Files
wasmtime/cranelift
Alex Crichton a3b21031d4 Add a MachBuffer::defer_trap method (#6011)
* Add a `MachBuffer::defer_trap` method

This commit adds a new method to `MachBuffer` to defer trap opcodes to
the end of a function in a similar manner to how constants are deferred
to the end of the function. This is useful for backends which frequently
use `TrapIf`-style opcodes. Currently a jump is emitted which skips the
next instruction, a trap, and then execution continues normally. While
there isn't any pressing problem with this construction the trap opcode
is in the middle of the instruction stream as opposed to "off on the
side" despite rarely being taken.

With this method in place all the backends (except riscv64 since I
couldn't figure it out easily enough) have a new lowering of their
`TrapIf` opcode. Now a trap is deferred, which returns a label, and then
that label is jumped to when executing the trap. A fixup is then
recorded in `MachBuffer` to get patched later on during emission, or at
the end of the function. Subsequently all `TrapIf` instructions
translate to a single branch plus a single trap at the end of the
function.

I've additionally further updated some more lowerings in the x64 backend
which were explicitly using traps to instead use `TrapIf` where
applicable to avoid jumping over traps mid-function. Other backends
didn't appear to have many jump-over-the-next-trap patterns.

Lots of tests have had their expectations updated here which should
reflect all the traps being sunk to the end of functions.

* Print trap code on all platforms

* Emit traps before constants

* Preserve source location information for traps

* Fix test expectations

* Attempt to fix s390x

The MachBuffer was registering trap codes with the first byte of the
trap, but the SIGILL handler was expecting it to be registered with the
last byte of the trap. Exploit that SIGILL is always represented with a
2-byte instruction and always march 2-backwards for SIGILL, continuing
to march backwards 1 byte for SIGFPE-generating instructions.

* Back out s390x changes

* Back out more s390x bits

* Review comments
2023-03-20 21:24:47 +00:00
..
2023-03-06 15:08:16 +00:00
2023-03-06 15:08:16 +00:00
2023-03-06 15:08:16 +00:00
2023-03-06 15:08:16 +00:00
2023-03-06 15:08:16 +00:00
2023-03-06 15:08:16 +00:00

Cranelift Code Generator

A Bytecode Alliance project

Cranelift is a low-level retargetable code generator. It translates a target-independent intermediate representation into executable machine code.

Build Status Chat Minimum rustc 1.37 Documentation Status

For more information, see the documentation.

For an example of how to use the JIT, see the JIT Demo, which implements a toy language.

For an example of how to use Cranelift to run WebAssembly code, see Wasmtime, which implements a standalone, embeddable, VM using Cranelift.

Status

Cranelift currently supports enough functionality to run a wide variety of programs, including all the functionality needed to execute WebAssembly (MVP and various extensions like SIMD), although it needs to be used within an external WebAssembly embedding such as Wasmtime to be part of a complete WebAssembly implementation. It is also usable as a backend for non-WebAssembly use cases: for example, there is an effort to build a Rust compiler backend using Cranelift.

Cranelift is production-ready, and is used in production in several places, all within the context of Wasmtime. It is carefully fuzzed as part of Wasmtime with differential comparison against V8 and the executable Wasm spec, and the register allocator is separately fuzzed with symbolic verification. There is an active effort to formally verify Cranelift's instruction-selection backends. We take security seriously and have a security policy as a part of Bytecode Alliance.

Cranelift has three backends: x86-64, aarch64 (aka ARM64), and s390x (aka IBM Z). All three backends fully support enough functionality for Wasm MVP, and x86-64 and aarch64 fully support SIMD as well. On x86-64, Cranelift supports both the System V AMD64 ABI calling convention used on many platforms and the Windows x64 calling convention. On aarch64, Cranelift supports the standard Linux calling convention and also has specific support for macOS (i.e., M1 / Apple Silicon).

Cranelift's code quality is within range of competitiveness to browser JIT engines' optimizing tiers. A recent paper includes third-party benchmarks of Cranelift, driven by Wasmtime, against V8 and an LLVM-based Wasm engine, WAVM (Fig 22). The speed of Cranelift's generated code is ~2% slower than that of V8 (TurboFan), and ~14% slower than WAVM (LLVM). Its compilation speed, in the same paper, is measured as approximately an order of magnitude faster than WAVM (LLVM). We continue to work to improve both measures.

The core codegen crates have minimal dependencies and are carefully written to handle malicious or arbitrary compiler input: in particular, they do not use callstack recursion.

Cranelift performs some basic mitigations for Spectre attacks on heap bounds checks, table bounds checks, and indirect branch bounds checks; see #1032 for more.

Cranelift's APIs are not yet considered stable, though we do follow semantic-versioning (semver) with minor-version patch releases.

Cranelift generally requires the latest stable Rust to build as a policy, and is tested as such, but we can incorporate fixes for compilation with older Rust versions on a best-effort basis.

Contributing

If you're interested in contributing to Cranelift: thank you! We have a contributing guide which will help you getting involved in the Cranelift project.

Planned uses

Cranelift is designed to be a code generator for WebAssembly, but it is general enough to be useful elsewhere too. The initial planned uses that affected its design were:

  • Wasmtime non-Web wasm engine.
  • Debug build backend for the Rust compiler.
  • WebAssembly compiler for the SpiderMonkey engine in Firefox (currently not planned anymore; SpiderMonkey team may re-assess in the future).
  • Backend for the IonMonkey JavaScript JIT compiler in Firefox (currently not planned anymore; SpiderMonkey team may re-assess in the future).

Building Cranelift

Cranelift uses a conventional Cargo build process.

Cranelift consists of a collection of crates, and uses a Cargo Workspace, so for some cargo commands, such as cargo test, the --all is needed to tell cargo to visit all of the crates.

test-all.sh at the top level is a script which runs all the cargo tests and also performs code format, lint, and documentation checks.

Log configuration

Cranelift uses the log crate to log messages at various levels. It doesn't specify any maximal logging level, so embedders can choose what it should be; however, this can have an impact of Cranelift's code size. You can use log features to reduce the maximum logging level. For instance if you want to limit the level of logging to warn messages and above in release mode:

[dependency.log]
...
features = ["release_max_level_warn"]

Editor Support

Editor support for working with Cranelift IR (clif) files: