert!(result.target_map.elems().len() == self.num_blocks());
for block in 0..self.num_blocks() {
let start = result.target_map.elems()[block].get() as usize;
let end = if block == self.num_blocks() - 1 {
result.insns.len()
} else {
result.target_map.elems()[block + 1].get() as usize
};
let block = block as BlockIndex;
let final_start = final_insns.len() as InsnIndex;
if block == self.entry {
// Start with the prologue.
let prologue = self.abi.gen_prologue();
let len = prologue.len();
final_insns.extend(prologue.into_iter());
final_srclocs.extend(iter::repeat(SourceLoc::default()).take(len));
}
for i in start..end {
let insn = &result.insns[i];
// Elide redundant moves at this point (we only know what is
// redundant once registers are allocated).
if is_redundant_move(insn) {
continue;
}
// Is there a srcloc associated with this insn? Look it up based on original
// instruction index (if new insn corresponds to some original insn, i.e., is not
// an inserted load/spill/move).
let orig_iix = result.orig_insn_map[InstIx::new(i as u32)];
let srcloc = if orig_iix.is_invalid() {
SourceLoc::default()
} else {
self.srclocs[orig_iix.get() as usize]
};
// Whenever encountering a return instruction, replace it
// with the epilogue.
let is_ret = insn.is_term() == MachTerminator::Ret;
if is_ret {
let epilogue = self.abi.gen_epilogue();
let len = epilogue.len();
final_insns.extend(epilogue.into_iter());
final_srclocs.extend(iter::repeat(srcloc).take(len));
} else {
final_insns.push(insn.clone());
final_srclocs.push(srcloc);
}
// Was this instruction a safepoint instruction? Add its final
// index to the safepoint insn-index list if so.
if safept_idx < result.new_safepoint_insns.len()
&& (result.new_safepoint_insns[safept_idx].get() as usize) == i
{
let idx = final_insns.len() - 1;
final_safepoint_insns.push(idx as InsnIndex);
safept_idx += 1;
}
}
let final_end = final_insns.len() as InsnIndex;
final_block_ranges[block as usize] = (final_start, final_end);
}
debug_assert!(final_insns.len() == final_srclocs.len());
self.insts = final_insns;
self.srclocs = final_srclocs;
self.block_ranges = final_block_ranges;
self.safepoint_insns = final_safepoint_insns;
// Save safepoint slot-lists. These will be passed to the `EmitState`
// for the machine backend during emission so that it can do
// target-specific translations of slot numbers to stack offsets.
self.safepoint_slots = result.stackmaps;
}
/// Emit the instructions to a `MachBuffer`, containing fixed-up code and external
/// reloc/trap/etc. records ready for use.
pub fn emit(
&self,
) -> (
MachBuffer<I>,
Vec<CodeOffset>,
Vec<(CodeOffset, CodeOffset)>,
)
where
I: MachInstEmit,
{
let _tt = timing::vcode_emit();
let mut buffer = MachBuffer::new();
let mut state = I::State::new(&*self.abi);
let cfg_metadata = self.flags().machine_code_cfg_info();
let mut bb_starts: Vec<Option<CodeOffset>> = vec![];
// The first M MachLabels are reserved for block indices, the next N MachLabels for
// constants.
buffer.reserve_labels_for_blocks(self.num_blocks() as BlockIndex);
buffer.reserve_labels_for_constants(&self.constants);
let mut inst_ends = vec![0; self.insts.len()];
let mut label_insn_iix = vec![0; self.num_blocks()];
let mut safepoint_idx = 0;
let mut cur_srcloc = None;
let mut last_offset = None;
for block in 0..self.num_blocks() {
let block = block as BlockIndex;
let new_offset = I::align_basic_block(buffer.cur_offset());
while new_offset > buffer.cur_offset() {
// Pad with NOPs up to the aligned block offset.
let nop = I::gen_nop((new_offset - buffer.cur_offset()) as usize);
nop.emit(&mut buffer, &self.emit_info, &mut Default::default());
}
assert_eq!(buffer.cur_offset(), new_offset);
let (start, end) = self.block_ranges[block as usize];
buffer.bind_label(MachLabel::from_block(block));
label_insn_iix[block as usize] = start;
if cfg_metadata {
// Track BB starts. If we have backed up due to MachBuffer
// branch opts, note that the removed blocks were removed.
let cur_offset = buffer.cur_offset();
if last_offset.is_some() && cur_offset <= last_offset.unwrap() {
for i in (0..bb_starts.len()).rev() {
if bb_starts[i].is_some() && cur_offset > bb_starts[i].unwrap() {
break;
}
bb_starts[i] = None;
}
}
bb_starts.push(Some(cur_offset));
last_offset = Some(cur_offset);
}
for iix in start..end {
let srcloc = self.srclocs[iix as usize];
if cur_srcloc != Some(srcloc) {
if cur_srcloc.is_some() {
buffer.end_srcloc();
}
buffer.start_srcloc(srcloc);
cur_srcloc = Some(srcloc);
}
state.pre_sourceloc(cur_srcloc.unwrap_or(SourceLoc::default()));
if safepoint_idx < self.safepoint_insns.len()
&& self.safepoint_insns[safepoint_idx] == iix
{
if self.safepoint_slots[safepoint_idx].len() > 0 {
let stack_map = self.abi.spillslots_to_stack_map(
&self.safepoint_slots[safepoint_idx][..],
&state,
);
state.pre_safepoint(stack_map);
}
safepoint_idx += 1;
}
self.insts[iix as usize].emit(&mut buffer, &self.emit_info, &mut state);
if self.generate_debug_info {
// Buffer truncation may have happened since last inst append; trim inst-end
// layout info as appropriate.
let l = &mut inst_ends[0..iix as usize];
for end in l.iter_mut().rev() {
if *end > buffer.cur_offset() {
*end = buffer.cur_offset();
} else {
break;
}
}
inst_ends[iix as usize] = buffer.cur_offset();
}
}
if cur_srcloc.is_some() {
buffer.end_srcloc();
cur_srcloc = None;
}
// Do we need an island? Get the worst-case size of the next BB and see if, having
// emitted that many bytes, we will be beyond the deadline.
if block < (self.num_blocks() - 1) as BlockIndex {
let next_block = block + 1;
let next_block_range = self.block_ranges[next_block as usize];
let next_block_size = next_block_range.1 - next_block_range.0;
let worst_case_next_bb = I::worst_case_size() * next_block_size;
if buffer.island_needed(worst_case_next_bb) {
buffer.emit_island(worst_case_next_bb);
}
}
}
// Emit the constants used by the function.
for (constant, data) in self.constants.iter() {
let label = buffer.get_label_for_constant(constant);
buffer.defer_constant(label, data.alignment(), data.as_slice(), u32::max_value());
}
if self.generate_debug_info {
for end in inst_ends.iter_mut().rev() {
if *end > buffer.cur_offset() {
*end = buffer.cur_offset();
} else {
break;
}
}
*self.insts_layout.borrow_mut() = (inst_ends, label_insn_iix, buffer.cur_offset());
}
// Create `bb_edges` and final (filtered) `bb_starts`.
let mut final_bb_starts = vec![];
let mut bb_edges = vec![];
if cfg_metadata {
for block in 0..self.num_blocks() {
if bb_starts[block].is_none() {
// Block was deleted by MachBuffer; skip.
continue;
}
let from = bb_starts[block].unwrap();
final_bb_starts.push(from);
// Resolve each `succ` label and add edges.
let succs = self.block_succs(BlockIx::new(block as u32));
for succ in succs.iter() {
let to = buffer.resolve_label_offset(MachLabel::from_block(succ.get()));
bb_edges.push((from, to));
}
}
}
(buffer, final_bb_starts, bb_edges)
}
/// Generates value-label ranges.
pub fn value_labels_ranges(&self) -> ValueLabelsRanges {
if !self.has_value_labels {
return ValueLabelsRanges::default();
}
let layout = &self.insts_layout.borrow();
debug::compute(&self.insts, &layout.0[..], &layout.1[..])
}
/// Get the offsets of stackslots.
pub fn stackslot_offsets(&self) -> &PrimaryMap<StackSlot, u32> {
self.abi.stackslot_offsets()
}
/// Get the IR block for a BlockIndex, if one exists.
pub fn bindex_to_bb(&self, block: BlockIndex) -> Option<ir::Block> {
self.block_order.lowered_order()[block as usize].orig_block()
}
}
impl<I: VCodeInst> RegallocFunction for VCode<I> {
type Inst = I;
fn insns(&self) -> &[I] {
&self.insts[..]
}
fn insns_mut(&mut self) -> &mut [I] {
&mut self.insts[..]
