Files
wasmtime/lib/reader/src/lexer.rs

539 lines
18 KiB
Rust

// ====--------------------------------------------------------------------------------------====//
//
// Lexical analysis for .cton files.
//
// ====--------------------------------------------------------------------------------------====//
use std::str::CharIndices;
use std::u16;
use cretonne::ir::types;
use cretonne::ir::{Value, Ebb};
use error::Location;
/// A Token returned from the `Lexer`.
///
/// Some variants may contains references to the original source text, so the `Token` has the same
/// lifetime as the source.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum Token<'a> {
Comment(&'a str),
LPar, // '('
RPar, // ')'
LBrace, // '{'
RBrace, // '}'
LBracket, // '['
RBracket, // ']'
Minus, // '-'
Comma, // ','
Dot, // '.'
Colon, // ':'
Equal, // '='
Arrow, // '->'
Float(&'a str), // Floating point immediate
Integer(&'a str), // Integer immediate
Type(types::Type), // i32, f32, b32x4, ...
Value(Value), // v12, vx7
Ebb(Ebb), // ebb3
StackSlot(u32), // ss3
JumpTable(u32), // jt2
FuncRef(u32), // fn2
SigRef(u32), // sig2
Name(&'a str), // %9arbitrary_alphanum, %x3, %0, %function ...
HexSequence(&'a str), // #89AF
Identifier(&'a str), // Unrecognized identifier (opcode, enumerator, ...)
}
/// A `Token` with an associated location.
#[derive(Debug, PartialEq, Eq)]
pub struct LocatedToken<'a> {
pub token: Token<'a>,
pub location: Location,
}
/// Wrap up a `Token` with the given location.
fn token<'a>(token: Token<'a>, loc: Location) -> Result<LocatedToken<'a>, LocatedError> {
Ok(LocatedToken {
token: token,
location: loc,
})
}
/// An error from the lexical analysis.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Error {
InvalidChar,
}
/// An `Error` with an associated Location.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct LocatedError {
pub error: Error,
pub location: Location,
}
/// Wrap up an `Error` with the given location.
fn error<'a>(error: Error, loc: Location) -> Result<LocatedToken<'a>, LocatedError> {
Err(LocatedError {
error: error,
location: loc,
})
}
/// Get the number of decimal digits at the end of `s`.
fn trailing_digits(s: &str) -> usize {
// It's faster to iterate backwards over bytes, and we're only counting ASCII digits.
s.as_bytes().iter().rev().cloned().take_while(|&b| b'0' <= b && b <= b'9').count()
}
/// Pre-parse a supposed entity name by splitting it into two parts: A head of lowercase ASCII
/// letters and numeric tail.
pub fn split_entity_name(name: &str) -> Option<(&str, u32)> {
let (head, tail) = name.split_at(name.len() - trailing_digits(name));
if tail.len() > 1 && tail.starts_with('0') {
None
} else {
tail.parse().ok().map(|n| (head, n))
}
}
/// Lexical analysis.
///
/// A `Lexer` reads text from a `&str` and provides a sequence of tokens.
///
/// Also keep track of a line number for error reporting.
///
pub struct Lexer<'a> {
// Complete source being processed.
source: &'a str,
// Iterator into `source`.
chars: CharIndices<'a>,
// Next character to be processed, or `None` at the end.
lookahead: Option<char>,
// Index into `source` of lookahead character.
pos: usize,
// Current line number.
line_number: usize,
}
impl<'a> Lexer<'a> {
pub fn new(s: &'a str) -> Lexer {
let mut lex = Lexer {
source: s,
chars: s.char_indices(),
lookahead: None,
pos: 0,
line_number: 1,
};
// Advance to the first char.
lex.next_ch();
lex
}
// Advance to the next character.
// Return the next lookahead character, or None when the end is encountered.
