Files
wasmtime/crates/runtime/src/memory.rs
Alex Crichton 63a3bbbf5a Change VMMemoryDefinition::current_length to usize (#3134)
* Change VMMemoryDefinition::current_length to `usize`

This commit changes the definition of
`VMMemoryDefinition::current_length` to `usize` from its previous
definition of `u32`. This is a pretty impactful change because it also
changes the cranelift semantics of "dynamic" heaps where the bound
global value specifier must now match the pointer type for the platform
rather than the index type for the heap.

The motivation for this change is that the `current_length` field (or
bound for the heap) is intended to reflect the current size of the heap.
This is bound by `usize` on the host platform rather than `u32` or`
u64`. The previous choice of `u32` couldn't represent a 4GB memory
because we couldn't put a number representing 4GB into the
`current_length` field. By using `usize`, which reflects the host's
memory allocation, this should better reflect the size of the heap and
allows Wasmtime to support a full 4GB heap for a wasm program (instead
of 4GB minus one page).

This commit also updates the legalization of the `heap_addr` clif
instruction to appropriately cast the address to the platform's pointer
type, handling bounds checks along the way. The practical impact for
today's targets is that a `uextend` is happening sooner than it happened
before, but otherwise there is no intended impact of this change. In the
future when 64-bit memories are supported there will likely need to be
fancier logic which handles offsets a bit differently (especially in the
case of a 64-bit memory on a 32-bit host).

The clif `filetest` changes should show the differences in codegen, and
the Wasmtime changes are largely removing casts here and there.