}
fn get_insn(&self, insn: InstIx) -> &I {
&self.insts[insn.get() as usize]
}
fn get_insn_mut(&mut self, insn: InstIx) -> &mut I {
&mut self.insts[insn.get() as usize]
}
fn blocks(&self) -> Range<BlockIx> {
Range::new(BlockIx::new(0), self.block_ranges.len())
}
fn entry_block(&self) -> BlockIx {
BlockIx::new(self.entry)
}
fn block_insns(&self, block: BlockIx) -> Range<InstIx> {
let (start, end) = self.block_ranges[block.get() as usize];
Range::new(InstIx::new(start), (end - start) as usize)
}
fn block_succs(&self, block: BlockIx) -> Cow<[BlockIx]> {
let (start, end) = self.block_succ_range[block.get() as usize];
Cow::Borrowed(&self.block_succs[start..end])
}
fn is_ret(&self, insn: InstIx) -> bool {
match self.insts[insn.get() as usize].is_term() {
MachTerminator::Ret => true,
_ => false,
}
}
fn is_included_in_clobbers(&self, insn: &I) -> bool {
insn.is_included_in_clobbers()
}
fn get_regs(insn: &I, collector: &mut RegUsageCollector) {
insn.get_regs(collector)
}
fn map_regs<RUM: RegUsageMapper>(insn: &mut I, mapper: &RUM) {
insn.map_regs(mapper);
}
fn is_move(&self, insn: &I) -> Option<(Writable<Reg>, Reg)> {
insn.is_move()
}
fn get_num_vregs(&self) -> usize {
self.vreg_types.len()
}
fn get_spillslot_size(&self, regclass: RegClass, _: VirtualReg) -> u32 {
self.abi.get_spillslot_size(regclass)
}
fn gen_spill(&self, to_slot: SpillSlot, from_reg: RealReg, _: Option<VirtualReg>) -> I {
self.abi.gen_spill(to_slot, from_reg)
}
fn gen_reload(
&self,
to_reg: Writable<RealReg>,
from_slot: SpillSlot,
_: Option<VirtualReg>,
) -> I {
self.abi.gen_reload(to_reg, from_slot)
}
fn gen_move(&self, to_reg: Writable<RealReg>, from_reg: RealReg, vreg: VirtualReg) -> I {
let ty = self.vreg_type(vreg);
I::gen_move(to_reg.map(|r| r.to_reg()), from_reg.to_reg(), ty)
}
fn gen_zero_len_nop(&self) -> I {
I::gen_nop(0)
}
fn maybe_direct_reload(&self, insn: &I, reg: VirtualReg, slot: SpillSlot) -> Option<I> {
insn.maybe_direct_reload(reg, slot)
}
fn func_liveins(&self) -> RegallocSet<RealReg> {
self.liveins.clone()
}
fn func_liveouts(&self) -> RegallocSet<RealReg> {
self.liveouts.clone()
}
}
impl<I: VCodeInst> fmt::Debug for VCode<I> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
writeln!(f, "VCode_Debug {{")?;
writeln!(f, " Entry block: {}", self.entry)?;
for block in 0..self.num_blocks() {
writeln!(f, "Block {}:", block,)?;
for succ in self.succs(block as BlockIndex) {
writeln!(f, " (successor: Block {})", succ.get())?;
}
let (start, end) = self.block_ranges[block];
writeln!(f, " (instruction range: {} .. {})", start, end)?;
for inst in start..end {
writeln!(f, " Inst {}: {:?}", inst, self.insts[inst as usize])?;
}
}
writeln!(f, "}}")?;
Ok(())
}
}
/// Pretty-printing with `RealRegUniverse` context.
impl<I: VCodeInst> PrettyPrint for VCode<I> {
fn show_rru(&self, mb_rru: Option<&RealRegUniverse>) -> String {
use std::fmt::Write;
let mut s = String::new();
write!(&mut s, "VCode_ShowWithRRU {{{{\n").unwrap();
write!(&mut s, " Entry block: {}\n", self.entry).unwrap();
let mut state = Default::default();
let mut safepoint_idx = 0;
for i in 0..self.num_blocks() {
let block = i as BlockIndex;
write!(&mut s, "Block {}:\n", block).unwrap();
if let Some(bb) = self.bindex_to_bb(block) {
write!(&mut s, " (original IR block: {})\n", bb).unwrap();
}
for succ in self.succs(block) {
write!(&mut s, " (successor: Block {})\n", succ.get()).unwrap();
}
let (start, end) = self.block_ranges[block as usize];
write!(&mut s, " (instruction range: {} .. {})\n", start, end).unwrap();
for inst in start..end {
if safepoint_idx < self.safepoint_insns.len()
&& self.safepoint_insns[safepoint_idx] == inst
{
write!(
&mut s,
" (safepoint: slots {:?} with EmitState {:?})\n",
self.safepoint_slots[safepoint_idx], state,
)
.unwrap();
safepoint_idx += 1;
}
write!(
&mut s,
" Inst {}: {}\n",
inst,
self.insts[inst as usize].pretty_print(mb_rru, &mut state)
)
.unwrap();
}
}
write!(&mut s, "}}}}\n").unwrap();
s
}
}
/// This structure tracks the large constants used in VCode that will be emitted separately by the
/// [MachBuffer].