// Always update cur_ch to reflect
fn next_ch(&mut self) -> Option<char> {
if self.lookahead == Some('\n') {
self.line_number += 1;
}
match self.chars.next() {
Some((idx, ch)) => {
self.pos = idx;
self.lookahead = Some(ch);
}
None => {
self.pos = self.source.len();
self.lookahead = None;
}
}
self.lookahead
}
// Get the location corresponding to `lookahead`.
fn loc(&self) -> Location {
Location { line_number: self.line_number }
}
// Starting from `lookahead`, are we looking at `prefix`?
fn looking_at(&self, prefix: &str) -> bool {
self.source[self.pos..].starts_with(prefix)
}
// Scan a single-char token.
fn scan_char(&mut self, tok: Token<'a>) -> Result<LocatedToken<'a>, LocatedError> {
assert!(self.lookahead != None);
let loc = self.loc();
self.next_ch();
token(tok, loc)
}
// Scan a multi-char token.
fn scan_chars(&mut self,
count: usize,
tok: Token<'a>)
-> Result<LocatedToken<'a>, LocatedError> {
let loc = self.loc();
for _ in 0..count {
assert!(self.lookahead != None);
self.next_ch();
}
token(tok, loc)
}
/// Get the rest of the current line.
/// The next token returned by `next()` will be from the following lines.
pub fn rest_of_line(&mut self) -> &'a str {
let begin = self.pos;
loop {
match self.next_ch() {
None | Some('\n') => return &self.source[begin..self.pos],
_ => {}
}
}
}
// Scan a comment extending to the end of the current line.
fn scan_comment(&mut self) -> Result<LocatedToken<'a>, LocatedError> {
let loc = self.loc();
let text = self.rest_of_line();
return token(Token::Comment(text), loc);
}
// Scan a number token which can represent either an integer or floating point number.
//
// Accept the following forms:
//
// - `10`: Integer
// - `-10`: Integer
// - `0xff_00`: Integer
// - `0.0`: Float
// - `0x1.f`: Float
// - `-0x2.4`: Float
// - `0x0.4p-34`: Float
//
// This function does not filter out all invalid numbers. It depends in the context-sensitive
// decoding of the text for that. For example, the number of allowed digits an an Ieee32` and
// an `Ieee64` constant are different.
fn scan_number(&mut self) -> Result<LocatedToken<'a>, LocatedError> {
let begin = self.pos;
let loc = self.loc();
let mut is_float = false;
// Skip a leading sign.
if self.lookahead == Some('-') {
self.next_ch();
if let Some(c) = self.lookahead {
// If the next character won't parse as a number, we conservatively return Token::Minus
if !c.is_alphanumeric() && c != '.' {
return token(Token::Minus, loc);
}
}
}
// Check for NaNs with payloads.
if self.looking_at("NaN:") || self.looking_at("sNaN:") {
// Skip the `NaN:` prefix, the loop below won't accept it.
// We expect a hexadecimal number to follow the colon.
while self.next_ch() != Some(':') {}
is_float = true;
} else if self.looking_at("NaN") || self.looking_at("Inf") {
// This is Inf or a default quiet NaN.
is_float = true;
}
// Look for the end of this number. Detect the radix point if there is one.
loop {
match self.next_ch() {
Some('-') | Some('_') => {}
Some('.') => is_float = true,
Some(ch) if ch.is_alphanumeric() => {}
_ => break,
}
}
let text = &self.source[begin..self.pos];
if is_float {
token(Token::Float(text), loc)
} else {
token(Token::Integer(text), loc)
}
}
// Scan a 'word', which is an identifier-like sequence of characters beginning with '_' or an
// alphabetic char, followed by zero or more alphanumeric or '_' characters.
fn scan_word(&mut self) -> Result<LocatedToken<'a>, LocatedError> {
let begin = self.pos;
let loc = self.loc();
assert!(self.lookahead == Some('_') || self.lookahead.unwrap().is_alphabetic());
loop {
match self.next_ch() {
Some('_') => {}
Some(ch) if ch.is_alphanumeric() => {}
_ => break,
}
}
let text = &self.source[begin..self.pos];
// Look for numbered well-known entities like ebb15, v45, ...
token(split_entity_name(text)
.and_then(|(prefix, number)| {
Self::numbered_entity(prefix, number)
.or_else(|| Self::value_type(text, prefix, number))
})
.unwrap_or(Token::Identifier(text)),
loc)
}
// If prefix is a well-known entity prefix and suffix is a valid entity number, return the
// decoded token.
fn numbered_entity(prefix: &str, number: u32) -> Option<Token<'a>> {
match prefix {
"v" => Value::direct_with_number(number).map(|v| Token::Value(v)),
"vx" => Value::table_with_number(number).map(|v| Token::Value(v)),
"ebb" => Ebb::with_number(number).map(|ebb| Token::Ebb(ebb)),
"ss" => Some(Token::StackSlot(number)),
"jt" => Some(Token::JumpTable(number)),
"fn" => Some(Token::FuncRef(number)),
"sig" => Some(Token::SigRef(number)),
_ => None,
}
}
// Recognize a scalar or vector type.