Closes #3022

* Add tests for memory.size at maximum memory size

* Add a dfg helper method
2021-08-02 13:09:40 -05:00

450 lines
15 KiB
Rust

//! Memory management for linear memories.
//!
//! `RuntimeLinearMemory` is to WebAssembly linear memories what `Table` is to WebAssembly tables.
use crate::mmap::Mmap;
use crate::vmcontext::VMMemoryDefinition;
use crate::ResourceLimiter;
use anyhow::{bail, Result};
use more_asserts::{assert_ge, assert_le};
use std::convert::TryFrom;
use wasmtime_environ::{MemoryPlan, MemoryStyle, WASM_MAX_PAGES, WASM_PAGE_SIZE};
/// A memory allocator
pub trait RuntimeMemoryCreator: Send + Sync {
/// Create new RuntimeLinearMemory
fn new_memory(&self, plan: &MemoryPlan) -> Result<Box<dyn RuntimeLinearMemory>>;
}
/// A default memory allocator used by Wasmtime
pub struct DefaultMemoryCreator;
impl RuntimeMemoryCreator for DefaultMemoryCreator {
/// Create new MmapMemory
fn new_memory(&self, plan: &MemoryPlan) -> Result<Box<dyn RuntimeLinearMemory>> {
Ok(Box::new(MmapMemory::new(plan)?) as _)
}
}
/// A linear memory
pub trait RuntimeLinearMemory: Send + Sync {
/// Returns the number of allocated wasm pages.
fn size(&self) -> u32;
/// Returns the maximum number of pages the memory can grow to.
/// Returns `None` if the memory is unbounded.
fn maximum(&self) -> Option<u32>;
/// Grow memory by the specified amount of wasm pages.
///
/// Returns `None` if memory can't be grown by the specified amount
/// of wasm pages.
fn grow(&mut self, delta: u32) -> Option<u32>;
/// Return a `VMMemoryDefinition` for exposing the memory to compiled wasm code.
fn vmmemory(&self) -> VMMemoryDefinition;
}
/// A linear memory instance.
#[derive(Debug)]
pub struct MmapMemory {
// The underlying allocation.
mmap: WasmMmap,
// The optional maximum size in wasm pages of this linear memory.
maximum: Option<u32>,
// Size in bytes of extra guard pages before the start and after the end to
// optimize loads and stores with constant offsets.
pre_guard_size: usize,
offset_guard_size: usize,
}
#[derive(Debug)]
struct WasmMmap {
// Our OS allocation of mmap'd memory.
alloc: Mmap,
// The current logical size in wasm pages of this linear memory.
size: u32,
}
impl MmapMemory {
/// Create a new linear memory instance with specified minimum and maximum number of wasm pages.
pub fn new(plan: &MemoryPlan) -> Result<Self> {
// `maximum` cannot be set to more than `65536` pages.
assert_le!(plan.memory.minimum, WASM_MAX_PAGES);
assert!(plan.memory.maximum.is_none() || plan.memory.maximum.unwrap() <= WASM_MAX_PAGES);
let offset_guard_bytes = plan.offset_guard_size as usize;
let pre_guard_bytes = plan.pre_guard_size as usize;
let minimum_pages = match plan.style {
MemoryStyle::Dynamic => plan.memory.minimum,
MemoryStyle::Static { bound } => {
assert_ge!(bound, plan.memory.minimum);
bound
}
} as usize;
let minimum_bytes = minimum_pages.checked_mul(WASM_PAGE_SIZE as usize).unwrap();
let request_bytes = pre_guard_bytes
.checked_add(minimum_bytes)
.unwrap()
.checked_add(offset_guard_bytes)
.unwrap();
let mapped_pages = plan.memory.minimum as usize;
let accessible_bytes = mapped_pages * WASM_PAGE_SIZE as usize;
let mut mmap = WasmMmap {
alloc: Mmap::accessible_reserved(0, request_bytes)?,
size: plan.memory.minimum,
};
if accessible_bytes > 0 {
mmap.alloc
.make_accessible(pre_guard_bytes, accessible_bytes)?;
}
Ok(Self {
mmap: mmap.into(),
maximum: plan.memory.maximum,
pre_guard_size: pre_guard_bytes,
offset_guard_size: offset_guard_bytes,
})
}
}
impl RuntimeLinearMemory for MmapMemory {
/// Returns the number of allocated wasm pages.
fn size(&self) -> u32 {
self.mmap.size
}
/// Returns the maximum number of pages the memory can grow to.
/// Returns `None` if the memory is unbounded.
fn maximum(&self) -> Option<u32> {
self.maximum
}
/// Grow memory by the specified amount of wasm pages.
///
/// Returns `None` if memory can't be grown by the specified amount
/// of wasm pages.
fn grow(&mut self, delta: u32) -> Option<u32> {
// Optimization of memory.grow 0 calls.
if delta == 0 {
return Some(self.mmap.size);
}
let new_pages = match self.mmap.size.checked_add(delta) {
Some(new_pages) => new_pages,
// Linear memory size overflow.
