* Add `anyhow` dependency to `wasmtime-runtime`. * Revert `get_data` back to `fn`. * Remove `DataInitializer` and box the data in `Module` translation instead. * Improve comments on `MemoryInitialization`. * Remove `MemoryInitialization::OutOfBounds` in favor of proper bulk memory semantics. * Use segmented memory initialization except for when the uffd feature is enabled on Linux. * Validate modules with the allocator after translation. * Updated various functions in the runtime to return `anyhow::Result`. * Use a slice when copying pages instead of `ptr::copy_nonoverlapping`. * Remove unnecessary casts in `OnDemandAllocator::deallocate`. * Better document the `uffd` feature. * Use WebAssembly page-sized pages in the paged initialization. * Remove the stack pool from the uffd handler and simply protect just the guard pages.
675 lines
26 KiB
Rust
675 lines
26 KiB
Rust
//! This module implements user space page fault handling with the `userfaultfd` ("uffd") system call on Linux.
|
|
//!
|
|
//! Handling page faults for memory accesses in regions relating to WebAssembly instances
|
|
//! enables the runtime to protect guard pages in user space rather than kernel space (i.e. without `mprotect`).
|
|
//!
|
|
//! Additionally, linear memories can be lazy-initialized upon first access.
|
|
//!
|
|
//! Handling faults in user space is slower than handling faults in the kernel. However,
|
|
//! in use cases where there is a high number of concurrently executing instances, handling the faults
|
|
//! in user space requires rarely changing memory protection levels. This can improve concurrency
|
|
//! by not taking kernel memory manager locks and may decrease TLB shootdowns as fewer page table entries need
|
|
//! to continually change.
|
|
//!
|
|
//! Here's how the `uffd` feature works:
|
|
//!
|
|
//! 1. A user fault file descriptor is created to monitor specific areas of the address space.
|
|
//! 2. A thread is spawned to continually read events from the user fault file descriptor.
|
|
//! 3. When a page fault event is received, the handler thread calculates where the fault occurred:
|
|
//! a) If the fault occurs on a table page, it is handled by zeroing the page.
|
|
//! b) If the fault occurs on a linear memory page, it is handled by either copying the page from
|
|
//! initialization data or zeroing it.
|
|
//! c) If the fault occurs on a guard page, the protection level of the guard page is changed to
|
|
//! force the kernel to signal SIGSEV on the next retry. The faulting page is recorded so the
|
|
//! protection level can be reset in the future.
|
|
//! 4. Faults to address space relating to an instance may occur from both Wasmtime (e.g. instance
|
|
//! initialization) or from WebAssembly code (e.g. reading from or writing to linear memory),
|
|
//! therefore the user fault handling must do as little work as possible to handle the fault.
|
|
//! 5. When the pooling allocator is dropped, it will drop the memory mappings relating to the pool; this
|
|
//! generates unmap events for the fault handling thread, which responds by decrementing the mapping
|
|
//! count. When the count reaches zero, the user fault handling thread will gracefully terminate.
|
|
//!
|
|
//! This feature requires a Linux kernel 4.11 or newer to use.
|
|
|
|
use super::InstancePool;
|
|
use crate::{instance::Instance, Mmap};
|
|
use anyhow::{bail, Context, Result};
|
|
use std::ptr;
|
|
use std::thread;
|
|
use userfaultfd::{Event, FeatureFlags, IoctlFlags, Uffd, UffdBuilder};
|
|
use wasmtime_environ::{entity::EntityRef, wasm::DefinedMemoryIndex, MemoryInitialization};
|
|
|
|
const WASM_PAGE_SIZE: usize = wasmtime_environ::WASM_PAGE_SIZE as usize;
|
|
|
|
pub unsafe fn make_accessible(_addr: *mut u8, _len: usize) -> bool {
|
|
// A no-op when userfaultfd is used
|
|
true
|
|
}
|
|
|
|
pub unsafe fn reset_guard_page(addr: *mut u8, len: usize) -> bool {
|
|
// Guard pages are READ_WRITE with uffd until faulted
|
|
region::protect(addr, len, region::Protection::READ_WRITE).is_ok()
|
|
}
|
|
|
|
pub unsafe fn decommit(addr: *mut u8, len: usize) {
|
|
// Use MADV_DONTNEED to mark the pages as missing
|
|
// This will cause a missing page fault for next access on any page in the given range
|
|
assert_eq!(
|
|
libc::madvise(addr as _, len, libc::MADV_DONTNEED),
|
|
0,
|
|
"madvise failed to mark pages as missing: {}",
|
|
std::io::Error::last_os_error()
|
|
);
|
|
}
|
|
|
|
pub fn create_memory_map(_accessible_size: usize, mapping_size: usize) -> Result<Mmap> {
|
|
// Allocate a single read-write region at once
|
|
// As writable pages need to count towards commit charge, use MAP_NORESERVE to override.
|
|
// This implies that the kernel is configured to allow overcommit or else this allocation
|
|
// will almost certainly fail without a plethora of physical memory to back the allocation.
|
|
// The consequence of not reserving is that our process may segfault on any write to a memory
|
|
// page that cannot be backed (i.e. out of memory conditions).
|
|
|
|
if mapping_size == 0 {
|
|
return Ok(Mmap::new());
|
|
}
|
|
|
|
unsafe {
|
|
let ptr = libc::mmap(
|
|
ptr::null_mut(),
|
|
mapping_size,
|
|
libc::PROT_READ | libc::PROT_WRITE,
|
|
libc::MAP_PRIVATE | libc::MAP_ANON | libc::MAP_NORESERVE,
|
|
-1,
|
|
0,
|
|
);
|
|
|
|
if ptr as isize == -1_isize {
|
|
bail!(
|
|
"failed to allocate pool memory: mmap failed with {}",
|
|
std::io::Error::last_os_error()
|
|
);
|
|
}
|
|
|
|
Ok(Mmap::from_raw(ptr as usize, mapping_size))
|
|
}
|
|
}
|
|
|
|
/// Represents a location of a page fault within monitored regions of memory.
|
|
enum AddressLocation<'a> {
|
|
/// The address location is in a WebAssembly table page.
|
|
/// The fault handler will zero the page as tables are initialized at instantiation-time.
|
|
TablePage {
|
|
/// The address of the page being accessed.
|
|
page_addr: *mut u8,
|
|
/// The length of the page being accessed.
|
|
len: usize,
|
|
},
|
|
/// The address location is in a WebAssembly linear memory page.
|
|
/// The fault handler will copy the pages from initialization data if necessary.
|
|
MemoryPage {
|
|
/// The address of the page being accessed.
|
|
page_addr: *mut u8,
|
|
/// The length of the page being accessed.
|
|
len: usize,
|
|
/// The instance related to the memory page that was accessed.
|
|
instance: &'a Instance,
|
|
/// The index of the memory that was accessed.
|
|
memory_index: DefinedMemoryIndex,
|
|
/// The Wasm page index to initialize if the access was not a guard page.
|
|
page_index: Option<usize>,
|
|
},
|
|
}
|
|
|
|
/// Used to resolve fault addresses to address locations.
|
|
///
|
|
/// This implementation relies heavily on how the various resource pools utilize their memory.
|
|
///
|
|
/// `usize` is used here instead of pointers to keep this `Send` as it gets sent to the handler thread.