fn value_type(text: &str, prefix: &str, number: u32) -> Option<Token<'a>> {
let is_vector = prefix.ends_with('x');
let scalar = if is_vector {
&prefix[0..prefix.len() - 1]
} else {
text
};
let base_type = match scalar {
"i8" => types::I8,
"i16" => types::I16,
"i32" => types::I32,
"i64" => types::I64,
"f32" => types::F32,
"f64" => types::F64,
"b1" => types::B1,
"b8" => types::B8,
"b16" => types::B16,
"b32" => types::B32,
"b64" => types::B64,
_ => return None,
};
if is_vector {
if number <= u16::MAX as u32 {
base_type.by(number as u16).map(|t| Token::Type(t))
} else {
None
}
} else {
Some(Token::Type(base_type))
}
}
fn scan_name(&mut self) -> Result<LocatedToken<'a>, LocatedError> {
let loc = self.loc();
let begin = self.pos;
assert!(self.lookahead == Some('%'));
while let Some(c) = self.next_ch() {
if !c.is_alphanumeric() && c != '_' {
break;
}
}
let end = self.pos;
token(Token::Name(&self.source[begin..end]), loc)
}
fn scan_hex_sequence(&mut self) -> Result<LocatedToken<'a>, LocatedError> {
let loc = self.loc();
let begin = self.pos;
assert!(self.lookahead == Some('#'));
while let Some(c) = self.next_ch() {
match c {
'a'...'f' | 'A'...'F' | '0'...'9' => {},
_ => break,
}
}
let end = self.pos;
token(Token::HexSequence(&self.source[begin..end]), loc)
}
/// Get the next token or a lexical error.
///
/// Return None when the end of the source is encountered.
pub fn next(&mut self) -> Option<Result<LocatedToken<'a>, LocatedError>> {
loop {
let loc = self.loc();
return match self.lookahead {
None => None,
Some(';') => Some(self.scan_comment()),
Some('(') => Some(self.scan_char(Token::LPar)),
Some(')') => Some(self.scan_char(Token::RPar)),
Some('{') => Some(self.scan_char(Token::LBrace)),
Some('}') => Some(self.scan_char(Token::RBrace)),
Some('[') => Some(self.scan_char(Token::LBracket)),
Some(']') => Some(self.scan_char(Token::RBracket)),
Some(',') => Some(self.scan_char(Token::Comma)),
Some('.') => Some(self.scan_char(Token::Dot)),
Some(':') => Some(self.scan_char(Token::Colon)),
Some('=') => Some(self.scan_char(Token::Equal)),
Some('-') => {
if self.looking_at("->") {
Some(self.scan_chars(2, Token::Arrow))
} else {
Some(self.scan_number())
}
}
Some(ch) if ch.is_digit(10) => Some(self.scan_number()),
Some(ch) if ch.is_alphabetic() => Some(self.scan_word()),
Some('%') => Some(self.scan_name()),
Some('#') => Some(self.scan_hex_sequence()),
Some(ch) if ch.is_whitespace() => {
self.next_ch();
continue;
}
_ => {
// Skip invalid char, return error.
self.next_ch();
Some(error(Error::InvalidChar, loc))
}
};
}
}
}
#[cfg(test)]
mod tests {
use super::trailing_digits;
use super::*;
use cretonne::ir::types;
use cretonne::ir::{Value, Ebb};
use error::Location;
#[test]
fn digits() {
assert_eq!(trailing_digits(""), 0);
assert_eq!(trailing_digits("x"), 0);
assert_eq!(trailing_digits("0x"), 0);
assert_eq!(trailing_digits("x1"), 1);
assert_eq!(trailing_digits("1x1"), 1);
assert_eq!(trailing_digits("1x01"), 2);
}
#[test]
fn entity_name() {
assert_eq!(split_entity_name(""), None);
assert_eq!(split_entity_name("x"), None);
assert_eq!(split_entity_name("x+"), None);
assert_eq!(split_entity_name("x+1"), Some(("x+", 1)));
assert_eq!(split_entity_name("x-1"), Some(("x-", 1)));
assert_eq!(split_entity_name("1"), Some(("", 1)));
assert_eq!(split_entity_name("x1"), Some(("x", 1)));
assert_eq!(split_entity_name("xy0"), Some(("xy", 0)));
// Reject this non-canonical form.
