Files
wasmtime/crates/cranelift/src/obj.rs
Alex Crichton ef3ec594ce Don't copy executable code into a CodeMemory (#3265)
* Don't copy executable code into a `CodeMemory`

This commit moves a copy from compiled artifacts into a `CodeMemory`. In
general this commit drastically changes the meaning of a `CodeMemory`.
Previously it was an iteratively-pushed-on structure that would
accumulate executable code over time. Afterwards, however, it's a
manager for an `MmapVec` which updates the permissions on text section
to ensure that the pages are executable.

By taking ownership of an `MmapVec` within a `CodeMemory` there's no
need to copy any data around, which means that the `.text` section in
the ELF image produced by Wasmtime is usable as-is after placement in
memory and relocations have been resolved. This moves Wasmtime one step
closer to being able to directly use a module after it's `mmap`'d into
memory, optimizing when a module is loaded.

* Fix windows section alignment

* Review comments
2021-08-30 13:38:35 -05:00

529 lines
22 KiB
Rust

//! Object file builder.
//!
//! Creates ELF image based on `Compilation` information. The ELF contains
//! functions and trampolines in the ".text" section. It also contains all
//! relocation records for the linking stage. If DWARF sections exist, their
//! content will be written as well.
//!
//! The object file has symbols for each function and trampoline, as well as
//! symbols that refer to libcalls.
//!
//! The function symbol names have format "_wasm_function_N", where N is
//! `FuncIndex`. The defined wasm function symbols refer to a JIT compiled
//! function body, the imported wasm function do not. The trampolines symbol
//! names have format "_trampoline_N", where N is `SignatureIndex`.
use crate::debug::{DwarfSection, DwarfSectionRelocTarget};
use crate::{CompiledFunction, Relocation, RelocationTarget};
use anyhow::Result;
use cranelift_codegen::binemit::Reloc;
use cranelift_codegen::ir::{JumpTableOffsets, LibCall};
use cranelift_codegen::isa::{
unwind::{systemv, UnwindInfo},
TargetIsa,
};
use gimli::write::{Address, EhFrame, EndianVec, FrameTable, Writer};
use gimli::RunTimeEndian;
use object::write::{
Object, Relocation as ObjectRelocation, SectionId, StandardSegment, Symbol, SymbolId,
SymbolSection,
};
use object::{
elf, Architecture, RelocationEncoding, RelocationKind, SectionKind, SymbolFlags, SymbolKind,
SymbolScope,
};
use std::collections::HashMap;
use std::convert::TryFrom;
use std::ops::Range;
use wasmtime_environ::obj;
use wasmtime_environ::{
DefinedFuncIndex, EntityRef, FuncIndex, Module, PrimaryMap, SignatureIndex, Trampoline,
};
const TEXT_SECTION_NAME: &[u8] = b".text";
/// Iterates through all `LibCall` members and all runtime exported functions.
#[macro_export]
macro_rules! for_each_libcall {
($op:ident) => {
$op![
(UdivI64, wasmtime_i64_udiv),
(UdivI64, wasmtime_i64_udiv),
(SdivI64, wasmtime_i64_sdiv),
(UremI64, wasmtime_i64_urem),
(SremI64, wasmtime_i64_srem),
(IshlI64, wasmtime_i64_ishl),
(UshrI64, wasmtime_i64_ushr),
(SshrI64, wasmtime_i64_sshr),
(CeilF32, wasmtime_f32_ceil),
(FloorF32, wasmtime_f32_floor),
(TruncF32, wasmtime_f32_trunc),
(NearestF32, wasmtime_f32_nearest),
(CeilF64, wasmtime_f64_ceil),
(FloorF64, wasmtime_f64_floor),
(TruncF64, wasmtime_f64_trunc),
(NearestF64, wasmtime_f64_nearest)
];
};
}
fn write_libcall_symbols(obj: &mut Object) -> HashMap<LibCall, SymbolId> {
let mut libcalls = HashMap::new();
macro_rules! add_libcall_symbol {
[$(($libcall:ident, $export:ident)),*] => {{
$(
let symbol_id = obj.add_symbol(Symbol {
name: stringify!($export).as_bytes().to_vec(),
value: 0,
size: 0,
kind: SymbolKind::Text,
scope: SymbolScope::Linkage,