|
|
struct AddressLocator {
|
|
instances_start: usize,
|
|
instance_size: usize,
|
|
max_instances: usize,
|
|
memories_start: usize,
|
|
memories_end: usize,
|
|
memory_size: usize,
|
|
max_memories: usize,
|
|
tables_start: usize,
|
|
tables_end: usize,
|
|
table_size: usize,
|
|
page_size: usize,
|
|
}
|
|
|
|
impl AddressLocator {
|
|
fn new(instances: &InstancePool) -> Self {
|
|
let instances_start = instances.mapping.as_ptr() as usize;
|
|
let memories_start = instances.memories.mapping.as_ptr() as usize;
|
|
let memories_end = memories_start + instances.memories.mapping.len();
|
|
let tables_start = instances.tables.mapping.as_ptr() as usize;
|
|
let tables_end = tables_start + instances.tables.mapping.len();
|
|
|
|
// Should always have instances
|
|
debug_assert!(instances_start != 0);
|
|
|
|
Self {
|
|
instances_start,
|
|
instance_size: instances.instance_size,
|
|
max_instances: instances.max_instances,
|
|
memories_start,
|
|
memories_end,
|
|
memory_size: instances.memories.memory_size,
|
|
max_memories: instances.memories.max_memories,
|
|
tables_start,
|
|
tables_end,
|
|
table_size: instances.tables.table_size,
|
|
page_size: instances.tables.page_size,
|
|
}
|
|
}
|
|
|
|
/// This is super-duper unsafe as it is used from the handler thread
|
|
/// to access instance data without any locking primitives.
|
|
///
|
|
/// It is assumed that the thread that owns the instance being accessed is
|
|
/// currently suspended waiting on a fault to be handled.
|
|
///
|
|
/// Of course a stray faulting memory access from a thread that does not own
|
|
/// the instance might introduce a race, but this implementation considers
|
|
/// such to be a serious bug.
|
|
///
|
|
/// If the assumption holds true, accessing the instance data from the handler thread
|
|
/// should, in theory, be safe.
|
|
unsafe fn get_instance(&self, index: usize) -> &Instance {
|
|
debug_assert!(index < self.max_instances);
|
|
&*((self.instances_start + (index * self.instance_size)) as *const Instance)
|
|
}
|
|
|
|
unsafe fn get_location(&self, addr: usize) -> Option<AddressLocation> {
|
|
// Check for a memory location
|
|
if addr >= self.memories_start && addr < self.memories_end {
|
|
let index = (addr - self.memories_start) / self.memory_size;
|
|
let memory_index = DefinedMemoryIndex::new(index % self.max_memories);
|
|
let memory_start = self.memories_start + (index * self.memory_size);
|
|
let page_index = (addr - memory_start) / WASM_PAGE_SIZE;
|
|
let instance = self.get_instance(index / self.max_memories);
|
|
|
|
let init_page_index = instance.memories.get(memory_index).and_then(|m| {
|
|
if page_index < m.size() as usize {
|
|
Some(page_index)
|
|
} else {
|
|
None
|
|
}
|
|
});
|
|
|
|
return Some(AddressLocation::MemoryPage {
|
|
page_addr: (memory_start + page_index * WASM_PAGE_SIZE) as _,
|
|
len: WASM_PAGE_SIZE,
|
|
instance,
|
|
memory_index,
|
|
page_index: init_page_index,
|
|
});
|
|
}
|
|
|
|
// Check for a table location
|
|
if addr >= self.tables_start && addr < self.tables_end {
|
|
let index = (addr - self.tables_start) / self.table_size;
|
|
let table_start = self.tables_start + (index * self.table_size);
|
|
let table_offset = addr - table_start;
|
|
let page_index = table_offset / self.page_size;
|
|
|
|
return Some(AddressLocation::TablePage {
|
|
page_addr: (table_start + (page_index * self.page_size)) as _,
|
|
len: self.page_size,
|
|
});
|
|
}
|
|
|
|
None
|
|
}
|
|
}
|
|
|
|
/// This is called following a fault on a guard page.
|
|
///
|
|
/// Because the region being monitored is protected read-write, this needs to set the
|
|
/// protection level to `NONE` before waking the page.
|
|
///
|
|
/// This will cause the kernel to raise a SIGSEGV when retrying the fault.
|
|
unsafe fn wake_guard_page_access(uffd: &Uffd, page_addr: *const u8, len: usize) -> Result<()> {
|
|
// Set the page to NONE to induce a SIGSEGV for the access on the next retry
|
|
region::protect(page_addr, len, region::Protection::NONE)
|
|
.context("failed to change guard page protection")?;
|
|
|
|
uffd.wake(page_addr as _, len)
|
|
.context("failed to wake guard page access")?;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// This is called to initialize a linear memory page (64 KiB).
