Files
wasmtime/crates/runtime/src/externref.rs
Nick Fitzgerald a8ee0554a9 wasmtime: Initial, partial support for externref
This is enough to get an `externref -> externref` identity function
passing.

However, `externref`s that are dropped by compiled Wasm code are (safely)
leaked. Follow up work will leverage cranelift's stack maps to resolve this
issue.
2020-06-01 15:09:51 -07:00

446 lines
15 KiB
Rust

//! # `VMExternRef`
//!
//! `VMExternRef` is a reference-counted box for any kind of data that is
//! external and opaque to running Wasm. Sometimes it might hold a Wasmtime
//! thing, other times it might hold something from a Wasmtime embedder and is
//! opaque even to us. It is morally equivalent to `Rc<dyn Any>` in Rust, but
//! additionally always fits in a pointer-sized word. `VMExternRef` is
//! non-nullable, but `Option<VMExternRef>` is a null pointer.
//!
//! The one part of `VMExternRef` that can't ever be opaque to us is the
//! reference count. Even when we don't know what's inside an `VMExternRef`, we
//! need to be able to manipulate its reference count as we add and remove
//! references to it. And we need to do this from compiled Wasm code, so it must
//! be `repr(C)`!
//!
//! ## Memory Layout
//!
//! `VMExternRef` itself is just a pointer to an `VMExternData`, which holds the
//! opaque, boxed value, its reference count, and its vtable pointer.
//!
//! The `VMExternData` struct is *preceded* by the dynamically-sized value boxed
//! up and referenced by one or more `VMExternRef`s:
//!
//! ```ignore
//! ,-------------------------------------------------------.
//! | |
//! V |
//! +----------------------------+-----------+-----------+ |
//! | dynamically-sized value... | ref_count | value_ptr |---'
//! +----------------------------+-----------+-----------+
//! | VMExternData |
//! +-----------------------+
//! ^
//! +-------------+ |
//! | VMExternRef |-------------------+
//! +-------------+ |
//! |
//! +-------------+ |
//! | VMExternRef |-------------------+
//! +-------------+ |
//! |
//! ... ===
//! |
//! +-------------+ |
//! | VMExternRef |-------------------'
//! +-------------+
//! ```
//!
//! The `value_ptr` member always points backwards to the start of the
//! dynamically-sized value (which is also the start of the heap allocation for
//! this value-and-`VMExternData` pair). Because it is a `dyn` pointer, it is
//! fat, and also points to the value's `Any` vtable.
//!
//! The boxed value and the `VMExternRef` footer are held a single heap
//! allocation. The layout described above is used to make satisfying the
//! value's alignment easy: we just need to ensure that the heap allocation used
//! to hold everything satisfies its alignment. It also ensures that we don't
//! need a ton of excess padding between the `VMExternData` and the value for
//! values with large alignment.
//!
//! ## Reference Counting Protocol and Wasm Functions
//!
//! Currently, `VMExternRef`s passed into compiled Wasm functions have move
//! semantics: the host code gives up ownership and does not decrement the
//! reference count. Similarly, `VMExternRef`s returned from compiled Wasm
//! functions also have move semantics: host code takes ownership and the
//! reference count is not incremented.
//!
//! This works well when a reference is passed into Wasm and then passed back
//! out again. However, if a reference is passed into Wasm, but not passed back
//! out, then the reference is leaked. This is only a temporary state, and
//! follow up work will leverage stack maps to fix this issue. Follow
//! https://github.com/bytecodealliance/wasmtime/issues/929 to keep an eye on
//! this.
use std::alloc::Layout;
use std::any::Any;
use std::cell::UnsafeCell;
use std::cmp::Ordering;
use std::hash::{Hash, Hasher};
use std::mem;
use std::ops::Deref;
use std::ptr::{self, NonNull};
/// An external reference to some opaque data.
///
/// `VMExternRef`s dereference to their underlying opaque data as `dyn Any`.
///
/// Unlike the `externref` in the Wasm spec, `VMExternRef`s are non-nullable,
/// and always point to a valid value. You may use `Option<VMExternRef>` to
/// represent nullable references, and `Option<VMExternRef>` is guaranteed to
/// have the same size and alignment as a raw pointer, with `None` represented
/// with the null pointer.
///
/// `VMExternRef`s are reference counted, so cloning is a cheap, shallow
/// operation. It also means they are inherently shared, so you may not get a
/// mutable, exclusive reference to their inner contents, only a shared,
/// immutable reference. You may use interior mutability with `RefCell` or
/// `Mutex` to work around this restriction, if necessary.
///
/// `VMExternRef`s have pointer-equality semantics, not structural-equality
/// semantics. Given two `VMExternRef`s `a` and `b`, `a == b` only if `a` and
/// `b` point to the same allocation. `a` and `b` are considered not equal, even
/// if `a` and `b` are two different identical copies of the same data, if they
/// are in two different allocations. The hashing and ordering implementations
/// also only operate on the pointer.
///
/// # Example
///
/// ```
/// # fn foo() -> Result<(), Box<dyn std::error::Error>> {
/// use std::cell::RefCell;
/// use wasmtime_runtime::VMExternRef;
///
/// // Open a file. Wasm doesn't know about files, but we can let Wasm instances
/// // work with files via opaque `externref` handles.
/// let file = std::fs::File::create("some/file/path")?;
///
/// // Wrap the file up as an `VMExternRef` that can be passed to Wasm.
/// let extern_ref_to_file = VMExternRef::new(RefCell::new(file));
///
/// // `VMExternRef`s dereference to `dyn Any`, so you can use `Any` methods to
/// // perform runtime type checks and downcasts.
///
/// assert!(extern_ref_to_file.is::<RefCell<std::fs::File>>());
/// assert!(!extern_ref_to_file.is::<String>());
///
/// if let Some(file) = extern_ref_to_file.downcast_ref::<RefCell<std::fs::File>>() {
/// use std::io::Write;
/// let mut file = file.borrow_mut();
/// writeln!(&mut file, "Hello, `VMExternRef`!")?;
/// }
/// # Ok(())
/// # }
/// ```
#[derive(Debug)]
#[repr(transparent)]
pub struct VMExternRef(NonNull<VMExternData>);
#[repr(C)]
struct VMExternData {
// Implicit, dynamically-sized member that always preceded an
// `VMExternData`.
//
// value: [u8],
//
/// The reference count for this `VMExternData` and value. When it reaches
/// zero, we can safely destroy the value and free this heap
/// allocation. This is an `UnsafeCell`, rather than plain `Cell`, because
/// it can be modified by compiled Wasm code.
///
/// Note: this field's offset must be kept in sync with
/// `wasmtime_environ::VMOffsets::vm_extern_data_ref_count()` which is
/// currently always zero.
ref_count: UnsafeCell<usize>,
/// Always points to the implicit, dynamically-sized `value` member that
/// precedes this `VMExternData`.
value_ptr: NonNull<dyn Any>,
}
impl Clone for VMExternRef {
#[inline]
fn clone(&self) -> VMExternRef {
self.extern_data().increment_ref_count();
VMExternRef(self.0)
}
}
impl Drop for VMExternRef {
#[inline]
fn drop(&mut self) {
let data = self.extern_data();
data.decrement_ref_count();
if data.get_ref_count() == 0 {
// Drop our live reference to `data` before we drop it itself.
drop(data);
unsafe {
VMExternData::drop_and_dealloc(self.0);
}
}
}
}
impl VMExternData {
unsafe fn drop_and_dealloc(mut data: NonNull<VMExternData>) {
// Note: we introduce a block scope so that we drop the live
// reference to the data before we free the heap allocation it
// resides within after this block.