weak: true,
section: SymbolSection::Undefined,
flags: SymbolFlags::None,
});
libcalls.insert(LibCall::$libcall, symbol_id);
)+
}};
}
for_each_libcall!(add_libcall_symbol);
libcalls
}
pub struct ObjectBuilder<'a> {
obj: &'a mut Object,
module: &'a Module,
text_section: SectionId,
func_symbols: PrimaryMap<FuncIndex, SymbolId>,
jump_tables: PrimaryMap<DefinedFuncIndex, &'a JumpTableOffsets>,
libcalls: HashMap<LibCall, SymbolId>,
pending_relocations: Vec<(u64, &'a [Relocation])>,
windows_unwind_info: Vec<RUNTIME_FUNCTION>,
systemv_unwind_info: Vec<(u64, &'a systemv::UnwindInfo)>,
}
// This is a mirror of `RUNTIME_FUNCTION` in the Windows API, but defined here
// to ensure everything is always `u32` and to have it available on all
// platforms. Note that all of these specifiers here are relative to a "base
// address" which we define as the base of where the text section is eventually
// loaded.
#[allow(non_camel_case_types)]
struct RUNTIME_FUNCTION {
begin: u32,
end: u32,
unwind_address: u32,
}
impl<'a> ObjectBuilder<'a> {
pub fn new(obj: &'a mut Object, module: &'a Module) -> Self {
// Entire code (functions and trampolines) will be placed
// in the ".text" section.
let text_section = obj.add_section(
obj.segment_name(StandardSegment::Text).to_vec(),
TEXT_SECTION_NAME.to_vec(),
SectionKind::Text,
);
// Create symbols for imports -- needed during linking.
let mut func_symbols = PrimaryMap::with_capacity(module.functions.len());
for index in 0..module.num_imported_funcs {
let symbol_id = obj.add_symbol(Symbol {
name: obj::func_symbol_name(FuncIndex::new(index))
.as_bytes()
.to_vec(),
value: 0,
size: 0,
kind: SymbolKind::Text,
scope: SymbolScope::Linkage,
weak: false,
section: SymbolSection::Undefined,
flags: SymbolFlags::None,
});
func_symbols.push(symbol_id);
}
let libcalls = write_libcall_symbols(obj);
Self {
obj,
module,
text_section,
func_symbols,
libcalls,
pending_relocations: Vec::new(),
jump_tables: PrimaryMap::with_capacity(module.functions.len()),
windows_unwind_info: Vec::new(),
systemv_unwind_info: Vec::new(),
}
}
/// Appends the `func` specified named `name` to this object.
///
/// Returns the symbol associated with the function as well as the range
/// that the function resides within the text section.
fn append_func(&mut self, name: Vec<u8>, func: &'a CompiledFunction) -> (SymbolId, Range<u64>) {
let off = self
.obj
.append_section_data(self.text_section, &func.body, 1);
let symbol_id = self.obj.add_symbol(Symbol {
name,
value: off,
size: func.body.len() as u64,
kind: SymbolKind::Text,
scope: SymbolScope::Compilation,
weak: false,
section: SymbolSection::Section(self.text_section),
flags: SymbolFlags::None,
});
match &func.unwind_info {
// Windows unwind information is preferred to come after the code
// itself. The information is appended here just after the function,
// aligned to 4-bytes as required by Windows.
//
// The location of the unwind info, and the function it describes,
// is then recorded in an unwind info table to get embedded into the
// object at the end of compilation.
Some(UnwindInfo::WindowsX64(info)) => {
// Windows prefers Unwind info after the code -- writing it here.
let unwind_size = info.emit_size();
let mut unwind_info = vec![0; unwind_size];
info.emit(&mut unwind_info);
let unwind_off = self
.obj
.append_section_data(self.text_section, &unwind_info, 4);
self.windows_unwind_info.push(RUNTIME_FUNCTION {
begin: u32::try_from(off).unwrap(),
end: u32::try_from(off + func.body.len() as u64).unwrap(),
unwind_address: u32::try_from(unwind_off).unwrap(),
});
}
// System-V is different enough that we just record the unwinding
// information to get processed at a later time.