None => return None,
};
let prev_pages = self.mmap.size;
if let Some(maximum) = self.maximum {
if new_pages > maximum {
// Linear memory size would exceed the declared maximum.
return None;
}
}
// Wasm linear memories are never allowed to grow beyond what is
// indexable. If the memory has no maximum, enforce the greatest
// limit here.
if new_pages > WASM_MAX_PAGES {
// Linear memory size would exceed the index range.
return None;
}
let delta_bytes = usize::try_from(delta).unwrap() * WASM_PAGE_SIZE as usize;
let prev_bytes = usize::try_from(prev_pages).unwrap() * WASM_PAGE_SIZE as usize;
let new_bytes = usize::try_from(new_pages).unwrap() * WASM_PAGE_SIZE as usize;
if new_bytes > self.mmap.alloc.len() - self.offset_guard_size - self.pre_guard_size {
// If the new size is within the declared maximum, but needs more memory than we
// have on hand, it's a dynamic heap and it can move.
let request_bytes = self
.pre_guard_size
.checked_add(new_bytes)?
.checked_add(self.offset_guard_size)?;
let mut new_mmap = Mmap::accessible_reserved(0, request_bytes).ok()?;
new_mmap
.make_accessible(self.pre_guard_size, new_bytes)
.ok()?;
new_mmap.as_mut_slice()[self.pre_guard_size..][..prev_bytes]
.copy_from_slice(&self.mmap.alloc.as_slice()[self.pre_guard_size..][..prev_bytes]);
self.mmap.alloc = new_mmap;
} else if delta_bytes > 0 {
// Make the newly allocated pages accessible.
self.mmap
.alloc
.make_accessible(self.pre_guard_size + prev_bytes, delta_bytes)
.ok()?;
}
self.mmap.size = new_pages;
Some(prev_pages)
}
/// Return a `VMMemoryDefinition` for exposing the memory to compiled wasm code.
fn vmmemory(&self) -> VMMemoryDefinition {
VMMemoryDefinition {
base: unsafe { self.mmap.alloc.as_mut_ptr().add(self.pre_guard_size) },
current_length: self.mmap.size as usize * WASM_PAGE_SIZE as usize,
}
}
}
/// Representation of a runtime wasm linear memory.
pub enum Memory {
/// A "static" memory where the lifetime of the backing memory is managed
/// elsewhere. Currently used with the pooling allocator.
Static {
/// The memory in the host for this wasm memory. The length of this
/// slice is the maximum size of the memory that can be grown to.
base: &'static mut [u8],
/// The current size, in wasm pages, of this memory.
size: u32,
/// A callback which makes portions of `base` accessible for when memory
/// is grown. Otherwise it's expected that accesses to `base` will
/// fault.
make_accessible: fn(*mut u8, usize) -> Result<()>,
/// Stores the pages in the linear memory that have faulted as guard pages when using the `uffd` feature.
/// These pages need their protection level reset before the memory can grow.
#[cfg(all(feature = "uffd", target_os = "linux"))]
guard_page_faults: Vec<(usize, usize, fn(*mut u8, usize) -> Result<()>)>,
},
/// A "dynamic" memory whose data is managed at runtime and lifetime is tied
/// to this instance.
Dynamic(Box<dyn RuntimeLinearMemory>),
}
impl Memory {
/// Create a new dynamic (movable) memory instance for the specified plan.
pub fn new_dynamic(
plan: &MemoryPlan,
creator: &dyn RuntimeMemoryCreator,
limiter: Option<&mut dyn ResourceLimiter>,
) -> Result<Self> {
Self::limit_new(plan, limiter)?;
Ok(Memory::Dynamic(creator.new_memory(plan)?))
}
/// Create a new static (immovable) memory instance for the specified plan.
pub fn new_static(
plan: &MemoryPlan,
base: &'static mut [u8],
make_accessible: fn(*mut u8, usize) -> Result<()>,
limiter: Option<&mut dyn ResourceLimiter>,
) -> Result<Self> {
Self::limit_new(plan, limiter)?;
let base = match plan.memory.maximum {
Some(max) if (max as usize) < base.len() / (WASM_PAGE_SIZE as usize) => {
&mut base[..(max * WASM_PAGE_SIZE) as usize]
}
_ => base,
};
if plan.memory.minimum > 0 {
make_accessible(
base.as_mut_ptr(),
plan.memory.minimum as usize * WASM_PAGE_SIZE as usize,
)?;
}
Ok(Memory::Static {
base,
size: plan.memory.minimum,
make_accessible,
#[cfg(all(feature = "uffd", target_os = "linux"))]
guard_page_faults: Vec::new(),
})
}
fn limit_new(plan: &MemoryPlan, limiter: Option<&mut dyn ResourceLimiter>) -> Result<()> {
if let Some(limiter) = limiter {
if !limiter.memory_growing(0, plan.memory.minimum, plan.memory.maximum) {