|
|
///
|
|
/// If paged initialization is used for the module, then we can instruct the kernel to back the page with
|
|
/// what is already stored in the initialization data; if the page isn't in the initialization data,
|
|
/// it will be zeroed instead.
|
|
///
|
|
/// If paged initialization isn't being used, we zero the page. Initialization happens
|
|
/// at module instantiation in this case and the segment data will be then copied to the zeroed page.
|
|
unsafe fn initialize_wasm_page(
|
|
uffd: &Uffd,
|
|
instance: &Instance,
|
|
page_addr: *const u8,
|
|
memory_index: DefinedMemoryIndex,
|
|
page_index: usize,
|
|
) -> Result<()> {
|
|
// Check for paged initialization and copy the page if present in the initialization data
|
|
if let MemoryInitialization::Paged { map, .. } = &instance.module.memory_initialization {
|
|
let pages = &map[memory_index];
|
|
|
|
if let Some(Some(data)) = pages.get(page_index) {
|
|
debug_assert_eq!(data.len(), WASM_PAGE_SIZE);
|
|
|
|
log::trace!(
|
|
"copying linear memory page from {:p} to {:p}",
|
|
data.as_ptr(),
|
|
page_addr
|
|
);
|
|
|
|
uffd.copy(data.as_ptr() as _, page_addr as _, WASM_PAGE_SIZE, true)
|
|
.context("failed to copy linear memory page")?;
|
|
|
|
return Ok(());
|
|
}
|
|
}
|
|
|
|
log::trace!("zeroing linear memory page at {:p}", page_addr);
|
|
|
|
uffd.zeropage(page_addr as _, WASM_PAGE_SIZE, true)
|
|
.context("failed to zero linear memory page")?;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
unsafe fn handle_page_fault(
|
|
uffd: &Uffd,
|
|
locator: &AddressLocator,
|
|
addr: *mut std::ffi::c_void,
|
|
) -> Result<()> {
|
|
match locator.get_location(addr as usize) {
|
|
Some(AddressLocation::TablePage { page_addr, len }) => {
|
|
log::trace!(
|
|
"handling fault in table at address {:p} on page {:p}",
|
|
addr,
|
|
page_addr,
|
|
);
|
|
|
|
// Tables are always initialized upon instantiation, so zero the page
|
|
uffd.zeropage(page_addr as _, len, true)
|
|
.context("failed to zero table page")?;
|
|
}
|
|
Some(AddressLocation::MemoryPage {
|
|
page_addr,
|
|
len,
|
|
instance,
|
|
memory_index,
|
|
page_index,
|
|
}) => {
|
|
log::trace!(
|
|
"handling fault in linear memory at address {:p} on page {:p}",
|
|
addr,
|
|
page_addr
|
|
);
|
|
|
|
match page_index {
|
|
Some(page_index) => {
|
|
initialize_wasm_page(&uffd, instance, page_addr, memory_index, page_index)?;
|
|
}
|
|
None => {
|
|
log::trace!("out of bounds memory access at {:p}", addr);
|
|
|
|
// Record the guard page fault with the instance so it can be reset later.
|
|
instance.record_guard_page_fault(page_addr, len, reset_guard_page);
|
|
wake_guard_page_access(&uffd, page_addr, len)?;
|
|
}
|
|
}
|
|
}
|
|
None => {
|
|
bail!(
|
|
"failed to locate fault address {:p} in registered memory regions",
|
|
addr
|
|
);
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn handler_thread(uffd: Uffd, locator: AddressLocator, mut registrations: usize) -> Result<()> {
|
|
loop {
|
|
match uffd.read_event().expect("failed to read event") {
|
|
Some(Event::Unmap { start, end }) => {
|
|
log::trace!("memory region unmapped: {:p}-{:p}", start, end);
|
|
|
|
let (start, end) = (start as usize, end as usize);
|
|
|
|
if (start == locator.memories_start && end == locator.memories_end)
|
|
|| (start == locator.tables_start && end == locator.tables_end)
|
|
{
|
|
registrations -= 1;
|
|
if registrations == 0 {
|
|
break;
|
|
}
|
|
} else {
|
|
panic!("unexpected memory region unmapped");
|
|
}
|
|
}
|
|
Some(Event::Pagefault { addr, .. }) => unsafe {
|
|
handle_page_fault(&uffd, &locator, addr as _)?
|
|
},
|
|
Some(_) => continue,
|
|
None => bail!("no event was read from the user fault descriptor"),
|
|
}
|
|
}
|
|
|
|
log::trace!("fault handler thread has successfully terminated");
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub struct PageFaultHandler {
|
|
thread: Option<thread::JoinHandle<Result<()>>>,
|
|
}
|
|
|
|
impl PageFaultHandler {
|
|
pub(super) fn new(instances: &InstancePool) -> Result<Self> {
|
|
let uffd = UffdBuilder::new()
|
|
.close_on_exec(true)
|
|
.require_features(FeatureFlags::EVENT_UNMAP)
|
|
.create()
|
|
.context("failed to create user fault descriptor")?;
|
|
|
|
// Register the ranges with the userfault fd
|
|
let mut registrations = 0;
|
|
for (start, len) in &[
|
|
(
|
|
instances.memories.mapping.as_ptr() as usize,
|
|
instances.memories.mapping.len(),
|
|
),
|
|
(
|
|
instances.tables.mapping.as_ptr() as usize,
|
|
instances.tables.mapping.len(),
|
|
),
|
|
] {
|
|
if *start == 0 || *len == 0 {
|
|
continue;
|
|
}
|
|
|
|
let ioctls = uffd
|
|
.register(*start as _, *len)
|
|
.context("failed to register user fault range")?;
|
|
|
|
if !ioctls.contains(IoctlFlags::WAKE | IoctlFlags::COPY | IoctlFlags::ZEROPAGE) {
|
|
bail!(
|
|
"required user fault ioctls not supported; found: {:?}",
|
|
ioctls,
|
|
);
|
|
}
|
|
|
|
registrations += 1;
|
|
}
|
|
|
|
let thread = if registrations == 0 {
|
|
log::trace!("user fault handling disabled as there are no regions to monitor");
|
|
None
|
|
} else {
|
|
log::trace!(
|
|
"user fault handling enabled on {} memory regions",
|
|
registrations
|
|
);
|
|
|
|
let locator = AddressLocator::new(&instances);
|
|
|
|
Some(
|
|
thread::Builder::new()
|
|
.name("page fault handler".into())
|
|
.spawn(move || handler_thread(uffd, locator, registrations))
|
|
.context("failed to spawn page fault handler thread")?,
|
|
)
|
|
};
|
|
|
|
Ok(Self { thread })
|
|
}
|
|
}
|
|
|
|
impl Drop for PageFaultHandler {
|
|
fn drop(&mut self) {
|
|
// The handler thread should terminate once all monitored regions of memory are unmapped.
|
|
// The pooling instance allocator ensures that the regions are unmapped prior to dropping
|
|
// the user fault handler.