Some(UnwindInfo::SystemV(info)) => {
self.systemv_unwind_info.push((off, info));
}
Some(_) => panic!("some unwind info isn't handled here"),
None => {}
}
if !func.relocations.is_empty() {
self.pending_relocations.push((off, &func.relocations));
}
(symbol_id, off..off + func.body.len() as u64)
}
/// Pushes a new defined function from the a wasm module into this object,
/// returning the range that the compiled code will live at relative in the
/// text section of the final executable.
///
/// Note that functions must be pushed in the order of their
/// `DefinedFuncIndex`.
pub fn func(&mut self, index: DefinedFuncIndex, func: &'a CompiledFunction) -> Range<u64> {
assert_eq!(self.jump_tables.push(&func.jt_offsets), index);
let index = self.module.func_index(index);
let name = obj::func_symbol_name(index);
let (symbol_id, range) = self.append_func(name.into_bytes(), func);
assert_eq!(self.func_symbols.push(symbol_id), index);
range
}
pub fn trampoline(&mut self, sig: SignatureIndex, func: &'a CompiledFunction) -> Trampoline {
let name = obj::trampoline_symbol_name(sig);
let (_, range) = self.append_func(name.into_bytes(), func);
Trampoline {
signature: sig,
start: range.start,
length: u32::try_from(range.end - range.start).unwrap(),
}
}
pub fn align_text_to(&mut self, align: u64) {
self.obj.append_section_data(self.text_section, &[], align);
}
pub fn dwarf_sections(&mut self, sections: &[DwarfSection]) -> Result<()> {
// If we have DWARF data, write it in the object file.
let (debug_bodies, debug_relocs): (Vec<_>, Vec<_>) = sections
.iter()
.map(|s| ((s.name, &s.body), (s.name, &s.relocs)))
.unzip();
let mut dwarf_sections_ids = HashMap::new();
for (name, body) in debug_bodies {
let segment = self.obj.segment_name(StandardSegment::Debug).to_vec();
let section_id =
self.obj
.add_section(segment, name.as_bytes().to_vec(), SectionKind::Debug);
dwarf_sections_ids.insert(name, section_id);
self.obj.append_section_data(section_id, &body, 1);
}
// Write all debug data relocations.
for (name, relocs) in debug_relocs {
let section_id = *dwarf_sections_ids.get(name).unwrap();
for reloc in relocs {
let target_symbol = match reloc.target {
DwarfSectionRelocTarget::Func(index) => {
self.func_symbols[self.module.func_index(DefinedFuncIndex::new(index))]
}
DwarfSectionRelocTarget::Section(name) => {
self.obj.section_symbol(dwarf_sections_ids[name])
}
};
self.obj.add_relocation(
section_id,
ObjectRelocation {
offset: u64::from(reloc.offset),
size: reloc.size << 3,
kind: RelocationKind::Absolute,
encoding: RelocationEncoding::Generic,
symbol: target_symbol,
addend: i64::from(reloc.addend),
},
)?;
}
}
Ok(())
}
pub fn finish(&mut self, isa: &dyn TargetIsa) -> Result<()> {
self.append_relocations()?;
if self.windows_unwind_info.len() > 0 {
self.append_windows_unwind_info();
}
if self.systemv_unwind_info.len() > 0 {
self.append_systemv_unwind_info(isa);
}
Ok(())
}
fn append_relocations(&mut self) -> Result<()> {
for (off, relocations) in self.pending_relocations.iter() {
for r in relocations.iter() {
let (symbol, symbol_offset) = match r.reloc_target {
RelocationTarget::UserFunc(index) => (self.func_symbols[index], 0),
RelocationTarget::LibCall(call) => (self.libcalls[&call], 0),
RelocationTarget::JumpTable(f, jt) => {
let df = self.module.defined_func_index(f).unwrap();
let offset = *self
.jump_tables
.get(df)
.and_then(|t| t.get(jt))
.expect("func jump table");
(self.func_symbols[f], offset)
}
};
let (kind, encoding, size) = match r.reloc {
Reloc::Abs4 => (RelocationKind::Absolute, RelocationEncoding::Generic, 32),
Reloc::Abs8 => (RelocationKind::Absolute, RelocationEncoding::Generic, 64),
Reloc::X86PCRel4 => (RelocationKind::Relative, RelocationEncoding::Generic, 32),
Reloc::X86CallPCRel4 => {
(RelocationKind::Relative, RelocationEncoding::X86Branch, 32)
}
// TODO: Get Cranelift to tell us when we can use
// R_X86_64_GOTPCRELX/R_X86_64_REX_GOTPCRELX.