bail!(
"memory minimum size of {} pages exceeds memory limits",
plan.memory.minimum
);
}
}
Ok(())
}
/// Returns the number of allocated wasm pages.
pub fn size(&self) -> u32 {
match self {
Memory::Static { size, .. } => *size,
Memory::Dynamic(mem) => mem.size(),
}
}
/// Returns the maximum number of pages the memory can grow to at runtime.
///
/// Returns `None` if the memory is unbounded.
///
/// The runtime maximum may not be equal to the maximum from the linear memory's
/// Wasm type when it is being constrained by an instance allocator.
pub fn maximum(&self) -> Option<u32> {
match self {
Memory::Static { base, .. } => Some((base.len() / (WASM_PAGE_SIZE as usize)) as u32),
Memory::Dynamic(mem) => mem.maximum(),
}
}
/// Returns whether or not the underlying storage of the memory is "static".
pub(crate) fn is_static(&self) -> bool {
if let Memory::Static { .. } = self {
true
} else {
false
}
}
/// Grow memory by the specified amount of wasm pages.
///
/// Returns `None` if memory can't be grown by the specified amount
/// of wasm pages.
///
/// # Safety
///
/// Resizing the memory can reallocate the memory buffer for dynamic memories.
/// An instance's `VMContext` may have pointers to the memory's base and will
/// need to be fixed up after growing the memory.
///
/// Generally, prefer using `InstanceHandle::memory_grow`, which encapsulates
/// this unsafety.
pub unsafe fn grow(
&mut self,
delta: u32,
limiter: Option<&mut dyn ResourceLimiter>,
) -> Option<u32> {
let old_size = self.size();
if delta == 0 {
return Some(old_size);
}
let new_size = old_size.checked_add(delta)?;
let maximum = self.maximum();
if let Some(limiter) = limiter {
if !limiter.memory_growing(old_size, new_size, maximum) {
return None;
}
}
#[cfg(all(feature = "uffd", target_os = "linux"))]
{
if self.is_static() {
// Reset any faulted guard pages before growing the memory.
self.reset_guard_pages().ok()?;
}
}
match self {
Memory::Static {
base,
size,
make_accessible,
..
} => {
if new_size > maximum.unwrap_or(WASM_MAX_PAGES) {
return None;
}
let start = usize::try_from(old_size).unwrap() * WASM_PAGE_SIZE as usize;
let len = usize::try_from(delta).unwrap() * WASM_PAGE_SIZE as usize;
make_accessible(base.as_mut_ptr().add(start), len).ok()?;
*size = new_size;
Some(old_size)
}
Memory::Dynamic(mem) => mem.grow(delta),
}
}
/// Return a `VMMemoryDefinition` for exposing the memory to compiled wasm code.
pub fn vmmemory(&self) -> VMMemoryDefinition {
match self {
Memory::Static { base, size, .. } => VMMemoryDefinition {
base: base.as_ptr() as *mut _,
current_length: *size as usize * WASM_PAGE_SIZE as usize,
},
Memory::Dynamic(mem) => mem.vmmemory(),
}
}
/// Records a faulted guard page in a static memory.
///
/// This is used to track faulted guard pages that need to be reset for the uffd feature.
///
/// This function will panic if called on a dynamic memory.
#[cfg(all(feature = "uffd", target_os = "linux"))]
pub(crate) fn record_guard_page_fault(
&mut self,
page_addr: *mut u8,
size: usize,
reset: fn(*mut u8, usize) -> Result<()>,
) {
match self {
Memory::Static {
guard_page_faults, ..
} => {
guard_page_faults.push((page_addr as usize, size, reset));
}
Memory::Dynamic(_) => {
unreachable!("dynamic memories should not have guard page faults")
}
}
}
/// Resets the previously faulted guard pages of a static memory.
///
/// This is used to reset the protection of any guard pages that were previously faulted.
///
/// This function will panic if called on a dynamic memory.
#[cfg(all(feature = "uffd", target_os = "linux"))]
pub(crate) fn reset_guard_pages(&mut self) -> Result<()> {
match self {
Memory::Static {
guard_page_faults, ..
} => {
for (addr, len, reset) in guard_page_faults.drain(..) {
reset(addr as *mut u8, len)?;
}
}
Memory::Dynamic(_) => {
unreachable!("dynamic memories should not have guard page faults")
}
}
Ok(())
}
}
// The default memory representation is an empty memory that cannot grow.
impl Default for Memory {
fn default() -> Self {
Memory::Static {
base: &mut [],
size: 0,
make_accessible: |_, _| unreachable!(),
#[cfg(all(feature = "uffd", target_os = "linux"))]
guard_page_faults: Vec::new(),
}
}
}