|
|
if let Some(thread) = self.thread.take() {
|
|
thread
|
|
.join()
|
|
.expect("failed to join page fault handler thread")
|
|
.expect("fault handler thread failed");
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use super::*;
|
|
use crate::{
|
|
table::max_table_element_size, Imports, InstanceAllocationRequest, InstanceLimits,
|
|
ModuleLimits, PoolingAllocationStrategy, VMSharedSignatureIndex,
|
|
};
|
|
use std::sync::Arc;
|
|
use wasmtime_environ::{
|
|
entity::PrimaryMap,
|
|
wasm::{Memory, Table, TableElementType, WasmType},
|
|
MemoryPlan, MemoryStyle, Module, TablePlan, TableStyle,
|
|
};
|
|
|
|
#[cfg(target_pointer_width = "64")]
|
|
#[test]
|
|
fn test_address_locator() {
|
|
let module_limits = ModuleLimits {
|
|
imported_functions: 0,
|
|
imported_tables: 0,
|
|
imported_memories: 0,
|
|
imported_globals: 0,
|
|
types: 0,
|
|
functions: 0,
|
|
tables: 3,
|
|
memories: 2,
|
|
globals: 0,
|
|
table_elements: 1000,
|
|
memory_pages: 2,
|
|
};
|
|
let instance_limits = InstanceLimits {
|
|
count: 3,
|
|
memory_reservation_size: (WASM_PAGE_SIZE * 10) as u64,
|
|
};
|
|
|
|
let instances =
|
|
InstancePool::new(&module_limits, &instance_limits).expect("should allocate");
|
|
|
|
let locator = AddressLocator::new(&instances);
|
|
|
|
assert_eq!(locator.instances_start, instances.mapping.as_ptr() as usize);
|
|
assert_eq!(locator.instance_size, 4096);
|
|
assert_eq!(locator.max_instances, 3);
|
|
assert_eq!(
|
|
locator.memories_start,
|
|
instances.memories.mapping.as_ptr() as usize
|
|
);
|
|
assert_eq!(
|
|
locator.memories_end,
|
|
locator.memories_start + instances.memories.mapping.len()
|
|
);
|
|
assert_eq!(locator.memory_size, WASM_PAGE_SIZE * 10);
|
|
assert_eq!(locator.max_memories, 2);
|
|
assert_eq!(
|
|
locator.tables_start,
|
|
instances.tables.mapping.as_ptr() as usize
|
|
);
|
|
assert_eq!(
|
|
locator.tables_end,
|
|
locator.tables_start + instances.tables.mapping.len()
|
|
);
|
|
assert_eq!(locator.table_size, 8192);
|
|
|
|
unsafe {
|
|
assert!(locator.get_location(0).is_none());
|
|
assert!(locator
|
|
.get_location(std::cmp::max(locator.memories_end, locator.tables_end))
|
|
.is_none());
|
|
|
|
let mut module = Module::new();
|
|
|
|
for _ in 0..module_limits.memories {
|
|
module.memory_plans.push(MemoryPlan {
|
|
memory: Memory {
|
|
minimum: 2,
|
|
maximum: Some(2),
|
|
shared: false,
|
|
},
|
|
style: MemoryStyle::Static { bound: 1 },
|
|
offset_guard_size: 0,
|
|
});
|
|
}
|
|
|
|
for _ in 0..module_limits.tables {
|
|
module.table_plans.push(TablePlan {
|
|
table: Table {
|
|
wasm_ty: WasmType::FuncRef,
|
|
ty: TableElementType::Func,
|
|
minimum: 800,
|
|
maximum: Some(900),
|
|
},
|
|
style: TableStyle::CallerChecksSignature,
|
|
});
|
|
}
|
|
|
|
module_limits.validate(&module).expect("should validate");
|
|
|
|
let mut handles = Vec::new();
|
|
let module = Arc::new(module);
|
|
let finished_functions = &PrimaryMap::new();
|
|
|
|
// Allocate the maximum number of instances with the maxmimum number of memories and tables
|
|
for _ in 0..instances.max_instances {
|
|
handles.push(
|
|
instances
|
|
.allocate(
|
|
PoolingAllocationStrategy::Random,
|
|
InstanceAllocationRequest {
|
|
module: module.clone(),
|
|
finished_functions,
|
|
imports: Imports {
|
|
functions: &[],
|
|
tables: &[],
|
|
memories: &[],