///
/// First, during the lowering phase, constants are inserted using
/// [VCodeConstants.insert]; an intermediate handle, [VCodeConstant], tracks what constants are
/// used in this phase. Some deduplication is performed, when possible, as constant
/// values are inserted.
///
/// Secondly, during the emission phase, the [MachBuffer] assigns [MachLabel]s for each of the
/// constants so that instructions can refer to the value's memory location. The [MachBuffer]
/// then writes the constant values to the buffer.
#[derive(Default)]
pub struct VCodeConstants {
constants: PrimaryMap<VCodeConstant, VCodeConstantData>,
pool_uses: HashMap<Constant, VCodeConstant>,
well_known_uses: HashMap<*const [u8], VCodeConstant>,
}
impl VCodeConstants {
/// Initialize the structure with the expected number of constants.
pub fn with_capacity(expected_num_constants: usize) -> Self {
Self {
constants: PrimaryMap::with_capacity(expected_num_constants),
pool_uses: HashMap::with_capacity(expected_num_constants),
well_known_uses: HashMap::new(),
}
}
/// Insert a constant; using this method indicates that a constant value will be used and thus
/// will be emitted to the `MachBuffer`. The current implementation can deduplicate constants
/// that are [VCodeConstantData::Pool] or [VCodeConstantData::WellKnown] but not
/// [VCodeConstantData::Generated].
pub fn insert(&mut self, data: VCodeConstantData) -> VCodeConstant {
match data {
VCodeConstantData::Generated(_) => self.constants.push(data),
VCodeConstantData::Pool(constant, _) => match self.pool_uses.get(&constant) {
None => {
let vcode_constant = self.constants.push(data);
self.pool_uses.insert(constant, vcode_constant);
vcode_constant
}
Some(&vcode_constant) => vcode_constant,
},
VCodeConstantData::WellKnown(data_ref) => {
match self.well_known_uses.get(&(data_ref as *const [u8])) {
None => {
let vcode_constant = self.constants.push(data);
self.well_known_uses
.insert(data_ref as *const [u8], vcode_constant);
vcode_constant
}
Some(&vcode_constant) => vcode_constant,
}
}
}
}
/// Return the number of constants inserted.
pub fn len(&self) -> usize {
self.constants.len()
}
/// Iterate over the [VCodeConstant] keys inserted in this structure.
pub fn keys(&self) -> Keys<VCodeConstant> {
self.constants.keys()
}
/// Iterate over the [VCodeConstant] keys and the data (as a byte slice) inserted in this
/// structure.
pub fn iter(&self) -> impl Iterator<Item = (VCodeConstant, &VCodeConstantData)> {
self.constants.iter()
}
}
/// A use of a constant by one or more VCode instructions; see [VCodeConstants].
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct VCodeConstant(u32);
entity_impl!(VCodeConstant);
/// Identify the different types of constant that can be inserted into [VCodeConstants]. Tracking
/// these separately instead of as raw byte buffers allows us to avoid some duplication.
pub enum VCodeConstantData {
/// A constant already present in the Cranelift IR
/// [ConstantPool](crate::ir::constant::ConstantPool).
Pool(Constant, ConstantData),
/// A reference to a well-known constant value that is statically encoded within the compiler.
WellKnown(&'static [u8]),
/// A constant value generated during lowering; the value may depend on the instruction context
/// which makes it difficult to de-duplicate--if possible, use other variants.
Generated(ConstantData),
}
impl VCodeConstantData {
/// Retrieve the constant data as a byte slice.
pub fn as_slice(&self) -> &[u8] {
match self {
VCodeConstantData::Pool(_, d) | VCodeConstantData::Generated(d) => d.as_slice(),
VCodeConstantData::WellKnown(d) => d,
}
}
/// Calculate the alignment of the constant data.
pub fn alignment(&self) -> u32 {
if self.as_slice().len() <= 8 {
8
} else {
16
}
}
}
#[cfg(test)]
mod test {
use super::*;
use std::mem::size_of;
#[test]
fn size_of_constant_structs() {
assert_eq!(size_of::<Constant>(), 4);
assert_eq!(size_of::<VCodeConstant>(), 4);
assert_eq!(size_of::<ConstantData>(), 24);
assert_eq!(size_of::<VCodeConstantData>(), 32);
assert_eq!(
size_of::<PrimaryMap<VCodeConstant, VCodeConstantData>>(),
24
);
// TODO The VCodeConstants structure's memory size could be further optimized.
// With certain versions of Rust, each `HashMap` in `VCodeConstants` occupied at
// least 48 bytes, making an empty `VCodeConstants` cost 120 bytes.
}
}