Files
wasmtime/lib/cretonne/src/legalizer/mod.rs
Eric Anholt a332c3d024 Make sure that encodings has entries for all instructions after legalize().
If we generated new instructions as part of legalize, and the new
instructions failed to legalize, we'd be left with a func.encodings[]
that would panic when you dereferenced the inst.
2017-04-23 17:21:32 -07:00

111 lines
5.1 KiB
Rust

//! Legalize instructions.
//!
//! A legal instruction is one that can be mapped directly to a machine code instruction for the
//! target ISA. The `legalize_function()` function takes as input any function and transforms it
//! into an equivalent function using only legal instructions.
//!
//! The characteristics of legal instructions depend on the target ISA, so any given instruction
//! can be legal for one ISA and illegal for another.
//!
//! Besides transforming instructions, the legalizer also fills out the `function.encodings` map
//! which provides a legal encoding recipe for every instruction.
//!
//! The legalizer does not deal with register allocation constraints. These constraints are derived
//! from the encoding recipes, and solved later by the register allocator.
use flowgraph::ControlFlowGraph;
use ir::{Function, Cursor, DataFlowGraph, InstructionData, Opcode, InstBuilder};
use ir::condcodes::IntCC;
use isa::{TargetIsa, Legalize};
mod boundary;
mod split;
/// Legalize `func` for `isa`.
///
/// - Transform any instructions that don't have a legal representation in `isa`.
/// - Fill out `func.encodings`.
///
pub fn legalize_function(func: &mut Function, cfg: &mut ControlFlowGraph, isa: &TargetIsa) {
boundary::legalize_signatures(func, isa);
func.encodings.resize(func.dfg.num_insts());
// Process EBBs in a reverse post-order. This minimizes the number of split instructions we
// need.
let mut postorder = cfg.postorder_ebbs();
let mut pos = Cursor::new(&mut func.layout);
while let Some(ebb) = postorder.pop() {
pos.goto_top(ebb);
// Keep track of the cursor position before the instruction being processed, so we can
// double back when replacing instructions.
let mut prev_pos = pos.position();
while let Some(inst) = pos.next_inst() {
let opcode = func.dfg[inst].opcode();
// Check for ABI boundaries that need to be converted to the legalized signature.
if opcode.is_call() && boundary::handle_call_abi(&mut func.dfg, cfg, &mut pos) {
// Go back and legalize the inserted argument conversion instructions.
pos.set_position(prev_pos);
continue;
}
if opcode.is_return() &&
boundary::handle_return_abi(&mut func.dfg, cfg, &mut pos, &func.signature) {
// Go back and legalize the inserted return value conversion instructions.
pos.set_position(prev_pos);
continue;
}
if opcode.is_branch() {
split::simplify_branch_arguments(&mut func.dfg, inst);
}
match isa.encode(&func.dfg, &func.dfg[inst], func.dfg.ctrl_typevar(inst)) {
Ok(encoding) => *func.encodings.ensure(inst) = encoding,
Err(action) => {
// We should transform the instruction into legal equivalents.
// Possible strategies are:
// 1. Legalize::Expand: Expand instruction into sequence of legal instructions.
// Possibly iteratively. ()
// 2. Legalize::Narrow: Split the controlling type variable into high and low
// parts. This applies both to SIMD vector types which can be halved and to
// integer types such as `i64` used on a 32-bit ISA. ().
// 3. TODO: Promote the controlling type variable to a larger type. This
// typically means expressing `i8` and `i16` arithmetic in terms if `i32`
// operations on RISC targets. (It may or may not be beneficial to promote
// small vector types versus splitting them.)
// 4. TODO: Convert to library calls. For example, floating point operations on
// an ISA with no IEEE 754 support.
let changed = match action {
Legalize::Expand => expand(&mut func.dfg, cfg, &mut pos),
Legalize::Narrow => narrow(&mut func.dfg, cfg, &mut pos),
};
// If the current instruction was replaced, we need to double back and revisit
// the expanded sequence. This is both to assign encodings and possible to
// expand further.
// There's a risk of infinite looping here if the legalization patterns are
// unsound. Should we attempt to detect that?
if changed {
pos.set_position(prev_pos);
continue;
}
}
}
// Remember this position in case we need to double back.
prev_pos = pos.position();
}
}
func.encodings.resize(func.dfg.num_insts());
}
// Include legalization patterns that were generated by `gen_legalizer.py` from the `XForms` in
// `meta/cretonne/legalize.py`.
//
// Concretely, this defines private functions `narrow()`, and `expand()`.
include!(concat!(env!("OUT_DIR"), "/legalizer.rs"));