let (alloc_ptr, layout) = {
let data = data.as_mut();
debug_assert_eq!(data.get_ref_count(), 0);
// Same thing, but for the dropping the reference to `value` before
// we drop it itself.
let layout = {
let value = data.value_ptr.as_ref();
let value_size = mem::size_of_val(value);
let value_align = mem::align_of_val(value);
let extern_data_size = mem::size_of::<VMExternData>();
let extern_data_align = mem::align_of::<VMExternData>();
let value_and_padding_size = round_up_to_align(value_size, extern_data_align)
.unwrap_or_else(|| unreachable!());
let alloc_align = std::cmp::max(value_align, extern_data_align);
let alloc_size = value_and_padding_size + extern_data_size;
debug_assert!(Layout::from_size_align(alloc_size, alloc_align).is_ok());
Layout::from_size_align_unchecked(alloc_size, alloc_align)
};
ptr::drop_in_place(data.value_ptr.as_ptr());
let alloc_ptr = data.value_ptr.cast::<u8>();
(alloc_ptr, layout)
};
ptr::drop_in_place(data.as_ptr());
std::alloc::dealloc(alloc_ptr.as_ptr(), layout);
}
#[inline]
fn get_ref_count(&self) -> usize {
unsafe { *self.ref_count.get() }
}
#[inline]
fn increment_ref_count(&self) {
unsafe {
let count = self.ref_count.get();
*count += 1;
}
}
#[inline]
fn decrement_ref_count(&self) {
unsafe {
let count = self.ref_count.get();
*count -= 1;
}
}
}
#[inline]
fn round_up_to_align(n: usize, align: usize) -> Option<usize> {
debug_assert!(align.is_power_of_two());
let align_minus_one = align - 1;
Some(n.checked_add(align_minus_one)? & !align_minus_one)
}
impl VMExternRef {
/// Wrap the given value inside an `VMExternRef`.
pub fn new<T>(value: T) -> VMExternRef
where
T: 'static + Any,
{
VMExternRef::new_with(|| value)
}
/// Construct a new `VMExternRef` in place by invoking `make_value`.
pub fn new_with<T>(make_value: impl FnOnce() -> T) -> VMExternRef
where
T: 'static + Any,
{
let value_size = mem::size_of::<T>();
let value_align = mem::align_of::<T>();
let extern_data_align = mem::align_of::<VMExternData>();
let extern_data_size = mem::size_of::<VMExternData>();
let value_and_padding_size = round_up_to_align(value_size, extern_data_align)
.unwrap_or_else(|| {
Self::alloc_failure();
});
let alloc_align = std::cmp::max(value_align, extern_data_align);
let alloc_size = value_and_padding_size
.checked_add(extern_data_size)
.unwrap_or_else(|| Self::alloc_failure());
unsafe {
debug_assert!(Layout::from_size_align(alloc_size, alloc_align).is_ok());
let layout = Layout::from_size_align_unchecked(alloc_size, alloc_align);
let alloc_ptr = std::alloc::alloc(layout);
let alloc_ptr = NonNull::new(alloc_ptr).unwrap_or_else(|| {
Self::alloc_failure();
});
let value_ptr = alloc_ptr.cast::<T>();
ptr::write(value_ptr.as_ptr(), make_value());
let value_ref: &T = value_ptr.as_ref();
let value_ref: &dyn Any = value_ref as _;
let value_ptr: *const dyn Any = value_ref as _;
let value_ptr: *mut dyn Any = value_ptr as _;
let value_ptr = NonNull::new_unchecked(value_ptr);
let extern_data_ptr =
alloc_ptr.cast::<u8>().as_ptr().add(value_and_padding_size) as *mut VMExternData;
ptr::write(
extern_data_ptr,
VMExternData {
ref_count: UnsafeCell::new(1),
value_ptr,
},
);
VMExternRef(NonNull::new_unchecked(extern_data_ptr))
}
}
/// Turn this `VMExternRef` into a raw, untyped pointer.