assert_eq!(split_entity_name("inst01"), None);
}
fn token<'a>(token: Token<'a>, line: usize) -> Option<Result<LocatedToken<'a>, LocatedError>> {
Some(super::token(token, Location { line_number: line }))
}
fn error<'a>(error: Error, line: usize) -> Option<Result<LocatedToken<'a>, LocatedError>> {
Some(super::error(error, Location { line_number: line }))
}
#[test]
fn make_lexer() {
let mut l1 = Lexer::new("");
let mut l2 = Lexer::new(" ");
let mut l3 = Lexer::new("\n ");
assert_eq!(l1.next(), None);
assert_eq!(l2.next(), None);
assert_eq!(l3.next(), None);
}
#[test]
fn lex_comment() {
let mut lex = Lexer::new("; hello");
assert_eq!(lex.next(), token(Token::Comment("; hello"), 1));
assert_eq!(lex.next(), None);
lex = Lexer::new("\n ;hello\n;foo");
assert_eq!(lex.next(), token(Token::Comment(";hello"), 2));
assert_eq!(lex.next(), token(Token::Comment(";foo"), 3));
assert_eq!(lex.next(), None);
// Scan a comment after an invalid char.
let mut lex = Lexer::new("#; hello");
assert_eq!(lex.next(), error(Error::InvalidChar, 1));
assert_eq!(lex.next(), token(Token::Comment("; hello"), 1));
assert_eq!(lex.next(), None);
}
#[test]
fn lex_chars() {
let mut lex = Lexer::new("(); hello\n = :{, }.");
assert_eq!(lex.next(), token(Token::LPar, 1));
assert_eq!(lex.next(), token(Token::RPar, 1));
assert_eq!(lex.next(), token(Token::Comment("; hello"), 1));
assert_eq!(lex.next(), token(Token::Equal, 2));
assert_eq!(lex.next(), token(Token::Colon, 2));
assert_eq!(lex.next(), token(Token::LBrace, 2));
assert_eq!(lex.next(), token(Token::Comma, 2));
assert_eq!(lex.next(), token(Token::RBrace, 2));
assert_eq!(lex.next(), token(Token::Dot, 2));
assert_eq!(lex.next(), None);
}
#[test]
fn lex_numbers() {
let mut lex = Lexer::new(" 0 2_000 -1,0xf -0x0 0.0 0x0.4p-34");
assert_eq!(lex.next(), token(Token::Integer("0"), 1));
assert_eq!(lex.next(), token(Token::Integer("2_000"), 1));
assert_eq!(lex.next(), token(Token::Integer("-1"), 1));
assert_eq!(lex.next(), token(Token::Comma, 1));
assert_eq!(lex.next(), token(Token::Integer("0xf"), 1));
assert_eq!(lex.next(), token(Token::Integer("-0x0"), 1));
assert_eq!(lex.next(), token(Token::Float("0.0"), 1));
assert_eq!(lex.next(), token(Token::Float("0x0.4p-34"), 1));
assert_eq!(lex.next(), None);
}
#[test]
fn lex_identifiers() {
let mut lex = Lexer::new("v0 v00 vx01 ebb1234567890 ebb5234567890 v1x vx1 vxvx4 \
function0 function b1 i32x4 f32x5");
assert_eq!(lex.next(),
token(Token::Value(Value::direct_with_number(0).unwrap()), 1));
assert_eq!(lex.next(), token(Token::Identifier("v00"), 1));
assert_eq!(lex.next(), token(Token::Identifier("vx01"), 1));
assert_eq!(lex.next(),
token(Token::Ebb(Ebb::with_number(1234567890).unwrap()), 1));
assert_eq!(lex.next(), token(Token::Identifier("ebb5234567890"), 1));
assert_eq!(lex.next(), token(Token::Identifier("v1x"), 1));
assert_eq!(lex.next(),
token(Token::Value(Value::table_with_number(1).unwrap()), 1));
assert_eq!(lex.next(), token(Token::Identifier("vxvx4"), 1));
assert_eq!(lex.next(), token(Token::Identifier("function0"), 1));
assert_eq!(lex.next(), token(Token::Identifier("function"), 1));
assert_eq!(lex.next(), token(Token::Type(types::B1), 1));
assert_eq!(lex.next(), token(Token::Type(types::I32.by(4).unwrap()), 1));
assert_eq!(lex.next(), token(Token::Identifier("f32x5"), 1));
assert_eq!(lex.next(), None);
}
}