Files
wasmtime/lib/codegen/src/ir/memflags.rs
Dan Gohman 24fa169e1f Rename the 'cretonne' crate to 'cretonne-codegen'.
This fixes the next part of #287.
2018-04-17 09:46:56 -07:00

94 lines
2.6 KiB
Rust

//! Memory operation flags.
use std::fmt;
enum FlagBit {
Notrap,
Aligned,
}
const NAMES: [&str; 2] = ["notrap", "aligned"];
/// Flags for memory operations like load/store.
///
/// Each of these flags introduce a limited form of undefined behavior. The flags each enable
/// certain optimizations that need to make additional assumptions. Generally, the semantics of a
/// program does not change when a flag is removed, but adding a flag will.
#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
pub struct MemFlags {
bits: u8,
}
impl MemFlags {
/// Create a new empty set of flags.
pub fn new() -> Self {
Self { bits: 0 }
}
/// Read a flag bit.
fn read(self, bit: FlagBit) -> bool {
self.bits & (1 << bit as usize) != 0
}
/// Set a flag bit.
fn set(&mut self, bit: FlagBit) {
self.bits |= 1 << bit as usize
}
/// Set a flag bit by name.
///
/// Returns true if the flag was found and set, false for an unknown flag name.
pub fn set_by_name(&mut self, name: &str) -> bool {
match NAMES.iter().position(|&s| s == name) {
Some(bit) => {
self.bits |= 1 << bit;
true
}
None => false,
}
}
/// Test if the `notrap` flag is set.
///
/// Normally, trapping is part of the semantics of a load/store operation. If the platform
/// would cause a trap when accessing the effective address, the Cretonne memory operation is
/// also required to trap.
///
/// The `notrap` flag tells Cretonne that the memory is *accessible*, which means that
/// accesses will not trap. This makes it possible to delete an unused load or a dead store
/// instruction.
pub fn notrap(self) -> bool {
self.read(FlagBit::Notrap)
}
/// Set the `notrap` flag.
pub fn set_notrap(&mut self) {
self.set(FlagBit::Notrap)
}
/// Test if the `aligned` flag is set.
///
/// By default, Cretonne memory instructions work with any unaligned effective address. If the
/// `aligned` flag is set, the instruction is permitted to trap or return a wrong result if the
/// effective address is misaligned.
pub fn aligned(self) -> bool {
self.read(FlagBit::Aligned)
}
/// Set the `aligned` flag.
pub fn set_aligned(&mut self) {
self.set(FlagBit::Aligned)
}
}
impl fmt::Display for MemFlags {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
for (i, n) in NAMES.iter().enumerate() {
if self.bits & (1 << i) != 0 {
write!(f, " {}", n)?;
}
}
Ok(())
}
}