Reloc::X86CallPLTRel4 => (
RelocationKind::PltRelative,
RelocationEncoding::X86Branch,
32,
),
Reloc::X86GOTPCRel4 => {
(RelocationKind::GotRelative, RelocationEncoding::Generic, 32)
}
Reloc::ElfX86_64TlsGd => (
RelocationKind::Elf(elf::R_X86_64_TLSGD),
RelocationEncoding::Generic,
32,
),
Reloc::X86PCRelRodata4 => {
continue;
}
Reloc::Arm64Call => (
RelocationKind::Elf(elf::R_AARCH64_CALL26),
RelocationEncoding::Generic,
32,
),
Reloc::S390xPCRel32Dbl => {
(RelocationKind::Relative, RelocationEncoding::S390xDbl, 32)
}
other => unimplemented!("Unimplemented relocation {:?}", other),
};
self.obj.add_relocation(
self.text_section,
ObjectRelocation {
offset: off + r.offset as u64,
size,
kind,
encoding,
symbol,
addend: r.addend.wrapping_add(symbol_offset as i64),
},
)?;
}
}
Ok(())
}
/// This function appends a nonstandard section to the object which is only
/// used during `CodeMemory::allocate_for_object`.
///
/// This custom section effectively stores a `[RUNTIME_FUNCTION; N]` into
/// the object file itself. This way registration of unwind info can simply
/// pass this slice to the OS itself and there's no need to recalculate
/// anything on the other end of loading a module from a precompiled object.
fn append_windows_unwind_info(&mut self) {
// Currently the binary format supported here only supports
// little-endian for x86_64, or at least that's all where it's tested.
// This may need updates for other platforms.
assert_eq!(self.obj.architecture(), Architecture::X86_64);
// Page-align the text section so the unwind info can reside on a
// separate page that doesn't need executable permissions.
self.obj.append_section_data(self.text_section, &[], 0x1000);
let segment = self.obj.segment_name(StandardSegment::Data).to_vec();
let section_id = self.obj.add_section(
segment,
b"_wasmtime_winx64_unwind".to_vec(),
SectionKind::ReadOnlyData,
);
let mut unwind_info = Vec::with_capacity(self.windows_unwind_info.len() * 3 * 4);
for info in self.windows_unwind_info.iter() {
unwind_info.extend_from_slice(&info.begin.to_le_bytes());
unwind_info.extend_from_slice(&info.end.to_le_bytes());
unwind_info.extend_from_slice(&info.unwind_address.to_le_bytes());
}
self.obj.append_section_data(section_id, &unwind_info, 4);
}
/// This function appends a nonstandard section to the object which is only
/// used during `CodeMemory::allocate_for_object`.
///
/// This will generate a `.eh_frame` section, but not one that can be
/// naively loaded. The goal of this section is that we can create the
/// section once here and never again does it need to change. To describe
/// dynamically loaded functions though each individual FDE needs to talk
/// about the function's absolute address that it's referencing. Naturally
/// we don't actually know the function's absolute address when we're
/// creating an object here.
///
/// To solve this problem the FDE address encoding mode is set to
/// `DW_EH_PE_pcrel`. This means that the actual effective address that the
/// FDE describes is a relative to the address of the FDE itself. By
/// leveraging this relative-ness we can assume that the relative distance
/// between the FDE and the function it describes is constant, which should
/// allow us to generate an FDE ahead-of-time here.