|
|
globals: &[],
|
|
},
|
|
lookup_shared_signature: &|_| VMSharedSignatureIndex::default(),
|
|
host_state: Box::new(()),
|
|
interrupts: std::ptr::null(),
|
|
externref_activations_table: std::ptr::null_mut(),
|
|
stack_map_registry: std::ptr::null_mut(),
|
|
},
|
|
)
|
|
.expect("instance should allocate"),
|
|
);
|
|
}
|
|
|
|
// Validate memory locations
|
|
for instance_index in 0..instances.max_instances {
|
|
for memory_index in 0..instances.memories.max_memories {
|
|
let memory_start = locator.memories_start
|
|
+ (instance_index * locator.memory_size * locator.max_memories)
|
|
+ (memory_index * locator.memory_size);
|
|
|
|
// Test for access to first page
|
|
match locator.get_location(memory_start + 10000) {
|
|
Some(AddressLocation::MemoryPage {
|
|
page_addr,
|
|
len,
|
|
instance: _,
|
|
memory_index: mem_index,
|
|
page_index,
|
|
}) => {
|
|
assert_eq!(page_addr, memory_start as _);
|
|
assert_eq!(len, WASM_PAGE_SIZE);
|
|
assert_eq!(mem_index, DefinedMemoryIndex::new(memory_index));
|
|
assert_eq!(page_index, Some(0));
|
|
}
|
|
_ => panic!("expected a memory page location"),
|
|
}
|
|
|
|
// Test for access to second page
|
|
match locator.get_location(memory_start + 1024 + WASM_PAGE_SIZE) {
|
|
Some(AddressLocation::MemoryPage {
|
|
page_addr,
|
|
len,
|
|
instance: _,
|
|
memory_index: mem_index,
|
|
page_index,
|
|
}) => {
|
|
assert_eq!(page_addr, (memory_start + WASM_PAGE_SIZE) as _);
|
|
assert_eq!(len, WASM_PAGE_SIZE);
|
|
assert_eq!(mem_index, DefinedMemoryIndex::new(memory_index));
|
|
assert_eq!(page_index, Some(1));
|
|
}
|
|
_ => panic!("expected a memory page location"),
|
|
}
|
|
|
|
// Test for guard page
|
|
match locator.get_location(memory_start + 10 + 9 * WASM_PAGE_SIZE) {
|
|
Some(AddressLocation::MemoryPage {
|
|
page_addr,
|
|
len,
|
|
instance: _,
|
|
memory_index: mem_index,
|
|
page_index,
|
|
}) => {
|
|
assert_eq!(page_addr, (memory_start + (9 * WASM_PAGE_SIZE)) as _);
|
|
assert_eq!(len, WASM_PAGE_SIZE);
|
|
assert_eq!(mem_index, DefinedMemoryIndex::new(memory_index));
|
|
assert_eq!(page_index, None);
|
|
}
|
|
_ => panic!("expected a memory page location"),
|
|
}
|
|
}
|
|
}
|
|
|
|
// Validate table locations
|
|
for instance_index in 0..instances.max_instances {
|
|
for table_index in 0..instances.tables.max_tables {
|
|
let table_start = locator.tables_start
|
|
+ (instance_index * locator.table_size * instances.tables.max_tables)
|
|
+ (table_index * locator.table_size);
|
|
|
|
// Check for an access of index 107 (first page)
|
|
match locator.get_location(table_start + (107 * max_table_element_size())) {
|
|
Some(AddressLocation::TablePage { page_addr, len }) => {
|
|
assert_eq!(page_addr, table_start as _);
|
|
assert_eq!(len, locator.page_size);
|
|
}
|
|
_ => panic!("expected a table page location"),
|
|
}
|
|
|
|
// Check for an access of index 799 (second page)
|
|
match locator.get_location(table_start + (799 * max_table_element_size())) {
|
|
Some(AddressLocation::TablePage { page_addr, len }) => {
|
|
assert_eq!(page_addr, (table_start + locator.page_size) as _);
|
|
assert_eq!(len, locator.page_size);
|
|
}
|
|
_ => panic!("expected a table page location"),
|
|
}
|
|
}
|
|
}
|
|
|
|
for handle in handles.drain(..) {
|
|
instances.deallocate(&handle);
|
|
}
|
|
}
|
|
}
|
|
}
|