///
/// This forgets `self` and does *not* decrement the reference count on the
/// pointed-to data.
///
/// This `VMExternRef` may be recovered with `VMExternRef::from_raw`.
pub fn into_raw(self) -> *mut u8 {
let ptr = self.0.cast::<u8>().as_ptr();
mem::forget(self);
ptr
}
/// Create a `VMExternRef` from a pointer returned from a previous call to
/// `VMExternRef::into_raw`.
///
/// # Safety
///
/// Wildly unsafe to use with anything other than the result of a previous
/// `into_raw` call!
///
/// This method does *not* increment the reference count on the pointed-to
/// data, so `from_raw` must be called at most *once* on the result of a
/// previous `into_raw` call. (Ideally, every `into_raw` is later followed
/// by a `from_raw`, but it is technically memory safe to never call
/// `from_raw` after `into_raw`: it will leak the pointed-to value, which is
/// memory safe).
pub unsafe fn from_raw(ptr: *mut u8) -> Self {
debug_assert!(!ptr.is_null());
VMExternRef(NonNull::new_unchecked(ptr).cast())
}
#[inline(never)]
#[cold]
fn alloc_failure() -> ! {
panic!("VMExternRef allocation failure")
}
#[inline]
fn extern_data(&self) -> &VMExternData {
unsafe { self.0.as_ref() }
}
}
impl PartialEq for VMExternRef {
#[inline]
fn eq(&self, rhs: &Self) -> bool {
ptr::eq(self.0.as_ptr() as *const _, rhs.0.as_ptr() as *const _)
}
}
impl Eq for VMExternRef {}
impl Hash for VMExternRef {
#[inline]
fn hash<H>(&self, hasher: &mut H)
where
H: Hasher,
{
ptr::hash(self.0.as_ptr() as *const _, hasher);
}
}
impl PartialOrd for VMExternRef {
#[inline]
fn partial_cmp(&self, rhs: &Self) -> Option<Ordering> {
let a = self.0.as_ptr() as usize;
let b = rhs.0.as_ptr() as usize;
a.partial_cmp(&b)
}
}
impl Ord for VMExternRef {
#[inline]
fn cmp(&self, rhs: &Self) -> Ordering {
let a = self.0.as_ptr() as usize;
let b = rhs.0.as_ptr() as usize;
a.cmp(&b)
}
}
impl Deref for VMExternRef {
type Target = dyn Any;
fn deref(&self) -> &dyn Any {
unsafe { self.extern_data().value_ptr.as_ref() }
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::convert::TryInto;
#[test]
fn extern_ref_is_pointer_sized_and_aligned() {
assert_eq!(mem::size_of::<VMExternRef>(), mem::size_of::<*mut ()>());
assert_eq!(mem::align_of::<VMExternRef>(), mem::align_of::<*mut ()>());
assert_eq!(
mem::size_of::<Option<VMExternRef>>(),
mem::size_of::<*mut ()>()
);
assert_eq!(
mem::align_of::<Option<VMExternRef>>(),
mem::align_of::<*mut ()>()
);
}
#[test]
fn ref_count_is_at_correct_offset() {
let s = "hi";
let s: &dyn Any = &s as _;
let s: *const dyn Any = s as _;
let s: *mut dyn Any = s as _;
let extern_data = VMExternData {
ref_count: UnsafeCell::new(0),
value_ptr: NonNull::new(s).unwrap(),
};
let extern_data_ptr = &extern_data as *const _;
let ref_count_ptr = &extern_data.ref_count as *const _;
let actual_offset = (ref_count_ptr as usize) - (extern_data_ptr as usize);
assert_eq!(
wasmtime_environ::VMOffsets::vm_extern_data_ref_count(),
actual_offset.try_into().unwrap(),
);
}
}