///
/// For now this assumes that all the code of functions will start at a
/// page-aligned address when loaded into memory. The eh_frame encoded here
/// then assumes that the text section is itself page aligned to its size
/// and the eh_frame will follow just after the text section. This means
/// that the relative offsets we're using here is the FDE going backwards
/// into the text section itself.
///
/// Note that the library we're using to create the FDEs, `gimli`, doesn't
/// actually encode addresses relative to the FDE itself. Instead the
/// addresses are encoded relative to the start of the `.eh_frame` section.
/// This makes it much easier for us where we provide the relative offset
/// from the start of `.eh_frame` to the function in the text section, which
/// given our layout basically means the offset of the function in the text
/// section from the end of the text section.
///
/// A final note is that the reason we page-align the text section's size is
/// so the .eh_frame lives on a separate page from the text section itself.
/// This allows `.eh_frame` to have different virtual memory permissions,
/// such as being purely read-only instead of read/execute like the code
/// bits.
fn append_systemv_unwind_info(&mut self, isa: &dyn TargetIsa) {
let segment = self.obj.segment_name(StandardSegment::Data).to_vec();
let section_id = self.obj.add_section(
segment,
b"_wasmtime_eh_frame".to_vec(),
SectionKind::ReadOnlyData,
);
let mut cie = isa
.create_systemv_cie()
.expect("must be able to create a CIE for system-v unwind info");
let mut table = FrameTable::default();
cie.fde_address_encoding = gimli::constants::DW_EH_PE_pcrel;
let cie_id = table.add_cie(cie);
// This write will align the text section to a page boundary (0x1000)
// and then return the offset at that point. This gives us the full size
// of the text section at that point, after alignment.
let text_section_size = self.obj.append_section_data(self.text_section, &[], 0x1000);
for (text_section_off, unwind_info) in self.systemv_unwind_info.iter() {
let backwards_off = text_section_size - text_section_off;
let actual_offset = -i64::try_from(backwards_off).unwrap();
// Note that gimli wants an unsigned 64-bit integer here, but
// unwinders just use this constant for a relative addition with the
// address of the FDE, which means that the sign doesn't actually
// matter.
let fde = unwind_info.to_fde(Address::Constant(actual_offset as u64));
table.add_fde(cie_id, fde);
}
let endian = match isa.triple().endianness().unwrap() {
target_lexicon::Endianness::Little => RunTimeEndian::Little,
target_lexicon::Endianness::Big => RunTimeEndian::Big,
};
let mut eh_frame = EhFrame(MyVec(EndianVec::new(endian)));
table.write_eh_frame(&mut eh_frame).unwrap();
// Some unwinding implementations expect a terminating "empty" length so
// a 0 is written at the end of the table for those implementations.
let mut endian_vec = (eh_frame.0).0;
endian_vec.write_u32(0).unwrap();
self.obj
.append_section_data(section_id, endian_vec.slice(), 1);
use gimli::constants;
use gimli::write::Error;
struct MyVec(EndianVec<RunTimeEndian>);
impl Writer for MyVec {
type Endian = RunTimeEndian;
fn endian(&self) -> RunTimeEndian {
self.0.endian()
}
fn len(&self) -> usize {
self.0.len()
}
fn write(&mut self, buf: &[u8]) -> Result<(), Error> {
self.0.write(buf)
}
fn write_at(&mut self, pos: usize, buf: &[u8]) -> Result<(), Error> {
self.0.write_at(pos, buf)
}
// FIXME(gimli-rs/gimli#576) this is the definition we want for
// `write_eh_pointer` but the default implementation, at the time
// of this writing, uses `offset - val` instead of `val - offset`.
// A PR has been merged to fix this but until that's published we
// can't use it.
fn write_eh_pointer(
&mut self,
address: Address,
eh_pe: constants::DwEhPe,
size: u8,
) -> Result<(), Error> {
let val = match address {
Address::Constant(val) => val,
Address::Symbol { .. } => unreachable!(),
};
assert_eq!(eh_pe.application(), constants::DW_EH_PE_pcrel);
let offset = self.len() as u64;
let val = val.wrapping_sub(offset);
self.write_eh_pointer_data(val, eh_pe.format(), size)
}
}
}
}