Files
wasmtime/lib/execute/src/lib.rs
2018-06-07 14:17:56 -07:00

122 lines
4.6 KiB
Rust

//! JIT-style runtime for WebAssembly using Cretonne.
#![deny(missing_docs)]
extern crate cretonne_codegen;
extern crate cretonne_wasm;
extern crate region;
extern crate wasmstandalone_runtime;
use cretonne_codegen::binemit::Reloc;
use cretonne_codegen::isa::TargetIsa;
use region::protect;
use region::Protection;
use std::mem::transmute;
use std::ptr::write_unaligned;
use wasmstandalone_runtime::Compilation;
/// Executes a module that has been translated with the `standalone::Runtime` runtime implementation.
pub fn compile_module<'data, 'module>(
isa: &TargetIsa,
translation: &wasmstandalone_runtime::ModuleTranslation<'data, 'module>,
) -> Result<wasmstandalone_runtime::Compilation<'module>, String> {
debug_assert!(
translation.module.start_func.is_none()
|| translation.module.start_func.unwrap() >= translation.module.imported_funcs.len(),
"imported start functions not supported yet"
);
let (mut compilation, relocations) = translation.compile(isa)?;
// Apply relocations, now that we have virtual addresses for everything.
relocate(&mut compilation, &relocations);
Ok(compilation)
}
/// Performs the relocations inside the function bytecode, provided the necessary metadata
fn relocate(compilation: &mut Compilation, relocations: &wasmstandalone_runtime::Relocations) {
// The relocations are relative to the relocation's address plus four bytes
// TODO: Support architectures other than x64, and other reloc kinds.
for (i, function_relocs) in relocations.iter().enumerate() {
for ref r in function_relocs {
let target_func_address: isize = compilation.functions[r.func_index].as_ptr() as isize;
let body = &mut compilation.functions[i];
match r.reloc {
Reloc::Abs8 => unsafe {
let reloc_address = body.as_mut_ptr().offset(r.offset as isize) as i64;
let reloc_addend = r.addend as i64;
let reloc_abs = target_func_address as i64 + reloc_addend;
write_unaligned(reloc_address as *mut i64, reloc_abs);
},
Reloc::X86PCRel4 => unsafe {
let reloc_address = body.as_mut_ptr().offset(r.offset as isize) as isize;
let reloc_addend = r.addend as isize;
// TODO: Handle overflow.
let reloc_delta_i32 =
(target_func_address - reloc_address + reloc_addend) as i32;
write_unaligned(reloc_address as *mut i32, reloc_delta_i32);
},
_ => panic!("unsupported reloc kind"),
}
}
}
}
/// Create the VmCtx data structure for the JIT'd code to use. This must
/// match the VmCtx layout in the runtime.
fn make_vmctx(instance: &mut wasmstandalone_runtime::Instance) -> Vec<*mut u8> {
let mut memories = Vec::new();
let mut vmctx = Vec::new();
vmctx.push(instance.globals.as_mut_ptr());
for mem in &mut instance.memories {
memories.push(mem.as_mut_ptr());
}
vmctx.push(memories.as_mut_ptr() as *mut u8);
vmctx
}
/// Jumps to the code region of memory and execute the start function of the module.
pub fn execute(
compilation: &wasmstandalone_runtime::Compilation,
instance: &mut wasmstandalone_runtime::Instance,
) -> Result<(), String> {
let start_index = compilation
.module
.start_func
.ok_or_else(|| String::from("No start function defined, aborting execution"))?;
// TODO: Put all the function bodies into a page-aligned memory region, and
// then make them ReadExecute rather than ReadWriteExecute.
for code_buf in &compilation.functions {
match unsafe {
protect(
code_buf.as_ptr(),
code_buf.len(),
Protection::ReadWriteExecute,
)
} {
Ok(()) => (),
Err(err) => {
return Err(format!(
"failed to give executable permission to code: {}",
err
))
}
}
}
let code_buf = &compilation.functions[start_index];
let vmctx = make_vmctx(instance);
// Rather than writing inline assembly to jump to the code region, we use the fact that
// the Rust ABI for calling a function with no arguments and no return matches the one of
// the generated code.Thanks to this, we can transmute the code region into a first-class
// Rust function and call it.
unsafe {
let start_func = transmute::<_, fn(*const *mut u8)>(code_buf.as_ptr());
start_func(vmctx.as_ptr());
}
Ok(())
}